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Abstract. A review of modeling techniques for predicting the mechanical behavior of polymer
nanocomposites is presented. A detailed discussion of Computational Chemistry and Compu-
tational Mechanics modeling techniques is given. The specific molecular-based and continuum-
based modeling approaches are described in terms of assumptions and theory. The approaches
discussed are Ab initio simulations, Molecular Dynamics, Monte Carlo, Analytical
Micromechanics, Computational Micromechanics, Finite Element Method, and Boundary Ele-
ment Method. In addition to the discussion of the methods, specific results from recent studies
are presented and compared. From these results, the general focus of current polymer
nanocomposite modeling studies is summarized.

1. INTRODUCTION

In 1985, Smalley and co-workers at Rice University
discovered cage-like carbon structures known as
fullerenes; named after R. Buckminster Fuller [1].
These fullerenes are C

60
 molecules with �buckyball�

or �truncated icosahedron� structure consisting of
20 hexagons and 12 pentagons with a nearly spheri-
cal shape. In 1991, Iijma discovered carbon
nanotubes [2]. Carbon nanotubes are closed
graphene sheets with a cylindrical shape with end
caps. They can be described as long and slender
fullerenes. Research has shown that carbon
nanotubes exhibit exceptional mechanical proper-
ties [3]. Although there has been some variation in
the reported values for the carbon nanotube me-
chanical properties, the elastic modulus has been
shown to be greater than 1 TPa and the tensile
strength exceeds that of steel by over an order of
magnitude. In view of the exceptional mechanical
properties of carbon nanotubes, they have been

considered as ideal reinforcements in composite
structures. For nanotube composite materials, it has
been shown that a carbon nanotube weight fraction
of 1% results in the same increase in composite
elastic modulus as a composite with a 10% weight
fraction of carbon fibers, based on results from short-
fiber composite theory [4]. This difference in elastic
modulus is predicted even though the size scale of
the two reinforcements differs by three orders of
magnitude [5].

Nanopartcles with high aspect ratios have proven
to be good reinforcing agents in polymeric materials
[6]. Among all nanoparticle reinforced composites,
the most widely investigated systems are based on
silicates and clay particles. Ahn et al. reported that
the tensile modulus of composites reinforced with
unmodified silica nanoparticles improved upon in-
creasing the silica content, however, the elongation
to failure decreased [7]. A research group at Toyota
developed an economic industrial process for the
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manufacture of polymer/clay nanocomposites. This
work led to the development of composites with twice
the Young�s modulus as that of the pure polymer.
The increase in Young�s modulus was also observed
at elevated temperatures [8,9].

The tremendous mechanical properties of car-
bon nanotubes and other nano-reinforcements can
be realized only if efficient load transfer exists be-
tween the matrix and reinforcement [10-13]. It has
been shown that in some cases the load transfer
between nanotubes and the surrounding matrix can
be increased by introducing non-bonded interfacial
compounds or chemical crosslinks between
nanotubes and the matrix [14-17]. Despite these
early efforts, more research is required to fully un-
derstand the effects of molecular structure of the
nanotube/polymer interface on overall composite
mechanical properties. Although experimental-
based research can ideally be used to determine
structure-property relationships of nanostructured
composites, experimental synthesis and character-
ization of nanostructured composites demands the
use of sophisticated processing methods and test-
ing equipment; which could result in exorbitant
costs. To this end, computational modeling tech-
niques for the determination of mechanical proper-
ties of nanocomposites have proven to be very ef-
fective [18-25]. Computational modeling of polymer
nanocomposite mechanical properties renders the
flexibility of efficient parametric study of
nanocomposites to facilitate the design and devel-
opment of nanocomposite structures for engineer-
ing applications.

This review article will discuss the major model-
ing tools that are available for predicting the me-
chanical properties of nanostructured materials.
Analytical and computational approaches to con-
tinuum-mechanics based modeling are discussed.
Computational chemistry modeling approaches are
also discussed in detail. Results found in the litera-
ture for the various modeling tools are tabulated and
compared for six polymer nanocomposite systems.
The comparison emphasizes the flexibility of the
modeling approaches for different polymer nano-com-
posite geometries.

2. MODELING METHOD OVERVIEW

The importance of modeling in understanding of the
behavior of matter is illustrated in Fig. 1. The earli-
est attempt to understanding material behavior is
through observation via experiments. Careful mea-
surements of observed data are subsequently used
for the development of models that predict the ob-
served behavior under the corresponding conditions.
The models are necessary to develop the theory.
The theory is then used to compare predicted be-
havior to experiments via simulation. This compari-
son serves to either validate the theory, or to pro-
vide a feedback loop to improve the theory using
modeling data. Therefore, the development of a re-
alistic theory of describing the structure and behav-
ior of materials is highly dependent on accurate mod-
eling and simulation techniques.

Mechanical properties of nanostructured mate-
rials can be determined by a select set of computa-
tional methods. These modeling methods span a
wide range of length and time scales, as shown in
Fig. 2. For the smallest length and time scales,
Computational Chemistry techniques are primarily
used to predict atomic structure using first-principles
theory. For the largest length and time scales, Com-
putational Mechanics is used to predict the mechani-
cal behavior of materials and engineering structures.
Computational Chemistry and Computational Me-
chanics modeling methods are based on thoroughly-
established principles that have been developed in
science and engineering. However, the intermedi-
ate length and time scales do not have general
modeling methods that are as well-developed as
those on the smallest and largest time and length
scales. Therefore, multiscale modeling techniques
are employed, which take advantage of Computa-
tional Chemistry and Computational Mechanics
methods simultaneously for the prediction of the
structure and properties of materials.

Fig. 1. Schematic of the process of developing
theory and the validation of experimental data
(adapted from [24]).
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Fig. 2. Various length and time scales used in determining mechanical properties of polymer nanocomposites.

As indicated in Fig. 2, each modeling method
has broad classes of relevant modeling tools. The
Quantum mechanical and Nanomechanical model-
ing tools assume the presence of a discrete mo-
lecular structure of matter. Micromechanical and
Structural Mechanics assume the presence of a
continuous material structure. Fig. 3 is a schematic
that details the relationship of specific modeling
techniques in Computational Mechanics and Com-

Fig. 3. Diagram of material modeling techniques.

putational Chemistry. The continuum-based meth-
ods primarily include techniques such as the Finite
Element Method (FEM), the Boundary Element
Method (BEM), and the micromechanics approach
developed for composite materials. Specific
Micromechanical techniques include Eshelby ap-
proach, Mori-Tanaka method, Halpin-Tsai method
[26-36]. The molecular modeling tools include mo-
lecular dynamics, Monte Carlo, and Ab-initio tech-
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niques. Each of these continuum and molecular-
based modeling methods are described below.

3. CONTINUUM METHODS

These modeling methods assume the existence of
continuum for all calculations and generally do not
include the chemical interactions between the con-
stituent phases of the composite. These methods
can be classified as either analytical or computa-
tional.

3.1. Analytical continuum modeling

The overall properties of composites can be esti-
mated by a volume average stress and strain fields
of the individual constituents [37]. The overall stress
and strain of a composite with N distinct phases
can be represented as follows
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where C
r
 is the stiffness tensor of phase r. The con-

stitutive relationship between stress and strain for a
composite material is given in terms of volume aver-
aged stress and strain fields
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where I is the identity tensor. Combining above equa-
tions results in the stiffness tensor in terms of the
constituent stiffness tensors,
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Different methods exist for evaluation of the con-
centration tensor. When A

r
 = I; the above equation

results in the rule-of-mixtures approach. Neglecting
the interaction between the reinforcing particles re-
sults in the dilute concentration approximation. The
dilute concentration tensor is given by
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where S
r
 is the constituent eshelby tensor [31]. The

eshelby tensor can be evaluated as a function of
reinforcement dimensions, a

i
r, of the reinforcing

phase r and properties of the matrix,

S f C a a a
r

r r r= ( , , , ).
1 1 2 3

 (9)

Various expressions for the eshelby tensor can be
found in literature [28-36]. For Mori-Tanaka approach,
the concentration tensor is given by
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where A
r

dil  given by Eq. (8). Another form of concen-
tration tensor used in the Self-consistent scheme
is given by

A I S C C C
r
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= + −− −1 1

( )  (11)

where C is the unknown composite modulus. The
Self-consistent scheme utilizes an iterative tech-
nique to evaluate the modulus of the composite
material.

Pipes et al. used an anisotropic elasticity ap-
proach to study the behavior of a layered cylinder
with layers of discontinuous CNT following a helical
path in each layer [38,39]. Odegard et al. used the
Mori-Tanaka method to predict elastic properties of
polyimide/CNT composites at various lengths, ori-
entations, and volume fractions [25]. A similar
micromechanics-based approach was used by
Odegard et al. to predict the properties of CNT/
polyethelene composites. This study also exam-
ined the effects of CNT functionalization in CNT/poly-
ethylene composites and showed that
functionalization deteriorated the composite me-
chanical properties. In another study, MWNT/poly-
styrene composite elastic properties were shown
to be sensitive to nanotube diameter by an approach
based on Halpin-Tsai micromechanical method [40].
Lagoudas et al. predicted elastic properties of CNT/
epoxy composites using a variety of analytical
micromechanics approaches [41].
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3.2. Computational continuum
modeling

Continuum-based computational modeling tech-
niques include FEM and BEM. While these ap-
proaches do not always supply exact solutions, they
can provide very accurate estimates for a wide range
of assumptions. These approaches are described
in detail below.

Finite element method. FEM can be used for nu-
merical computation of bulk properties based on the
geometry, properties, and volume fraction of con-
stituent phases [42-44]. FEM involves discretization
of a material representative volume element (RVE)
into elements for which the elastic solutions lead to
determination of stress and strain field. The coarse-
ness of the discretization determines the accuracy
of the solution. Nanoscale RVEs of different geo-
metric shapes can be chosen for simulation of me-
chanical properties [18,19]. However, high complex-
ity of models, expensive software, and time-con-
suming simulations limit the utility of this method.

FEM-based micromechanics has been used
extensively for the prediction of mechanical proper-
ties of nanostructured composites. Li et al. used an
FEM-based approach to investigate the stress con-
centration at the end of carbon nanotubes and the
effects of nanotube aspect ratio on the load transfer
between nanotubes and matrix [45]. Bradshaw et
al. used FEM to evaluate the strain concentration
tensor in a composite consisting of wavy carbon
nanotubes. Fisher et al. used FEM to determine
the effect of waviness on effective moduli of CNT
composites. Chen et al. used different shapes of
RVEs to understand the dependence of predicted
properties on the element shape.

Boundary element method. BEM is a continuum
mechanics approach which involves solving bound-
ary integral equations for the evaluation of stress
and strain fields [46]. This method uses elements
only along the boundary, unlike FEM, which involves
elements throughout the volume; thus making BEM
less computationally exhaustive than FEM [47-49].
BEM can be applied from micro to macro scale
modeling [20]. In BEM, it is assumed that a mate-
rial continuum exists, and therefore, the details of
molecular structure and atomic interactions are ig-
nored.

The rigid fiber model has been shown to be very
effective in estimation of fiber composites [50]. Ingber
et al. have shown agreement in predicted modulus
using BEM and analytical results for fiber compos-
ites. Liu et al. used a fast multipole method to model

CNT composites. They treated CNTs as rigid fibers
and the properties were obtained in an analogous
manner to a rigid inclusion problem. The estimated
modulus was found to be very close to that pre-
dicted by MD simulations [20]. They concluded that
BEM can be a very useful for first-order approxima-
tion of mechanical properties in large-scale model-
ing of CNT composites.

4. MOLECULAR MODELING

In recent years molecular modeling has emerged
as an important tool in the prediction of physical
material properties such as elastic response, atomic
structure, vibrational frequencies, heat of reaction,
electric permitivity, and binding energies. Molecular
modeling assumes a noncontinuous composition
of the material, which makes it a powerful tool for
studying atomic interactions at the nanometer length
scale. Due to the discrete nature of these tech-
niques, they are often limited by the length and time
scales that can be achieved in the simulations, and
thus the techniques can be computationally exhaus-
tive. Three widely used molecular modeling tech-
niques for the prediction of mechanical properties
of nanostructured materials are molecular dynam-
ics (MD), Monte Carlo (MC), and ab initio simula-
tion.

4.1. Molecular dynamics

MD is the most widely used modeling technique for
the simulation of nanostructured materials. MD al-
lows accurate predictions of interactions between
constituent phases at the atomic scale. It involves
the determination of the time evolution of a set of
interacting atoms, followed by integration of the
corresponding equations of motion. The equations
of motion are given by Newton�s second law:

F m a
i i i

= ,  (12)

where F
i
 is the force on atom i and m

i
 and a

i
 are the

mass and acceleration, respectively, of atom i in a
system of N atoms.

MD is a statistical mechanics method. A set of
configurations is distributed according to a statisti-
cal ensemble or statistical distribution function. The
trajectories of the motion of the atoms are calcu-
lated under the influence of interaction forces of the
atoms. The trajectory is calculated in a phase space
with 6N dimensions; three position and three mo-
menta components for each atom. Calculation of
physical quantities by MD simulation is obtained
by arithmetic averages of instantaneous energy val-
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ues from individual simulation steps. MD simula-
tions, if run for a sufficiently long time, can com-
pletely sample the phase space, however, in prac-
tice, simulation times are limited. Physical quanti-
ties are sampled after the molecular system reaches
a thermodynamic equilibrium.

Interactions of different atom types are described
by an atomic potential. The total potential energy of
the system can be evaluated as a function of the
position of the atoms at a given time,

V V r r
i N

= ( ,..., ),  (13)

where r
i
 is the position of atom i in a system of N

atoms for a particular simulation step. The positions
of atoms are expressed relative to each other so
that the atomic potential is invariant with respect to
coordinate transformations. The force on an atom i
is determined from the gradient of the potential V
with respect to atomic displacements r

i
,

F V r r
i N

= −∇ ( ... ) .
1
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The total energy of the system is

E K V= + ,  (15)

where K is the kinetic energy and V is the potential
energy of the system.

The potential describing the interaction of atoms
in an organic material is given in many forms. For a

Fig. 4. Force field degrees of freedom.

system involving only carbon and hydrogen,
Brenner�s potential is widely used for bonded inter-
actions [51]. Brenner�s potential is based on the
principle that the strength of the bond between two
atoms is not constant, but depends on local condi-
tions. It can be expressed as
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where the summation is performed over bonds of
the system, r

ij
 is the distance between atoms i and

j, V
R
(r
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) and V

A
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) are repulsive and attractive inter-

actions, respectively, and B
ij
 is the manybody cou-

pling between atoms i and j and the local environ-
ment of atom i. Force fields provide a simple and
effective approach for describing the atomic poten-
tial of interacting atoms consisting of many differ-
ent atom types [52-56]. The force field can be de-
scribed by the sum of the individual energy contri-
butions from each degree of freedom of the system
of N atoms, as shown in Fig. 4. The non-bonded
interactions shown in Fig. 4 represent van der Waals,
hydrogen, and electrostatic bonding. The force field
equation developed by Cornell et al. for organic
molecular systems is [52]
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where K
r
 is the bond stretching force constant, r is

the distance between atoms, r
eq

 is the equilibrium
distance between atoms, Kθ is the bond-angle bend-
ing force constant, θ is the bond angle, θ

eq
 is the

equilibrium bond angle, V
n
 is the torsion force con-

stant, γ is the phase offset, n is the periodicity of
the torsion, A

IJ
 and B

IJ
 are van der Waals force con-

stants between non-bonded atoms I and J, and r
IJ

is the non-bonded distance between atoms I and J.
The van der Waals interaction term in Eq. (17) is in
the form of the Lennard-Jones potential. Tables 1
and 2 list force constants for bond stretching and
bond angles bending, respectively, for different atom
types [52].

The Equivalent-Continuum Method (ECM) is used
to determine the bulk-level mechanical properties
of a material from the molecular model. ECM is a
methodology for linking computational chemistry
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Table 1. Bond stretching force constants for aromatic carbon (CA) and aliphatic carbon (CT) [52].

Interacting Atom Types Equilibrium Spacing Force Constant
r (Å) K

r
 (kcal/mol/ Å2)

CA-CA 1.4 469
CT-CT 1.526 310
CA-CT 1.510 317

Table 2. Bond-angle bending force constants for aromatic carbon (CA), aliphatic carbon (CT), and hydro-
gen (HC) [52].

Interacting Atom Types Equilibrium Angle Force Constant
θ (deg) Kθ (kcal/mol/rad2)

CA-CA-CA 120 63
CA-CT-CT 114 63
CT-CT-HC 109.5 50

and solid mechanics. An equivalent continuum, iden-
tical to the MD model in geometry, is developed
and a constitutive law is used to describe the me-
chanical behavior of the continuum. Fig. 5 shows a
molecular model of a nanotube reinforced polymer
composite and its equivalent continuum model. The
energies of deformation of the molecular and equiva-
lent-continuum models are derived for identical load-
ing conditions. The unknown mechanical properties
of the equivalent continuum are determined by
equating the energies of deformation of the two
models under these loading conditions. The proper-
ties of a larger-scale material are then determined
using the equivalent-continuum volume element
properties.

Odegard et al. have used the ECM and MD to
predict the properties of various CNT based com-
posite systems. They predicted the elastic proper-
ties of PmPV CNT/polyimide composite for a wide
range of nanotube lengths, orientations, and volume
fractions. They also used a similar approach to pre-
dict behavior of functionalized and non-functionalized
CNT/polyethylene composites [57]. Frankland et al.
used MD to study the influence of chemical
functionalization on the CNT/polyethylene compos-
ites [14]. They also studied the critical nanotube
length required for effective load transfer. Frankland
et al. predicted stress-strain curves from MD and

Fig. 5. The Equivalent-continuum model of a PmPV-
nanotube composite [25].
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compared them to those obtained from
micromechanical models for CNT/polyethylene com-
posites [58]. Hu et al. [15, 16] used MD to under-
stand the effect of chemical functionalization on
toughness of CNT/polystyrene composites.

MD has been used for simulation of other physi-
cal properties of nanocomposites. Wei et al. showed
that addition of CNTs to polyethylene resulted in an
increase of thermal expansion, glass transition tem-
perature, and diffusion coefficients of the polymer
[59]. Lordi and Yao calculated sliding frictional
stresses between CNT and various polymer sub-
strates based on molecular mechanics simulations
[60]. Liang et al. showed the presence of an attrac-
tive interaction between SWNTs and epoxy poly-
mer matrix [61]. Frankland et.al. characterized the
interfacial friction model for the pull-out of SWNTs
from a polyethylene matrix [62].

4.2. Monte Carlo

MC is a class of probabilistic mathematical models
for the prediction of the behavior and outcome of a
system. The outcomes of MC are statistical in na-
ture and subject to laws of probability. In most cases
it involves a multidimensional integration over the
sample space. Different MC techniques can be used
for determination of material properties; classical
MC, quantum MC, volumetric MC and kinetic MC.
Classical MC involves drawing samples from a prob-
ability distribution, often the classical Boltzmann
distribution, to obtain thermodynamic properties or
minimum-energy structures. Quantum MC utilizes
random walks to compute quantum-mechanical
energies and wave functions to solve electronic
structure problems, generally using Schrödinger�s
equation as starting point. Volumetric MC gener-
ates random numbers to determine volumes per
atom or to perform geometrical analysis. Kinetic MC
simulates process by the use of scaling arguments
to establish time scales. It also includes MD simu-
lations which involves stochastic effects.

Based on the dependence of time, MC simula-
tions can be classified as either metropolis MC or
kinetic MC. Metropolis MC applies to systems un-
der equilibrium, and thus is independent of time.
This method generates configurations according to
a statistical-mechanics distribution, whereas kinetic
MC deals with systems under non-equilibrium. The
kinetic MC technique uses transition rates that de-
pend on the energy barrier between the states, with
time increments formulated so that they relate to
the microscopic kinetics of the system.

Ford et al. used MC techniques to study the
mechanical and phase behavior of quartz, cristo-
balite, coesite, and zeolite structures. The bulk
modulus predicted from their model was found to
be in good agreement with experimental values. They
concluded that the model can be used to determine
properties of silica nanostructures with atomistic
detail. Chui et al. used a MC-based modeling ap-
proach to study deformation, rate of deformation,
and temperature dependence of large strain defor-
mation in amorphous polymeric materials [63].

4.3. Ab initio

Unlike most materials simulation methods that are
based on classical potentials, the main advantages
of ab initio methods, which is based on first-prin-
ciples density functional theory (without any adjust-
able parameters), are the generality, reliability, and
accuracy of these methods. They involve the solu-
tion of Schrödinger�s equation for each electron, in
the selfconsistent potential created by the other elec-
trons and the nuclei. Ab initio methods can be ap-
plied to a wide range of systems and properties.
However, these techniques are computationally ex-
haustive, making them difficult for simulations in-
volving large numbers of atoms.

There are three widely-used procedures in ab
initio simulation. These procedures are single point
calculations, geometry optimization, and frequency
calculation. Single point calculations involve the de-
termination of energy and wave functions for a given
geometry. This is often used as a preliminary step
in a more detailed simulation. Geometry calcula-
tions are used to determine energy and wave func-
tions for an initial geometry, and subsequent geom-
etries with lower energy levels. A number of proce-
dures exist for establishing geometries at each cal-
culation step. Frequency calculations are used to
predict Infrared and Raman intensities of a molecu-
lar system. Ab initio simulations are restricted to
small numbers of atoms because of the intense
computational resources that are required.

Ab initio techniques have been used on a lim-
ited basis for the prediction of mechanical proper-
ties of polymer-based nanostructured composites.
A study conducted by Mylvaganam et al. demon-
strated that nanotubes of smaller diameters have
higher binding energies in a polyethylene matrix [64].
Bauschlicher studied the bonding of fluorine and
hydrogen atoms to nanotubes [65]. He showed that
fluorine atoms favored to bond to existing fluorine
atoms.
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5. SIMULATED RESULTS

As indicated in the review above, numerous attempts
have been made to study the mechanical behavior
of polymer nanocomposites using modeling tech-
niques. A summary of some of these techniques
as applied to six material systems is shown in Table
3. For each material system, one or more simula-
tion methods have been applied to examine elastic
modulus, constitutive behavior, interfacial bonding,

Table 3. Material systems characterized by different modeling techniques.

Material System Simulation Method Predicted Properties Conclusions/Remarks

CNT/Polyethylene MD, Mori-Tanaka Elastic Modulus The moduli of functionalized and
non-functionalized systems were
determined and compared [17]

MD Elastic Modulus Effect of chemical crosslink
density on load transfer was
established [14]

MD Stress-Strain Comparisons of composite
modulus from MD and rule-of-
mixtures techniques for three
different cases of nanotubes was
predicted [66, 67]

CNT/ Polyimide MD, Mori-Tanaka Elastic Modulus Critical length for maximum load
transfer was determined and the
use of chemical interface between
nanotube and matrix was explored
[40]

Nanoclay/ MD,Halpin-Tsai Elastic Modulus The effects of interlayers, the
Polyamide structure of clay clusters, and

platelet distributions on properties
were determined and compared to
Halpin-Tsai predictions [66]

MD, Halpin-Tsai, Elastic Properties Multiscale modeling of nanoclay
Mori-Tanaka, FEM reinforced polymer composites

was presented [23]
CNT/ Epoxy MD Interfacial Bonding Effect of nanotube loading on

mechanical properties was
established [67]

CNT/ Polystyrene MD, Halpin-Tsai Load Transfer The effects of nanotube diameter
and cross-links between
nanotubes and polymer on
mechanical properties were
studied [16,41]

Nanoparticle/ MD, Eshelby Elastic Modulus Effect of the nanoparticle/
Polyimide polyimide interface on elastic

properties was determined [68]

or load transfer between the reinforcement and poly-
mer matrix.

From the general results from these studies,
several conclusions can be drawn. First, there is a
strong effect of the interfacial conditions between
the nano-reinforcement and matrix on the mechani-
cal properties. The interfacial conditions can improve
the load transfer via bonded (functionalization) or
non-bonded means. Second, there is a measurable
influence of nanotube length and diameter on the
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overall composite properties. Third, use of traditional
micromechanical theories to predict overall compos-
ite properties without the aid of molecular modeling
do not always result in accurate predicted mechani-
cal properties. Fourth, the study of CNT-based com-
posites has been the focus these studies, with less
attention given to nanoclays and nanoparticles. Fifth,
the models have generally only examined elastic
properties of composites. To date, little work has
been performed on nonlinear mechanical behavior
or failure of these materials.

6. SUMMARY

The modeling and simulation of polymer-based
nanocomposites has become an important topic in
recent times because of the need for the develop-
ment of these materials for engineering applications.
A review of the most widely used modeling tech-
niques used for prediction of mechanical properties
of polymer nanocomposites has been presented in
this paper. In addition, results from recent modeling
studies have been presented and discussed.

Because of the complex interactions between
constituent phases at the atomic level, a combina-
tion of modeling techniques is often required to simu-
late the bulk-level behavior of these composites. The
Computational Chemistry techniques assume the
presence of a discrete molecular structure, and are
primarily used to predict the atomic structure of a
material. Computational Mechanics techniques as-
sume that the matter is composed of one or more
continuous constituents, and are used to predict
the mechanical behavior of materials and structures.
These two types of modeling techniques must be
combined to an overall multiscale mode that is ca-
pable of predicting the structure and properties of
polymer nanocomposites based on fundamental and
scientific principles.
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