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Abstract. The diagrams, describing the process of forming mini-fullerenes (from C4 to C20) 

of single carbon atoms and carbon dimers, were suggested by one of the authors elsewhere. In 

this contribution we solved an inverse problem, i.e. how to predict possible ways of forming 

mini-fullerenes, if one knows its graphs. We have analyzed the graphs describing the process 

of forming mini-fullerenes and found that they can be formed not only of single carbon atoms 

and carbon dimers but also of small carbon clusters. On the basis of the graphs it is possible to 

distinguish different families of mini-fullerenes and therefore one can make a classification of 

these unusual carbon structures. In the course of the analysis some innovation to the graph 

theory was done. We suggested considering a cluster of three or four atoms as a big point 

(vertex) contrary to a zero-size point (vertex) of a common graph. In this case one obtains 

a graph, which is identical to a simpler graph. It allows do some operations with this graph in 

same manner as with a usual graph that simplifies an analysis.  

 
 

1. Introduction  

In [1] we have taken the term “fullerene” in a broad sense as any convex shape inscribed into 

a spherical surface which can be composed of atoms, each atom having three nearest 

neighbors, as in usual fullerenes, whenever discussing hollow carbon clusters. This 

geometrical approach allowed us to obtain possible forms of such broad-sense fullerenes. To 

gain a more penetrating insight into its nature, we also have taken into consideration, along 

with the atomic structure of these spherical molecules, its electronic structure [2]. For this 

purpose we have developed an enlarged version of Sidgwick–Powell theory [3]. The modified 

version [4] was applied at first to cyclohexane [4] and usual fullerenes [5], and thereafter to 

the broad-sense fullerenes [1].  

Up to now mechanism of fullerene formation is unclear. However, it is known that, if to 

take one electrode of 13
6 C graphite and another of ordinary 12

6 C graphite, the fullerene, 

formed in an electric arc, has 13
6 C  and 12

6 C  atoms arranged on a fullerene surface in 

a random way. This suggests that fullerene assemblage originates of separate atoms and 

2C dimers, and probably of very small clusters. In [6, 7] this fact was used for postulating 

the ways of forming broad-sense fullerenes. Their final configurations were given not only in 

the usual form but in the form of graphs as well.  

In this contribution we solved an inverse problem, i.e. how to predict possible ways of 

forming the broad-sense fullerenes, if one knows its graphs.  
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2. Tetrahedral fullerene C4 as an explanation of some notions of the graph theory 

In Fig. 1 two graphs representing a tetrahedron are shown (a, b). One can easily associate 

graph (a) with forming a tetrahedral fullerene initiated by a reaction-active single atom. Graph 

(b) displays forming it starting at a dimer. Nevertheless both graphs, having four vertices and 

six edges, are isomorphic. Remember that according to the graph theory [8], edges having 

a common vertex are named adjacent. Graphs having one-to one correspondence and 

conserving the adjacency are isomorphic. Besides, both graphs are planar because they can be 

placed on a plane.  

However, graph (a) resembles better a tetrahedron than more abstract graph (b). It is 

connected with the fact that in the first case an observer looks at a triangular pyramid 

(tetrahedron) from above. In the second case, a point of observation is located on a normal to 

skew edges. In the first case no two edges of a graph intersect and planar graph (a) is a plane 

one. A plane graph takes into account symmetry of a corresponding polyhedron better, and 

therefore it reflects better polyhedron structure, thus allowing gaining a more penetrating 

insight into its nature. To gain a better understanding, we will use in what follows mostly 

plane graphs. On the basis of graph similarity we can distinguish graph families. 
 

 
 

Fig. 1. Carbon tetrahedron (on the left) and two graphs (a, b) representing a tetrahedral 

fullerene. Graph (b) is planar because it is isomorphic to plane graph (a). Possible ways of 

forming a cluster of four carbon atoms (c, d, and e) are shown on the right. 

 

3. Family of elementary fullerenes: from C4 to C12 

This family of fullerenes will be named the elementary fullerenes. It contains together with 

a tetrahedron five members. In Fig. 2 the plane graphs of this family are shown. Looking at 

the figure, one can propose the ways of forming these carbon fullerenes which are quite 

different of those discussed in [6, 7]. They are illustrated in Fig. 3.  
 

 
 

Fig. 2. Graphs: tetrahedron (a), triangular prism (b), cube (c), pentagonal prism (d),  

and hexagonal prism (e). 
 

This suggests that fullerene assemblage originates not only of separate atoms and 

dimers, but also of very small clusters. This is not strange, since there are known such carbon 

b) c) d) e) a) 

c) 

e) 

d) 

b) 

a) 

13





 

being the same as before. The ways of forming these carbon fullerenes are illustrated in 

Fig. 6. The structure of these fullerenes is given in Fig. 7.  
 

 
 

Fig. 7. Barrel-shaped fullerenes: triangular (a), square (b), five-cornered (c), six-cornered (d). 
 

5. Truncated elementary fullerenes: C10, C12, C16 

This family contains three members, a base-truncated triangular pyramid, a truncated 

tetrahedron, and a half-truncated cube. Consider at first a truncated tetrahedron. 

a) Truncated tetrahedron as an explanation of some innovation to the graph 

theory. In Fig. 8 different presentations of a truncated tetrahedron are given. Fig. 8a shows its 

graph. In much the same manner as for a triangular prim and a triangular barrel (Figs. 3b and 

6a), one can mark out a reaction-active cluster of three atoms which initiates forming 

a truncated tetrahedron (Fig. 8b). Now the innovations. Up to now each vertex (point) of 

a graph corresponded to one atom. Now let us consider each cluster of three atoms as a big 

point (vertex) contrary to a zero-size point (vertex) of all the previous graphs. In this case we 

obtain a graph (Fig. 8c), which is identical to the graph of a tetrahedron (Fig. 1a). It allows do 

some operations with this graph in same manner as with a usual graph that simplifies 

an analysis. The atomic structure of this fullerene is given in Fig. 8d. 
 

 
 

Fig. 8. Truncated tetrahedron fullerene: its graph (a), forming (b),  

reducing to a common tetrahedron (c), and its atomic structure (d). 
 

b) Base-truncated triangular pyramid. Analogously we can analyze the formation 

and properties of a base-truncated triangular pyramid. At first we have a graph (Fig. 9a).  
 

 
 

Fig. 9. Base-truncated triangular pyramid: its graph (a), coloring of blocks (b), and 

replacement of blocks by big vertices (c); its atomic structure (d). 
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Thereafter we find the clusters of three atoms (Fig. 9b), then change them with big points 

(Fig. 9c). As a result, we obtain the graph, although with two types of points (vertices), but 

which structure is simpler (Fig. 9d).  

b) Half-truncated cube. Analogously we can analyze the formation and properties of 

a half-truncated cube. At first we have a graph (Fig. 10a). Thereafter we find the clusters of 

three atoms (Fig. 10b), then change them with big points (Fig. 10c). As a result, we obtain the 

graph, although with two types of points (vertices), but which structure is simpler and hence 

more convenient for analysis than that of the initial graph, to say nothing of the atomic 

structure (Fig. 10d).  
 

 
 

Fig. 10. Half-truncated cube: its graph (a), coloring of blocks (b), and replacement of blocks 

by big vertices (c); its atomic structure (d). 
 

6. Truncated bipyramids: C14, C18 

This family of fullerenes contains two members. 

a) Base-truncated triangular bipyramid. In Fig. 11 different presentations of a base-

truncated triangular bipyramid are given. Figure 11a shows its graph. In the same manner as 

before, one can mark out clusters of four atoms (Fig. 11b), and consider each cluster as a big 

point (vertex) (Fig. 11c). It allows also do some operations with this graph in same manner as 

with a usual graph. The atomic structure of this fullerene is given in Fig. 11d. 
 

 
 

Fig. 11. Base-truncated triangular bipyramid: its graph (a), coloring of blocks (b), and 

replacement of blocks by big vertices (c); its atomic structure (d). 
 

b) Truncated triangular bipyramid. Different presentations of a truncated triangular 

bipyramid are shown in Fig. 12. The following procedure has much in common with that of 

a base-truncated triangular bipyramid.  
 

 
 

Fig. 12. Truncated triangular bipyramid: its graph (a), coloring of blocks (b), and 

replacement of blocks by big vertices (c); and its atomic structure (d). 
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7. Bi-shamrocks: C14, C18 

This fullerene family contains two members: a bi-shamrock (tetra6-hexa3 polyhedron) and 

a truncated bi-shamrock ((tri-penta3)2-hexa3 polyhedron). Its graphs and atomic structures are 

shown in Fig. 13.  
 

 
 

Fig. 13. Bi-shamrock: its graph (a) and atomic structure (b);  

and truncated bi-shamrock: its graph (c), and its atomic structure (d). 
 

8. Conclusion 

We have considered graphs describing the process of forming mini-fullerenes of small carbon 

clusters. On the basis of these graphs one can distinguish different families of mini-fullerenes 

and therefore one can make a classification of these unusual carbon structures. 

Besides, we have done some innovation to the graph theory. We suggested considering 

a cluster of three or four atoms as a big point (vertex) contrary to a zero-size point (vertex) of 

a common graph. In this case we obtain a graph, which is identical to a simpler graph. It 

allows do some operations with this graph in same manner as with a usual graph that 

simplifies an analysis.  
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