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Abstract. A mathematical model of a porous material is considered, in which an elastic 
skeleton and two fluid phases filling the pores are discerned. The dynamic equations are 
written in Laplace-type representation for unknown displacement functions of the skeleton 
and pore pressures of the fillers. The fundamental solutions of the defining differential 
equations are numerically-analytically studied. A solution in the time-domain is constructed, 
using the time-step method of numerically inverting Laplace transform. 
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1. Introduction 
Analyzing the dynamic behavior of poroelastic media, such as soils and rocks, is, to a large 
extent, is based on using the already developed numerical methods. Thus, for instance, in 
dealing with problems of propagation of seismic waves, the boundary element method (BEM) 
is more effective, as it automatically satisfies the conditions on infinity. However, use of the 
BEM is limited by the necessity of constructing Green functions of defining differential 
equations. In works [1,2] Gatmiri and Jabbari obtained fundamental solutions for static and 
quasi-static problems of the theory of non-saturated soils in 2-D and 3-D formulations. 
Fundamental solutions for dynamic 2-D problems were presented by Maghoul in [3], and for 
3-D ones by Ashayeri in [4] and by Li in [5]. 

The present paper, following [5], studies numerically and analytically the fundamental 
solutions of 3-D dynamics of partially saturated poroelastic media, commenting on some 
errors made in [5] when determining the fundamental solutions. 

 
2. Governing differential equations 
To describe the mechanical behavior of a partially saturated porous medium, the effective 
stress principle is used, which was introduced by Terzaghi. The corresponding defining 
relations in terms of stress were formulated, based on Terzhagi's principle: 
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where α  is effective stress coefficient, K and G are elastic moduli of the porous material. 
Also wS , aS , wp , ap  stand for water and air saturation, water and air pressure, respectively. 
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The components of strain tensor ijε  of a solid and displacements iu  are correlated by 
geometric relations: 
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The momentum balance equation for a unit element of a partially saturated poroelastic 
medium can be written as 
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where iF  denotes bulk body force, ρ  is averaged density of the mixture, ϕ  is porosity, wρ ,

aρ , sρ  are density of water, density of air and density of solid, respectively.  
To describe fluid phase transfer, a dynamic version of Darcy law is used: 

( ),
f f f

f i f i f i f iS u p u uϕ κ ρ ρ= − + +  , (4) 

where f
iu  is displacement of the fluid phase, and it is assumed that  for air and  

for water. Phase permeability fκ  is defined as: 
/f rf fK kk η= , (5) 

where k  is permeability of the poroelastic material, rfK  is relative phase permeability, fη  is 
viscosity of the filler. The authors used Corey's relations for the case of a gas-water mixture in 
the pores: 

( )2(2 3 )/ (2 )/, 1 1rw e ra e eK S K S Sθ θ θ θ+ + = = − −  . (6) 
In a partially saturated porous material containing two non-mixing fillers, the interface 

surface between them is curved as a result of intermolecular interaction forces. The 
accompanying pressure difference in both of the interfacing phases is called capillary 
pressure cp . Capillary pressure can be represented as a function of the saturation degree as 
follows: 
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where eS  is effective water-saturation; rwS  is residual water-saturation; raS  is residual gas-
saturation; dp  is gas pressure required for driving the liquid out of the pores; [0.2,3]θ ∈  is 
skeleton grain size distribution coefficient. 

The final differential equations in Laplace domain yield 
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with 
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where wK  and aK  are bulk moduli of the fluid. The following abbreviations 
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are introduced, where rwS  is residual water saturation and raS  is air saturation. Symbols β  
and γ  are Laplace parameter dependent variables expressed as 
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Dynamic equations of a partially saturated poroelastic medium (8) differ from the 
equations in [5] in that in coefficients 6a , 8a , 9a , 10a  they contain summand uS ϕ  instead of  
the incorrect uS . 
 
3. Green functions 
A fundamental solution of system (8) was found in [5], using Hormander's method, from 
relation. 

* ( )δ+ =B U I x,y 0 , (15) 
where *B  is operator coupled with B , I  is unit matrix, ( )δ x, y  is Dirac delta-function, 

3, R∈x y . 
Substituting 
*co= φG B , (16) 

where *coB  is algebraic complementation matrix, results in the following form of 
equation (15) 

*det( ) ,dφ+ ( ) = 0B x y , (17) 
with unknown scalar function φ . 

The determinant of matrix *B  has the following form: 
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4 2 8 9 6 10( )C s a a a a a= − . (22) 
The expression for the determinant of matrix *B  from [5] contains the wrong sign at 

summand 4 5 8 9( )a a a a+  in coefficient 3C . 
Factorization of expression (18) using Kardano's formula makes it possible to rewrite 

equation (17) for unknown function φ  as: 

( )( )( )( )22 2 2 2 2 2 2 2
1 2 3 4λ λ λ λ∇ − ∇ − ∇ − ∇ − φ = 0 , (23) 

where 
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The form of function φ , as well as the expressions for the components of the 
fundamental solutions, are presented in [5] and are used in the further calculations, taking 
account of the above mentioned comments. 

 
4. Numerical results 
The results are exemplified by the visualization of the components of fundamental solutions 

11
ssU , wwP , and aaP . The values in the time-domain are obtained using the time-step method of 

numerically inverting Laplace transform [6,7] with parameters 610t −∆ = , L=1000, N= 1000, 
R=0.997. The parameters of the partially saturated porous material correspond to those of 
sandstone: 0.23ϕ = , 32650 /s kg mρ = , 31.0 /w kg mρ = , 3997 /w kg mρ = , 31.1 /a kg mρ = , 

9 21.02 10 /K N m= ⋅ , 9 21.44 10 /G N m= ⋅ , 10 23.5 10 /sK N m= ⋅ , 9 22.25 10 /wK N m= ⋅ , 
5 21.1 10 /aK N m= ⋅ , 12 22.5 10k m−= ⋅ , 3 21.0 10 /w N s mη −= ⋅ ⋅ , 5 21.8 10 /a N s mη −= ⋅ ⋅ , 

4 25 10 /dp N m= ⋅ , 0.95wS = , 0rwS = , 1raS = , 1.5θ = . An observation point with 
coordinates (0.5,0,0)  and a load application point with coordinates (0,0,0)  are chosen. 

 

 
Fig. 1. Displacement 11

ssU  versus time 
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Fig. 2. Pore water pressure (a) and pore air pressure (b) 

 
It can be observed in Fig. 1 that the values of 11

ssU  computed using expressions (10), 
(11), (22) do not differ graphically from those obtained using the expressions from [5]. 
However, the results of computing components wwP  and aaP  demonstrate significant 
difference. In particular, the expressions used in [5] give underestimated values of wwP  and 

aaP  at the time the fast longitudinal wave arrives (Fig. 2).  
 

5. Conclusion 
A visualization of the components of the fundamental solutions of dynamic poroelasticity is 
presented. It is indicated that the solutions presented in [5] contain errors. The effect of the 
above errors on the results of numerical experiments is demonstrated. 
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