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Abstract. A hexagonal lattice of quantum waveguides is considered with thickening or thinning 

of ligaments, which form open waveguides in the periodic nano-structure. Propagation of 

localized waves along the open connected and disconnected waveguides is studied and nodes 

in the lattice are indicated that support trapped modes with the exponential decay in all 

directions. 
 

 

1. Problem setting 

The graph 𝐺0 in the plane ℝ2 (see Fig. 1a) for a hexagonal one dimensional structure consisting 

of vertices and unit straight segments, edges, is expressed as a union of the shifts 𝑔0(𝜏), 𝜏 =
(𝜏1, 𝜏2), 𝜏𝑗 ∈ ℤ = {0, ±1, ±2, … }, of the fundamental cell 𝑔0 entered into the parallelogram ℙ 

(shaded in Fig. 1a) defined by the vectors 𝑒± = (3 2⁄ , ± √3 2⁄ ). Angles between each three 

edges emerging from a vertex are 2𝜋 3⁄ . We consider two types of the “fat” structures in 

Fig. 1b, and 2a and b, 

𝐺ℎ = {𝑥 = (𝑥1, 𝑥2): dist(𝑥, 𝐺0) < ℎ 2⁄ }, 𝐺𝐻
ℎ = (𝐺ℎ ∖ 𝐿1

ℎ) ∪ 𝐿𝐻
ℎ ,                  (1) 

where 𝐿𝐻
ℎ  is an open waveguide, either connected or disconnected. To obtain 𝐿𝐻

ℎ , one chooses 

a subgraph 𝐿0 in 𝐺0 which can be a path as in Fig. 2a, or disruptive as in Fig. 2b. Then, 𝐿𝐻
ℎ  is a 

tubular ℎ𝐻-neighborhood of 𝐿0. In the case  𝐻 < 1, we observe thinning of ligaments in 𝐿1
ℎ ⊂

𝐺ℎ and thickening while 𝐻 > 1. 
 

 
 

Fig. 1. The hexagonal graph 𝐺0 and the fattened lattice 𝐺ℎ. 
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2. The discrete spectrum of infinite tripod waveguides 

Let us consider the Dirichlet problem 
 

−Δ𝑤𝐻(𝜉) = 𝜇𝐻𝑤𝐻(𝜉), 𝜉 ∈ 𝑌𝐻
1,                    (4) 

𝑤𝐻(𝜉) = 0,                              𝜉 ∈ 𝜕𝑌𝐻
1.                    (5) 

The infinite waveguide 𝑌𝐻
ℎ is composed from three pointed semi-strips, see Fig. 3a. The 

horizontal strip 𝑆𝐻
0  is of width 𝐻 and the tilted ones 𝑆ℎ

± of width ℎ. Mid-lines of 𝑆𝐻
0  and 𝑆ℎ

± meet 

each other at the coordinate origin 𝜉 = 0 and the angles between them are 2𝜋 3⁄ . The junction 

𝑌𝐻
1, in particular with 𝐻 = 1, is obtained from 𝐺𝐻

ℎ by the coordinate dilation 

𝑥 ⟼ 𝜉 = ℎ−1(𝑥 − 𝒪)                     (6) 

and the formal passage to ℎ = 0; here, 𝒪 is a vertex of the graph 𝐺0. 

The continuous spectrum Σ𝐻
𝑐𝑜 of the problem (4), (5) is the semi-axis [𝜇†(1, 𝐻), +∞) with 

the cut-off value 𝜇†(1, 𝐻) = 𝜋2 min
 

{1, 𝐻−2}. It was verified in [7] that the discrete spectrum 

Σ1
𝑑𝑖 consists of the only point 𝜇1

1 ∈ (0, 𝜋2). It is also known, see e.g. [17], that the V-shaped 

waveguide shaded in Fig. 3c has a non-empty discrete spectrum in (0, 𝜋2) and, hence the 

comparison principle [12, Theorem 10.2.2] assures the existence of an eigenvalue in Σ𝐻
𝑑𝑖 for 

𝐻 < 1. The same principle proves that the total multiplicity #Σ𝐻
𝑑𝑖 is one because #Σ𝐻

𝑑𝑖 ≤ #Σ1
𝑑𝑖 =

1 for 𝐻 < 1. 

The case 𝐻 > 1 is slightly more complicated because the growth of 𝐻 leads to a decrease 

of the cut-off value 𝜇†(1, 𝐻) in the waveguide 𝑌𝐻
1. However, in the same way as in [19] it is 

possible to find 𝐻∗ > 1 such that #Σ𝐻
𝑑𝑖 = 1 when 

𝐻 ∈ (0, 𝐻∗)                      (7) 

The discrete spectrum is empty for 𝐻 ≥ 𝐻∗. In what follows we vary the width 𝐻 within 

the interval (7) and denote the corresponding isolated eigenvalue by 𝜇𝐻
1 ∈ (0, 𝜇†(1, 𝐻)). 

Remark. A result in [20] demonstrates that the problem (4), (5) in the waveguide 𝑌𝐻∗

1  

with the critical width 𝐻∗ has a bounded solution at the threshold spectral parameter 𝜇 =
𝜇†(1, 𝐻∗). As was shown, see [7] and [11] for hexagonal lattices, this peculiar feature of the 

tripod causes a change of transmission conditions at the vertices of the graph 𝐺0 modeling the 

lattice. 

The coordinate change 𝜉 ⟼ 𝐻−1 𝜉 reveals the only point 𝜇𝐻
𝐻 = 𝐻−2𝜇1

1 in the discrete 

spectrum of the waveguide 𝑌𝐻
𝐻 composed of three congruent tapered strips of width 𝐻 ≠ 1. The 

same transformation converts 𝑌1
𝐻 into 𝑌1 𝐻⁄

1  and, thus, 𝜇1
𝐻 = 𝐻−2𝜇1 𝐻⁄

1 . To keep the conclusion 

on the single eigenvalue we assume in this case that 𝐻 ∈ (𝐻∗
−1, +∞). The eigenfunction 𝑊𝐻

ℎ of 

the problem (4), (5) in 𝑌𝐻
ℎ corresponding to the above-mentioned eigenvalue 𝜇𝐻

ℎ ∈

 (0, 𝜇†(ℎ, 𝐻)) has the exponential decay at infinity  

𝑊𝐻
ℎ(𝜉) = 𝒪 (𝑒−𝛿𝐻

ℎ  |𝜉|) , 𝛿𝐻
ℎ = √𝜋2 − (𝜇𝐻

ℎ )
2

> 0.                   (8) 

We normalize this function in Lebesgue space 𝐿2(𝑌𝐻
ℎ). 

 

 
 

Fig. 3. The Y-shaped waveguide. 





in the infinite vertical truss Π𝐻
ℎ = {𝑥: |𝑥1| <

3

2
, (𝑥1 − 3𝑁, 𝑥2) ∈ 𝐺𝐻+

ℎ } (this domain is 

independent of 𝑁 ∈ ℕ and enters the shaded strip in Fig. 2b with the quasi-periodicity 

conditions at the truncation sets 𝑇𝐻±
ℎ = {𝑥: 𝑥1 = ±

3

2
, (𝑥1 − 3𝑁, 𝑥2) ∈ 𝐺𝐻+

ℎ }  

𝑈(𝑥; 𝜗)|𝑇𝐻−
ℎ = 𝑒𝑖3𝜗𝑈(𝑥; 𝜗)|𝑇𝐻+

ℎ ,                  (20) 

𝜕𝑈

𝜕𝑥1
(𝑥; 𝜗)|𝑇𝐻−

ℎ = 𝑒𝑖3𝜗 𝜕𝑈

𝜕𝑥1
(𝑥; 𝜗)|𝑇𝐻+

ℎ .                  (21) 

Here, Λ(𝜗) is a new notation for the spectral parameter. 

The variational form of the problem (18)-(21) reads 

(∇𝑈, ∇𝑉)
Π𝐻

ℎ = Λ(𝜗)(𝑈, 𝑉)
Π𝐻

ℎ       ∀𝑉 ∈ 𝐻0𝜗
1 (Π𝐻

ℎ )                 (22) 

and gives rise [12; §10] to a positive definite self-adjoint operator 𝐴𝐻
ℎ (𝜗) in the Lebesgue space 

𝐿2(Π𝐻
ℎ ). In (22), 𝐻0𝜗

1 (Π𝐻
ℎ ) is the Sobolev space of functions verifying the Dirichlet condition 

(19) and the stable quasi-periodicity condition (20). According to [24], [25; §3] and [17], the 

essential spectrum Σ𝐻,𝑒𝑠
ℎ (𝜗) of the operator 𝐴𝐻

ℎ (𝜗), that is of the problem (22) or (18)-(21), 

includes the set 

⋃ {Λ𝑛
ℎ (3𝜗, 𝜃−): 𝜃− ∈ [−𝜋, 𝜋]}𝑛∈ℕ                    (23) 

constructed from eigenvalues (14) but also may get the discrete spectrum Σ𝐻,𝑑𝑖
ℎ (𝜗) below 

Σ𝐻,𝑒𝑠
ℎ (𝜗) or inside spectral gaps in (23). 

The truss Π𝐻
ℎ  has two nodes with center points 𝒪± = (±½, 0), see Fig. 4a.  

 

 
 

Fig. 4. The periodicity truss Π𝐻
ℎ  in the disconnected waveguide (a) and in the connected 

waveguide (b and c). 
 

By the coordinate dilation (6), these nodes turn into the infinite tripod waveguide 𝑌𝐻
1 and 

its mirror reflection. The number ℎ−2𝜇𝐻
1  and the functions 𝑊𝐻±

ℎ (𝑥) = 𝜒ℎ(𝑥 − 𝒪±)𝑤𝐻
1 (𝜉±) with 

an appropriate cut-off function 𝜒ℎ, see Section 6, are perfect approximations for the eigenvalue 

Λ±
ℎ (𝜗) and the eigenfunction 𝑈±

ℎ(𝑥; 𝜗) of the problem (18)-(21). According to (8), the couple 

{ℎ−2𝜇𝐻
1 , 𝑊𝐻±

ℎ } leaves the exponentially small discrepancy in ℎ in the differential equation (18) 

and satisfies the relations (19)-(21) in full. In Section 6 we will demonstrate that this evidence 

provides the approximation estimates 





outlets of equal width 𝐻. The eigenvalue in the discrete spectrum of 𝑌𝐻
𝐻 satisfies the relations 

𝐻−2𝜇1
1 = 𝜇𝐻

𝐻 < 𝜇1
𝐻 < 𝜇1

1  for 𝐻 ∈ (1, 𝐻∗),                 (29) 

𝐻−2𝜇1
1 = 𝜇𝐻

𝐻 > 𝜇1
𝐻 > 𝜇1

1  for 𝐻 ∈ (𝐻∗
−1, 1).                  (30) 

Thus, in the case (29) the point ℎ−2𝜇𝐻
𝐻 stays below the essential spectrum of the lattice 

𝐺𝐻
ℎ but in the case (30) it belongs to the spectral gap between the bands 𝛽3

ℎ and 𝐵𝐻
ℎ , 𝔹𝐻

ℎ  described 

above. 

Let us outline the standard scheme to prove the existence of an eigenvalue Λ𝐻⊚
ℎ  in the 

discrete spectrum of the problem (2), (3). The Hilbert space ℋ𝐻
ℎ = 𝐻0

1(𝐺𝐻
ℎ) consisting of 

functions in the Sobolev space 𝐻1(𝐺𝐻
ℎ) which enjoy the Dirichlet condition (3), is equipped 

with the scalar product 

〈𝑢𝐻
ℎ , 𝑣𝐻

ℎ〉 = (∇𝑢𝐻
ℎ , ∇𝑣𝐻

ℎ)
𝐺𝐻

ℎ + ℎ−2(𝑢𝐻
ℎ , 𝑣𝐻

ℎ)
𝐺𝐻

ℎ ,                 (31) 

where ∇=grad and ( , )
𝐺𝐻

ℎ  is the natural scalar product in the Lebesgue space 𝐿2(𝐺𝐻
ℎ). Instead of 

the unbounded operator 𝐴𝐻
ℎ  in Section 1, the identity  

〈𝒜𝐻
ℎ 𝑢𝐻

ℎ , 𝑣𝐻
ℎ〉 = (𝑢𝐻

ℎ , 𝑣𝐻
ℎ)

𝐺𝐻
ℎ     ∀𝑢𝐻

ℎ , 𝑣𝐻
ℎ ∈ ℋ𝐻

ℎ                 (32) 

gives us the positive definite symmetric and continuous, therefore, self-adjoint operator 𝒜𝐻
ℎ  in 

ℋ𝐻
ℎ. 

By the definitions (31) and (32), the variational formulation 

(∇𝑢𝐻
ℎ , ∇𝑣𝐻

ℎ)
𝐺𝐻

ℎ = 𝜆𝐻
ℎ (𝑢𝐻

ℎ , 𝑣𝐻
ℎ)

𝐺𝐻
ℎ       ∀𝑣𝐻

ℎ ∈ ℋ𝐻
ℎ                 (33) 

of the problem (2), (3) becomes the abstract equation 𝒜𝐻
ℎ 𝑢𝐻

ℎ = 𝜅𝐻
ℎ 𝑢𝐻

ℎ  in ℋ𝐻
ℎ 

with a new spectral parameter  

𝜅𝐻
ℎ = (ℎ−2 + 𝜆𝐻

ℎ )
−1

.                   (34) 

The norm of 𝒜𝐻
ℎ  is smaller than one and, hence, its spectrum 𝒮𝐻

ℎ belongs to [0,1]. The 

relations (29) and (30) demonstrate that a 𝐶ℎ2-neighborhood of the point 

𝒦𝐻
ℎ = ℎ2(1 + 𝜇𝐻

𝐻)−1                   (35) 

is free of the essential spectrum 𝒮𝐻
ℎ,𝑒𝑠

 of 𝒜𝐻
ℎ . However, the well-known formula, see e.g. [12; 

§6.1], 

𝑑𝑖𝑠𝑡(𝒦𝐻
ℎ, 𝒮𝐻

ℎ) = ‖(𝒜𝐻
ℎ − 𝒦𝐻

ℎ)
−1

;  ℋ𝐻
ℎ ⟶ ℋ𝐻

ℎ‖
−1

 
 

shows that, under the condition 

‖𝒜𝐻
ℎ 𝒰𝐻

ℎ − 𝒦𝐻
ℎ𝒰𝐻

ℎ ; ℋ𝐻
ℎ‖ ≤ 𝐶ℎ3 2⁄ 𝑒−𝛿 ℎ⁄ ‖𝒰𝐻

ℎ ; ℋ𝐻
ℎ‖, 𝛿 > 0,                (36) 

there exists an eigenvalue 𝜅𝐻⊚
ℎ  of 𝒜𝐻

ℎ  such that  

|𝜅𝐻⊚
ℎ − 𝒦𝐻

ℎ| ≤ 𝑐ℎ3 2⁄ 𝑒−𝛿 ℎ⁄   ⟹   |𝜆𝐻⊚
ℎ − ℎ−2𝜇1

1| < 𝑐ℎ−5 2⁄ 𝑒−𝛿 ℎ⁄ .                (37) 

The last estimate follows from (35).  

Let us build a function 𝒰𝐻
ℎ  which satisfies (36), namely 

𝒰𝐻
ℎ (𝑥) = 𝜒ℎ(𝑥)𝑤𝐻

𝐻(ℎ−1𝑥),                  (38) 

where 𝜒ℎ is a smooth cutoff function, 

𝜒ℎ(𝑥) = 1 for |𝑥| < 1 − 4ℎ, 𝜒ℎ(𝑥) = 0 for |𝑥| > 1 − 2ℎ.                 (39) 

We easily derive the estimate  

‖𝒰𝐻
ℎ ; ℋ𝐻

ℎ‖
2

 ≥ 2ℎ(1 + 𝜇𝐻
𝐻),                  (40) 

where formulas ‖𝑤𝐻
ℎ; 𝐿2(𝑌𝐻

𝐻)‖ = 1 and 𝑚𝑒𝑠2𝑠𝑢𝑝𝑝 (𝜒ℎ) ≥ 2ℎ were taken into account. 

Furthermore, using a definition of the norm in Hilbert space, we derive 
 

‖𝒜𝐻
ℎ 𝒰𝐻

ℎ − 𝒦𝐻
ℎ𝒰𝐻

ℎ ; ℋ𝐻
ℎ‖ = 𝑠𝑢𝑝|〈𝒜𝐻

ℎ 𝒰𝐻
ℎ − 𝒦𝐻

ℎ𝒰𝐻
ℎ , 𝒱𝐻

ℎ〉| =  

 ℎ2(1 + 𝜇𝐻
𝐻)−1𝑠𝑢𝑝 |(∇𝒰𝐻

ℎ , ∇𝒱𝐻
ℎ)

𝐺𝐻
ℎ − ℎ−2𝜇𝐻

𝐻(𝒰𝐻
ℎ , 𝒱𝐻

ℎ)
𝐺𝐻

ℎ |= 

ℎ2(1 + 𝜇𝐻
𝐻)−1𝑠𝑢𝑝 |(Δ𝒰𝐻

ℎ + ℎ−2𝜇𝐻
𝐻𝒰𝐻

ℎ , 𝒱𝐻
ℎ)

𝐺𝐻
ℎ |.                 (41) 
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