MAGNETIC AND DIELECTRIC STUDY OF Ni$_2$FeV$_3$O$_{11-δ}$

Nikos Guskos1,2, Vlasis Likodimos1, Spiros Glenis1, Janusz Typek2, Jerzy Majszczyk2, Grzegorz Zolnierkiewicz2, Anna Blonska-Tabero3 and Chyan L. Lin4

1Solid State Section, Department of Physics, University of Athens, Panepistimiopolis, 15 784 Zografos, Athens, Greece
2Institute of Physics, Technical University of Szczecin, Al.Piastów 17, 70-310 Szczecin, Poland
3Institute of Chemistry and Environmental Protection, Technical University of Szczecin, Al.Piastów 42, 71-065 Szczecin, Poland
4Department of Physics, Temple University, Philadelphia, PA 19122, USA

Received: December 08, 2006

Abstract. The magnetic and dielectric properties of the Ni$_2$FeV$_3$O$_{11-δ}$ compound synthesized using different annealing routes have been studied by means of static magnetization, electron paramagnetic resonance and dielectric spectroscopy. The temperature dependence of the magnetic susceptibility has shown marked singularities due to the coexistence of many kinds of magnetic interactions. Dielectric measurements have shown a second order phase transition to the ferroelectric state at about 200K. Dielectric loss measurements have shown an intense peak at the same temperature with activation energy of about 0.42 eV. All investigated compounds of the M-Fe-V-O (M=Ni, Zn, Mg) system have displayed a slight anomaly of the EPR parameters at about 200K. This anomaly is interpreted as arising from the competition between different magnetic subsystems preventing the formation of a long-range magnetic order.

1. INTRODUCTION

The crystal structure of the multicomponent M$_2$FeV$_3$O$_{11-δ}$ (M=Zn(II) and Mg(II)) and M$_2$Fe$_4$V$_6$O$_{24-δ}$ (M=Zn(II), Mg(II) and Mn(II)) vanadates is characterized by the presence of different metal sub-lattices and cation or oxygen disorder [1-7]. A disordered distribution of diamagnetic M(II) and high spin Fe(III) ions could influence the magnetic homogeneity of these systems, which has been detected in the temperature dependence of the magnetic susceptibility and the temperature variation of the electron paramagnetic resonance (EPR) spectra [8,9]. For a more “simple” system Ni$_2$FeVO$_6$, the coexistence of various magnetic phases arising from different oxidation states of vanadium cations was suggested and the formation of a magnetically ordered state below 200K was proposed based on magnetization measurements [10,11]. The temperature dependence of the EPR spectra has shown a strong variation of all the EPR parameters (linewidth, resonance field and intensity) below 200K [12]. The temperature dependence of the FMR spectra for the Ni$_2$FeV$_3$O$_{11-δ}$ system has shown a sharp change, while the shift of the resonance field below 200K has indicated strong magnetic correlations between the high-spin state iron(III) ions [13]. A very broad and intense EPR line of the high-spin iron(III) ions has been recorded for the M$_2$FeV$_3$O$_{11-δ}$ (M=Zn(II) and Mg(II)) compounds, where a slight change in the resonance line shift was observed at 200K followed by a sharp

Corresponding author: Nikos Guskos, e-mail: ngouskos@phys.uoa.gr

© 2007 Advanced Study Center Co. Ltd.
variation near 50K influenced by the dynamical spin fluctuation of iron(III) ions [8,9]. Moreover, EPR measurements of the Zn₄Fe₅V₆O₂₄ compound have shown a shallow minimum in the resonance line shift at 200K [14].

In the present work, two samples of the Ni₈Fe₇V₆O₂₄ compound prepared by different methods, have been investigated by magnetic, dielectric and EPR measurements in order to get further insight on its complex physical properties responsible for the anomalies observed at 200K in the M-Fe-V-O system.

2. EXPERIMENTAL

The polycrystalline Ni₈Fe₇V₆O₂₄ samples have been synthesized using the solid-state reaction method [15]. Two different thermal annealing programs for the preparation of this compound have been used. The first type of sample (designated as sample A) has been synthesized from vanadates, according to the equation: FeVO₄+Ni₂V₂O₇= Ni₂FeV₃O₁₁. During this synthesis the powder mixture was thermally annealed for 24 h at the temperature 640°C (913K) and for 24 h at 800°C (1073K). This thermal treatment was different from that proposed by Melentev et al. [16]. The second type of sample (designated as sample B) was synthesized in another way. Firstly, a mixture of oxides (50.00 mol.% NiO, 37.50 mol.% V₂O₅, and 12.50 mol.% Fe₂O₃) was heated in air atmosphere at 600°C (873K) during 24 hours (twice). During the next stage the pellet was thermally annealed at 650°C (923K) during 24 hours (twice). In this condition, Ni₈Fe₇V₆O₂₄ compound was synthesized according to the reaction: 4NiO + 3V₂O₅ + Fe₂O₃ = 2Ni₂FeV₃O₁₁. The obtained compound has a blackish-brown color, with a melting temperature 935(5)°C (1208K) (in contrast to the compound prepared by different meth-

3. RESULTS AND DISCUSSION

Fig. 1 shows the temperature dependence of the effective magnetic moment (µeff/f.u.) for samples A and B at magnetic field H=2 kOe, compared to the corresponding temperature dependence of µeff for Ni₄FeVO₆. At high temperatures, the effective moment is about 7.3 mμ/mole, which is close to that expected per formula unit (δ=0) for paramagnetic Ni²⁺ and Fe³⁺ ions. At T<210K, a rapid increase of µeff is observed for sample A that is similar to the ferromagnetic transition of the Ni₄FeVO₆ compound, while a small kink is also detected at T=200K for sample B. Below 10K, a weak peak in the magnetic susceptibility indicates the presence of antiferromagnetic ordering for both samples A and B. EPR measurements showed the presence of ferromagnetic resonance (FMR) for samples A and B below 200K, where a strong shift of the resonance line towards low magnetic fields was recorded [13]. Fig. 2a shows the temperature dependence of the resonance field in the region of 1 kHz to 1000 kHz in logarithmic scale (20 points per decade).
Magnetic and dielectric study of \(\text{Ni}_2\text{FeV}_3\text{O}_{11-\delta}\)

Fig. 1. Temperature dependence of the effective magnetic moments for \(\text{Ni}_2\text{FeVO}_{6-\delta}\) (top panel) and samples A, B of \(\text{Ni}_2\text{FeV}_3\text{O}_{11-\delta}\) (lower panel).

Fig. 2. Temperature dependence of the resonance field \(H_r\) in the range of 150-250K for various multi-component M-Fe-V-O vanadates.

\((S=5/2)\). The subsequent layers of magnetic moments are well separated; therefore their interaction may be neglected in comparison with the interlayer interaction, since antiferromagnetically ordered nickel ions do not contribute to the spontaneous magnetization. It is sufficient to take into account the two-dimensional structures formed by vanadium and iron ions to explain certain parts of magnetic behavior. The analysis \(\chi\) vs. \(T\) curve at higher temperature and use of a simple relation for \(\delta=0\) enabled the calculation of the effective values of magnetic momentum of \(\sim 4.9\ \mu_\text{B}\) for sample \(\text{Ni}_2\text{FeVO}_{6-\delta}\) and of \(\sim 4\ \mu_\text{B}\) for sample \(\text{Ni}_2\text{FeV}_3\text{O}_{11-\delta}\).

These values are smaller than expected for the high spin state of free trivalent iron ions. The fact that the vanadium ions exhibit three types of valence could be very important in discussing magnetic interactions, especially for a sample with oxygen deficiency. On the other hand the decrease of effective magnetic momentum could be caused because some iron(III) ions are in the low spin state or ferromagnetic cluster iron-oxygen-vanadium are formed. The peak of the magnetic susceptibility at \(T=200K\) clearly indicates the presence of ferromagnetic interactions, which could be due to the existence of ferromagnetic clusters. In that case, the distortion of the Fe-Fe bonds by random distribution of V ions with different valence states would be more severe in samples A and B than for sample \(\text{Ni}_2\text{FeVO}_{6-\delta}\).

The corresponding FMR spectra at high temperatures consist of a single, slightly asymmetric FMR line, with almost Lorentzian lineshape, typical of exchange-narrowed systems [13]. The integrated intensity \(I(T)\) of the EPR spectrum (which is proportional to the spin susceptibility) is the same for both sample A and B at higher temperatures. The temperature behavior of the integrated intensity complies with the corresponding temperature variation of the magnetic susceptibility curve at high temperatures, indicating that the observed EPR spectrum probes the bulk magnetic behavior. For sample A the EPR line has higher amplitude than for sample B and at high temperatures coexists with a broad EPR line arising from Fe\(^{3+}\) ions. Above 220K the \(g\) parameter, linewidth \(\Delta B\), and resonance field are almost constant for both samples. Below 220K the linewidth begins to increases very strongly and the resonance field shifts towards low magnetic fields for both samples. This behavior could be explained assuming that another kind of clusters could exist in samples A and B. It also complies with the slowing down of critical fluctuations in the iron spin system. The temperature variation of both the intensity and linewidth of the EPR line of Fe\(^{3+}\) ions suggests that its origin is associated with a fraction of iron(III) ions, which at lower temperatures become ferromagnetically ordered and it is in agreement with the lower magnetic susceptibility.

Figs. 3a and 3b shows the temperature and frequency dependence of the dielectric constant \((\varepsilon')\) and dielectric loss \((\varepsilon'')\) for sample B, respectively. A peak of the dielectric constant is clearly observed around 210K, whose amplitude and position depend strongly on the frequency of the electric field.
Fig. 3. Temperature dependence of the dielectric permittivity for sample B: (a) dielectric constant ε', (b) dielectric loss ε'', (c) reciprocal dielectric susceptibility $1/\varepsilon'$, and (d) Arrhenius plot for ε''.

In particular, the peak intensity decreases and shifts to higher temperatures with increasing frequency. The reciprocal dielectric susceptibility curves of $1/\varepsilon'$ as a function of temperature for sample B are presented in Fig. 3c. The temperature dependence of the reciprocal dielectric susceptibility could be described with the Curie-Weiss law with constants $C_1=-2326$K and $C_2=1339$K. The ratio $|C_1/C_2|=1.7$, which is close to 2 suggesting a weak second order phase transition from the paraelectric to ferroelectric state. Probably the dipole reorientation produces the ordering. We have suggested that the existence of clusters could explain this kind of temperature dependence of the dielectric susceptibility. Fig. 3b shows the variation with temperature of the imaginary part of the dielectric constant ε'' for sample B. The dielectric relaxation spectrum of as-received has one peak about 200K and varies with frequency. In addition there is the peak absorption, increasing with decreasing frequency, which interferes with the lowest-frequency absorption at high temperatures. For each absorption, the temperature dependence of the frequency of maximum absorption is of the Arrhenius form $f_{max}=f_0 \exp(-E_A/RT)$ where E_A is the activation energy. The plot of $\log_{10} f_{max}$ is shown in Fig. 3d. The following value of activation energy is obtained $E_A=0.42$ eV.

The magnetoelectric effect is well known and extensively studied for over 50 years, trying to find a correlation between magnetically and electrically ordered states [17,18]. A combination of the soft-mode theory for ferroelectric order and the molecular-field approximation for frustrated antiferromagnetic order has been used for the explanation of the thermodynamic properties of these systems [17]. Recently, an FMR study of magnetic nanoparticles embedded in a polymer matrix has shown a strong influence of the matrix relaxation on the position of the resonance line. The temperature gradient of the resonance field, dH_r/dT, has...
Magnetic and dielectric study of Ni$_2$FeV$_3$O$_{11.6}$

increased over one order of magnitude during freezing of the matrix [19]. The anomalous behavior of the resonance field in a carbon matrix has suggested that “freezing” processes could be responsible for this kind of phenomena connected with magnetic ordering [20].

4. CONCLUSIONS

Two samples of the Ni$_2$FeV$_3$O$_{11.6}$ have been synthesized using two different annealing processes. The temperature dependence of the magnetic susceptibility has shown marked singularities which were assigned to the presence of different magnetic phases. Dielectric measurements have displayed a second order phase transition to the ferroelectric state at about 200K. Dielectric loss measurements have shown an intense peak at the same temperature and the activation energy of about 0.42 eV.

ACKNOWLEDGEMENTS

This work has been financed from the means designed for science for years 2005-2008 as a scientific project 1311/T09/2005/29.

REFERENCES