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Abstract. In this work, a new mathematical model of two-step heat conduction for an 

isotropic generalized thermoelasticity is derived using the methodology of fractional calculus. 

Some theorems of generalized thermoelasticity follow as limiting cases. An ultrafast 

fractional thermoelasticity model utilizing the modified fractional parabolic two-step heat 

conduction model and the generalized fractional thermoelastic theory was formulated 

to describe the thermoelastic behavior of a thin metal irradiated by a femtosecond laser pulse. 

The temporal profile of the ultrafast laser was regarded as being non-Gaussian. An analytical–

numerical technique based on the Laplace transform was used to solve the governing 

equations and the time histories of the electron temperature, lattice temperature, displacement 

and stress in gold were analyzed. Some comparisons have been shown in figures to estimate 

the effects of the fractional order parameter on all the studied fields. The effect of   where 

(0 1),   on all the fields is very much prominent, as the calculation results show that an 

ultrafast laser pulse at 1,   induces a stronger stress wave and stronger stress attenuation 

compared with fractional  . In addition, the peak values of the electron, lattice temperatures 

and the displacement are larger in a modified fractional model as compared with the original 

model ( 1)  . Thus, we can draw the conclusion that an ultrafast laser pulse induces 

a stronger thermo-mechanical response in a modified fractional model. 

 

 

Nomenclature 
  fractional derivative order;  
  non-dimensional temperature; 
l  lattice; 
  Lamé constant; 
  shear modulus; 

  mass density; 

  relaxation time; 
  electron mean free path; 
C  volumetric heat capacities; 
L dimensional material thickness; 
S energy source of the laser pulse; 
t  time; 
T  absolute temperature; 
R  rejectivity of the irradiated surface; 
u lattice displacement; 
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v  speed of sound; 
x one-dimensional space variable; 

T  thermal expansion coefficient; 

F  Fermi energy; 

F  Fermi velocity; 

ij  components of stress tensor; 

ije  components of strain tensor; 

Bk  Boltzmann’s constant; 

ek  thermal conductivity of the electrons; 

eqk  thermal conductivity of the electron; 

en  density of free electrons per unit volume; 

J0 total power carried by the pulse per unit cross section of the beam; 

pt  time duration of the laser pulse; 

DT  Debye temperature; 

0T  ambient temperature; 

0x  absorptive depth of the heat energy. 

 

Subscript 
e  electron; 

p  pulse; 

0 room temperature (300 K) or reference state. 
 

 

1. Introduction 

When the laser pulse duration is on the order of or shorter than the electron-photon 

thermalization time (picoseconds for metals), laser material interaction is a two-step, non-

equilibrium heating process [1]. In the first step, the incident laser energy is absorbed 

predominantly by electrons during the photon excitation. In the second step, a portion of the 

electron thermal energy transfers to the neighboring phonon (lattice) through electron-phonon 

coupling. Meanwhile, a part of the electron thermal energy diffuses, through electrons, into 

the deeper region of electrons [2].  

Researchers have proposed several models to describe the mechanism of heat 

conduction during short-pulse laser heating, such as the parabolic one-step model [3], the 

hyperbolic one-step model [4], the parabolic two-step and hyperbolic two-step models [5]. It 

has been found that usually the microscopic two-step models (parabolic and hyperbolic two-

step models) are useful for modification material as thin films [6-8]. 

Differential equations of fractional order have been the focus of many studies due to 

their frequent appearance in various applications in fluid mechanics, viscoelasticity, biology, 

physics and engineering. The most important advantage of using fractional differential 

equations in these and other applications is their non-local property. It is well known that the 

integer order differential operator is a local operator but the fractional order differential 

operator is non-local. This means that the next state of a system depends not only upon its 

current state but also upon all of its historical states. This is more realistic and it is one reason 

why fractional calculus has become more and more popular [9-11].  

Although the tools of fractional calculus were available and applicable to various fields 

of study, the investigation of the theory of fractional differential equations was initiated quite 

recently by Caputo [9]. The differential equations involving Riemann–Liouville differential 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V49-5051PP8-2&_user=739499&_coverDate=09%2F30%2F2010&_alid=1666833469&_rdoc=12&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5753&_sort=r&_st=13&_docanchor=&view=c&_ct=7118&_acct=C000041101&_version=1&_urlVersion=0&_userid=739499&md5=37ab74da098dc6a63b8f2751787cb572&searchtype=a#bib5#bib5
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operators of fractional order 0 <   < 1, appear to be important in modeling several physical 

phenomena and therefore seem to deserve an independent study of their theory parallel to the 

well-known theory of ordinary differential equations 

Fractional calculus has been used successfully to modify many existing models of 

physical processes. One can state that the whole theory of fractional derivatives and integrals 

was established in the 2nd half of the 19
th

 century. The first application of fractional 

derivatives was given by Abel who applied fractional calculus in the solution of an integral 

equation that arises in the formulation of the Tautochrone problem. The generalization of the 

concept of derivative and integral to a non-integer order has been subjected to several 

approaches and some various alternative definitions of fractional derivatives appeared in 

[12-16]. In the last few years fractional calculus was applied successfully in various areas to 

modify many existing models of physical processes, e.g., chemistry, biology, modeling and 

identification, electronics, wave propagation and viscoelasticity [17-20]. Fractional order 

models often work well, particularly for dielectrics and viscoelastic materials over extended 

ranges of time and frequency [21, 22]. In heat transfer and electrochemistry, for example, the 

half order fractional integral is the natural integral operator connecting the applied gradients 

(thermal or material) with the diffusion of ions of heat [23, 24]. One can refer to Padlubny 

[10] for a survey of applications of fractional calculus.  

A quasi-static uncoupled theory of thermoelasticity based on fractional heat conduction 

equation was put forward by Povstenko [25]. The theory of thermal stresses based on the heat 

conduction equation with the Caputo time-fractional derivative, is used by Povstenko [26] to 

investigate thermal stresses in an infinite body with a circular cylindrical hole. Sherief et al. 

[27] introduced a new model of thermoelasticity using fractional calculus, proved a 

uniqueness theorem, and derived a reciprocal relation and a variational principle. Youssef 

[28] introduced another new model of fractional heat conduction equation, proved a 

uniqueness theorem and presented one-dimensional applications. The first writer [29, 30] 

established a new model of fractional heat conduction equation by using the new Taylor series 

expansion of time-fractional order which developed by Jumarie [31]. The reciprocity relation 

in case of quiescent initial state is found to be independent of the order of differintegration 

[32] and [33]. Ezzat and Fayik [34] studied the thermoelastic diffusion problem with one 

relaxation time. Ezzat and El-Karamany [35, 36] solved some problems in a perfect 

conducting thermoelastic medium with fractional order heat transfer. The state space 

approach was used to obtain the solution [37]. 

The current manuscript is an attempt to derive a new theory of thermoelasticity with 

two step heat conduction using the methodology of the fractional calculus theory. There are 

many models that have been reached as special cases of the new mathematical model. The 

fractional thermoelastic characteristics in a metal irradiated by a femtosecond laser pulse with 

a non-Gaussian temporal profile are investigated. The modified two-step heat conduction 

model and the coupling between the strain rate and the lattice temperature are considered. An 

analytical-numerical technique based on the Laplace transform is used to solve the governing 

equations [38]. Numerical results for electron temperature, lattice temperature, displacement 

and stress in the physical space-time domain have been obtained for a gold thin material and 

presented graphically. Some comparisons have been shown in figures to estimate the effect 

fractional order parameter on all studied fields.  

 
2. The mathematical model for fractional two-step heat model 

During laser-metal interaction, the laser energy is first deposited into electrons on metal 

surface, where two competing processes occur [39]. One is ballistic motion of the excited 

electrons into deeper parts of the metal with velocities close to the Fermi velocity (~10
6
 m/s). 

Another is a collision between the excited electrons and electrons around the Fermi level – 

https://www.thermalfluidscentral.org/encyclopedia/index.php/Two-temperature_models#References#References


 

an electron temperature is defined upon establishment of equilibrium among hot electrons. 

These hot electrons are then diffused into deeper parts of the electron gas at a speed 

(<10
4
 m/s) much lower than that of the ballistic motion. Meanwhile, the hot electrons are 

cooled by transferring their energy to the lattice through electron-phonon coupling. The 

nonequilibrium between electrons and lattice has been observed experimentally [40, 41] and 

can be described by the two-temperature model, which was originally proposed by Anisimov 

et al. [1] and rigorously derived by Qiu and Tien [5] from the Boltzmann transport equation.  

Assuming heat conduction in the electron can be described by modified fractional 

Fourier’s law and neglecting heat conduction in the lattice, the energy equations of the free 

electrons and lattices (phonons) are 
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Equation (3) indicates that the volumetric heat capacity of the electron is proportional to 

the electron temperature. It should be noted that the volumetric heat capacity of electrons is 

much less than that of the lattice even at very high electron temperature.  

On nonequilibrium condition, thermal conductivity of the electrons depends on the 

temperatures of both electron and lattice, hence 
 

,e
e eq

l

T
k k

T

 
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            (4) 

 

where  eqk T  is the thermal conductivity of the electron when the electrons and lattice are in 

thermal equilibrium. The electron-lattice coupling factor G, is to account for the rate of 

energy exchange between electrons and phonons and it can be estimated by 
 

2 2
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16 ( )

e B D F

l l F
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G
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            (5) 

 

Neglecting conduction in the lattice is justified by the fact that the thermal conductivity of 

the lattice is two orders of magnitude smaller than that of the free electrons [42]. The heat 

conduction model represented by Eqs. (1) and (2) is referred to as a parabolic two-step model 

because Fourier’s law was used to describe heat transfer in the electron gas.  

Assuming all properties of electrons and lattice are independent from temperatures, one 

can obtain a single energy equation for lattice temperature by combining Eqs. (1) and (2). 

Solving for eT  from Eq. (2) yields 
 

l l
e l

C T
T T

G t


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Substituting Eq. (6) into Eq. (1), we have 
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which can be rearranged as 
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where the subscript l for lattice has been dropped. 

 Comparing Eq. (8) with the energy equation for the from dual-phase lag model: 
 

2
2

2

1 1
1 1 .q T qT T S

t t t k t
  



       
          

       
       (9) 

 

It is apparent that they have almost identical form except the partial derivative of the heat 

source with respective to time is not present in Eq. (8). The thermo physical properties in the 

dual-phase lag model are related to the properties appearing in the two-temperature model by  
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The ratio of two phase-lag times is 
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which indicates that T  is always greater than 
q .  

2.1. Fractional hyperbolic two-step model.  

If we consider the hyperbolic effect on the conduction in the electron gas, the energy 

equation for the electron gas is 
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and the generalized Spitzer-Harm heat-flow’s law [43-44] is 
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The constant ek is known as the Spitzer thermal conductivity. 

Applying the new fractional Taylor’s series of time-fractional order   [31] to expand 

( , )e i eq x t   and retaining the term up to  -order in the thermal relaxation time e , one 

obtains 
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where 1e   is the thermal relaxation time for the electron gas. 

While the energy equation for the lattice is still Eq. (2). Equations (11) and (12) can be 

combined to yield  
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The conduction model represented by Eqs. (2) and (13) is referred to as a fractional 

hyperbolic two-step model.  

Dual-parabolic two-step model.  

The contribution of heat conduction in phonons was neglected in the above two models. 

If it is assumed that the heat conduction in the phonons can be modeled using the classical 

Spitzer-Harm law, the energy equations of the lattices (phonons) are 
 

  ( )l
l l l e l

T
C k T G T T

t


   


.        (14) 

 

The bulk thermal conductivity of metal measured at equilibrium 
eqk  is the sum of electron 

thermal conductivity ke and the lattice thermal conductivity lk . Since the mechanism for heat 

conduction in metal is a diffusion of free electrons, ke is usually dominant. For gold, ek  is 

99  %  of
eqk while lk  only contributes to 1 %  of 

eqk  [42].  

2.2. Fractional dual-hyperbolic two-step model.  

In the case that heat conduction in both electrons and photons needs to be considered 

using the hyperbolic model, the energy equation for the lattice becomes 
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and the fractional Spitzer-Harm’s law is 
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where 1l   is the thermal relaxation time of the lattices (phonons). 

Combining (11) and (12) to eliminate 
lq  yield 
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Equation (17) together with Eq. (13) are the governing equations for the fractional dual-

hyperbolic two-step model. 
 

3. Application 

In this section, the solution for the ultrafast laser-induced thermomechanical response an 

ultrafast thermoelasticity model, utilizing the fractional parabolic two-step heat conduction 

model and the generalized thermoelastic theory is formulated. Consider an isotropic thermo 

elastic material such as gold with a thickness (L) under local irradiation of the front surface of 

a metal by a laser pulse with a non Gaussian temporal profile. This problem can be treated as 

a one-dimensional problem when the size of the spot irradiated and the lateral dimensions of 

the material are much larger than the material thickness. 

Hence, the governing equations of ultrafast thermomechanical response for a 

homogeneous, isotropic and fractional thermoelastic medium is given 

1. The uni-axial strain: 

https://www.thermalfluidscentral.org/encyclopedia/index.php/Two-temperature_models#References#References


 

,xx

u

x






           (18) 

 

where u  is the lattice displacement. Thus the lattice dilatation e  is obtained as 
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2. The constitutive equation: 
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3. Equation of motion: 
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4. The modified fractional parabolic two-step model which can be described by the following 

equations: 
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5. The coupling factor between the electrons and the lattice [6]: 
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6. The temporal profile of the laser pulse is non-Gaussian and given by the following: 
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7. The thermal conduction in the beam with an energy source ( , )S x t  is given by [45]: 
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Introducing the non-dimensional parameters: 
 

0

,
x

x
x

   
0

,
u

u
x

   ,
e

Gt
t

C
   ,

p

p

e

Gt
t

C
   ,e e

e

Gt

C
    0

0

( )
,e

e

T T

T


   0

0

( )
.l

l

T T

T


   

 

Equations (20)-(22) can be transformed into the following dimensionless form 
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The governing equations are solved under proper initial and boundary conditions. For 

simplicity, we considered here that the material is initially unstrained, unstressed and at 

temperature 0T  throughout. Thus, one has the following initial conditions: 
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and 
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From Eqs. (30) and (32), we have 
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For the boundary conditions, assume that the thin material is attached to a rigid 

substrate with constant temperature (namely the ambient temperature). Heat losses to the front 

surface is assumed to be negligible during the ultra-short laser heating process, implying that 
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The back surface is assumed to be isothermal [45, 46], that is  
 

0,l x a



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where 0/a L x  is the dimensionless thickness. 

The front surface of the material is stress free and the back surface is fixed. That is 
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and 
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u x t

           (37) 

 

Applying the Laplace transform rule with the Caputo derivative (see Appendix (C)) for 

both sides of Eqs. (26)-(29), we arrive at the following set of equations  
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From Eq. (39), we can get 
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Substitution of Eq. (42) into Eq. (38) gives 
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Elimination of ( )l x   and 2 2( )l x   from Eqs. (40) and (43) results in 
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where 
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Substituting Eq. (44) into Eq. (40) gives the following differential equation for u : 
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where the parameters , 1,2,3,4i i   are given in Appendix (A). 
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The solution of Eq. (45) is 
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Substituting Eq. (46) into Eq. (44) gives 
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Substituting Eqs. (46) and (47) into the transformed boundary conditions yields 
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where the coefficients ,  1, 2, 3,iC i   can be obtained by solving Eq. (48.a)-(48.d). 

Substituting Eqs. (46) and (47) into Eq. (42) yields 
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From Eqs. (29), (46) and (41), we can get the following expression for the transformed 

stress: 
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[see Appendix (B)]. 

Those complete the solution of ultrafast fractional thermal problem in the Laplace 

transform domain. 

 

4. Inversion of Laplace transforms 

In order to invert the Laplace transform in the above equations, we adopt a numerical 

inversion method based on a Fourier series expansion [38]. In this method, the inversion of 

Laplace transforms for the function (s)g  is approximated by the relation: 
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For numerical purposes this is approximated by the function 
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where N is a sufficiently large integer representing the number of terms in the truncated 

infinite Fourier series. N  must be chosen such that: 

 

1/
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i N t tte e g i N t
     , 

 

where 1ε  is a small positive number that corresponds to the degree of accuracy to be 

achieved. The parameter c is a positive free parameter that must be greater than the real parts 

of all singularities of (s)g . The optimal choice of c was obtained according to the criteria 

described in [40].  
 

6. Numerical results and discussions 

In the present work, a gold material is subjected to femtosecond pulsed laser heating, the 

mechanics and thermo physical properties of the metal are as follows [8], [46] and [47]:  
3 31.93 10  kg / m ,     6 114.2 10  K ,T

    315 W / m K,ek   4 32.1 10  J / m  K,eC    

6 32.5 10  J / m  K,lC    138.46  GPa,  26.37 GPa,  and 16 32.8 10  W / m  KG   . 
 

 

 
 

Fig. 1. The variation of the electron temperature eT  versus  

(a) distance x for different values of parameter   at e =0.02 and t=0.5, and 

(b) time t for different values of parameter   at e =0.02 and x=0.3.  

)a( 

)b( 
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The time duration and the energy intensity of the laser pulse are 100 fs pt   and 

2

0 13.4 Watt / m ,J   respectively. The absorptive depth of the heat energy is 0 15.3 nm,x   

and the rejectivity of the irradiated surface is 0.93 R   [8]. The ambient temperature is 

assumed to be room temperature, that is 0 300  KT  . 

The dimensionless electron temperatures on the front surfaces of metal at different 

values of fractional parameter   are shown in Figs 1.  

Figure 1(a) shows the calculated electron temperature distribution versus distance x at 

different values of fractional parameter  . Figure 1(b) shows the calculated electron 

temperature distribution versus time t for different values of fractional parameter  . For any 

value of  , it appears that the electron temperature increases rapidly before it reaches a peak 

value and then decreases to nearly zero as time progresses because the absorbed laser energy 

is less than the sum of the energy transferring from the electrons to the lattice and the heat 

conducting into the deeper part of the electrons. It is interesting to observe that the variation 

of the electron temperature closely follows the temporal shape of the laser pulse. This is due 

to the mechanism of two-step heat conduction by which the heat energy of the laser pulse is 

first absorbed by electrons and then transferred to lattices. It is seen also that the electron 

temperatures for all value of 0 1,   reach peak values at the same time, namely, 0.552t   

and the peak value at 1  , is lower than that of the modification fractional model as 

0 1  .  
 

 

 
 

Fig. 2. The variation of lattice temperature lT  versus  

(a) distance x for different values of parameter   at e =0.02 and t=0.5, and 

(b) time t for different values of parameter   at e =0.02 and x=0.3.  

)a( 

)b( 
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Figure 2(a) shows the calculated lattice temperature distribution at different value of 

fractional parameter . Figure 2(b) shows the lattice temperatures of the front surfaces of 

metal versus time t at different values of fractional parameter . It is shown that the lattice 

temperature on the front surface increases rapidly before it reaches a peak value and then 

decays gradually as time proceeds. The peak value of it at 0.5   is higher than that at 

1  . 

By comparing Fig. 1(b) with Fig. 2(b), for fixed both thermal relaxation time e  and 

0 1   we notice that:  

 The lattice temperature distribution is unlike the electron temperature, the maximum 

lattice temperature occurs at the front surface which is much lower than the maximum 

electron temperature, and it rises much slower than the electron temperature. This is due to 

the fact that the heat capacity of the metal lattice is about two orders of magnitude larger than 

that of the electrons [8]. 

 A large difference between the electron and lattice temperatures is observed, which 

indicates that the early stage of ultrafast laser heating is a non equilibrium process. The reason 

for this difference is that a portion of the energy is conducted away by the electron gas before 

the electrons and the lattice reach thermal equilibrium, thereby resulting in a lower lattice 

temperature increase. Also, it takes some time for energy to be transferred from the electrons 

to the lattice [46]. 

 

 
 

 
 

Fig. 3. The variation of equilibrium temperature e lT T T   versus  

(a) distance x for different values of parameter   at e =0.02 and t=0.5, and 

(b) time t for different values of parameter   at e =0.02 and x=0.3.  
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Figure 3(a) shows the variation of the equilibrium temperature ,e l     with 

distance at different values of   for fixed thermal relaxation times. 

Figure 3(b) shows the effect of fractional parameter on the equilibrium temperature 

distribution ,e l     as we have noticed that the increasing of the value of the parameter α 

causes decreasing in the temperature and the temperature increment is continuous function, 

which means that the particles transport the heat to the other particles easily and this makes 

the decreasing rate of the temperature greater than the other ones, and the sharp temperature 

decreases marked by the arrows result from the thermal wave effect. This wave is quickly 

dissipated as it propagates into the material. 
 

 

 
 

Fig. 4. The variation of displacement u  versus  

(a) distance x for different values of parameter   at e =0.02 and t=0.5, and 

(b) time t for different values of parameter   at e =0.02 and x=0.3.  

 

Figure 4(a) depicts the variation of thermal displacement u versus distance x, for time 

t = 0.6, the magnitude of the displacement first increases very rapidly with distance attains a 

maximum value and then gradually decreases to zero. In addition, when the value of the 

fractional order parameter   decreases, then the peak of the thermal displacement increases. 

In Figure 4(b), to study the difference in the displacement history at different values of 

α, we calculated the displacement of metal at 0.1, 0.5, 0.7 . It is shown that the 

displacement in this case also vibrates, and the vibration period is longer than that at 1 . In 

addition, the absolute value of the equilibrium displacement and the vibration amplitude at 

0.1,   is larger than those at 0.5  . The differences in the vibration period and 

magnitudes show the influences for   on the vibration behaviors very well. 
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Fig. 5. The variation of strain xxe  versus distance 0.3<x<0.38  

for different values of parameter   at e =0.02 and t=0.5.  

 

Figure 5(a) gives the variation of thermal strain against distance x. The strain takes   

positive value in the range, 0 0.347 ( 1),x    (see Fig. 5(b), for details) and the 

magnitude strain distribution after taking negative  values goes on increasing, attains 

maximum values and then decreases slowly and finally vanishes.  

Figure 6(a) represents variation of the spatial distributions of the stress versus distance 

at different fractional parameter value. Firstly, it increases to reach the peak value and also 

decreases with distance and finally goes to zero. The increment for α leads to decrease in its 

magnitude for fixed x.  

Figure 6(b) shows how the stress wave at 0.5  develops; the stress wave is 

completely developed.  

Figures 5(c) and 6(c) show the effect of parameter   on strain and stress as the function 

of time.  

From the above discussions, the presence of fractional order parameter   has a 

significant effect on the distribution of relevant variables. 

 

7. Conclusions 

 The main goal of the present work is to introduce a new mathematical model of two-

step heat conduction with time fractional order for fixed thermal relaxation (taking the 

memory effect into our account). The new model equations are employed to an isotropic 
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ultrafast thermoelastic material, as a new improvement and progress in the field of 

thermoelasticity. According to this theory, we have to construct a new classification to the 

materials according to its fractional parameter  where this parameter becomes a new 

indicator of its ability to conduct the heat in the material as affected on the electron, lattice 

and an equilibrium surface temperature value other than the thermal relaxation time such that 

a larger thermal relaxation causes a higher surface temperature increase. This is because 

a larger thermal relaxation time causes a slower heat propagation speed 

 thermal diffusivity/ thermal relaxation time  as seen in figures. Therefore; more heat has 

accumulated near the surface. 

 The effect of   on all the fields is also very much prominent, as the calculation 

results show that an ultrafast laser pulse at 1,   induces a stronger stress wave and stronger 

stress attenuation compared with 0.5  . In addition, the peak values of the electron, lattice 

temperatures and the displacement are larger in a modified fractional model (0 1),   as 

compared with the original model ( 1)  . Thus we can draw the conclusion that an ultrafast 

laser pulse induces a stronger thermo-mechanical response in a modified fractional model. 

 

Appendix (A) 

The parameters , 1,2,3,4i i   represent the characteristic roots of Eq. (45) in our problem are 

given by 
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Appendix (B) 

The relevant coefficients , ,i i iD f d  and , 1, 2, 3, 4ig i   of the problem used before in 

Eqs. (45)-(50) are given by  
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Appendix (C) 

The Laplace transform rule with the Caputo derivative which is defined as 
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Note that we use the Caputo fractional derivative omitting the index C . It should be noted 

that if initial conditions are properly taken into account. 



 

 

 

 
 

Fig. 6. The variation of stress xx  versus  

(a) distance x for different values of parameter   at e =0.02 and t=0.5,  

(b) distance x for different time at 0.5   and e =0.02, and  

(c) time t for different values of parameter   at e =0.02 and x=0.3.  
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