FABRICATION AND PHOTOLUMINESCENCE OF THE SnO₂ PLATE-SHAPE NANOSTRUCTURES AND CHRYSANTHEMUM-SHAPE NANOSTRUCTURES

B. Wang¹, I.L. Li¹, P. Xu¹ and L.W. Xing²

¹Shenzhen Key Lab of Micro-Nano Photon Information Technology, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
²CSR Qingdao Sifang CO., LTD, China

Received: October 17, 2011

Abstract. Two new nanostructures, Plate-shape Nanostructures and Chrysanthemum-shape Nanostructures of SnO₂, have been grown on single silicon substrates by Au-Ag alloying catalyst assisted carbothermal evaporation of SnO₂ and active carbon powders (thermal CVD). The morphology and structure of the prepared nanostructures are determined on the basis of scanning electron microscopy (SEM), field-emission scanning electron microscopy (FESEM), energy dispersive spectrum (EDS), X-ray diffraction (XRD) and photoluminescence spectra (PL) analysis. The peak at 343 nm is the band-to-band emission peak and the corresponding band gap of SnO₂ is calculated by using an accurate full-potential linearized augmented planewave method. The new peak at 416 nm in the measured photoluminescence spectra of SnO₂ Plate-shape nanostructures is observed, implying that more luminescence centers exist in SnO₂ Plate-shape nanostructures due to nanocrystals and defects. The growth mechanism of SnO₂ Plate-shape nanostructures and SnO₂ Chrysanthemum-shape nanostructures can be explained on the basis of the vapor–liquid–solid (VLS) processes.

1. INTRODUCTION

It is well known that SnO₂ is an important n-type semiconductor functional material with wide band gap energy, high donor concentration and large mobility [1], which has been widely applied in the field of opto- and microelectronics. For instance, SnO₂ can be utilized in solar cell [2], transparent conducting electrodes [3], gas sensors [4,5], and transistors [6]. Thus, the SnO₂ nanostructures have been utilized as transparent electrodes in sophisticated electronic devices [7–9]. The material also has an advantage in availability of constituent atoms different from ITO (indium tin oxide). Nanostructures of SnO₂ have been prepared by variety of techniques such as reactive sputtering, spray pyrolysis, evaporation, sol-gel, pulsed laser deposition, plasma assisted/enhanced chemical vapor deposition, and thermal chemical vapor deposition (CVD) [10–19]. Among all these, CVD has meaningful advantages such as large area growth, precise control over thickness, and superior conformal coverage [20].

In this paper, we have reported two new kinds of SnO₂ nanostructures, Plate-shape nanostructures and Chrysanthemum-shape nanostructures, which have been grown on single silicon substrates by Au-Ag alloying catalyst assisted carbothermal evaporation of SnO₂ powders (thermal CVD) [21,22]. Additionally, the peak at 343 nm is the band-to-band emission peak and the corresponding band gap of SnO₂ is calculated by using an accurate full-potential linearized augmented planewave method. The new
peak at 416 nm in the measured photoluminescence spectra of SnO$_2$ Plate-shape nanostructures is observed, implying that more luminescence centers exist in SnO$_2$ Plate-shape nanostructures due to nanocrystals and defects.

2. EXPERIMENTAL

The SnO$_2$ nanostructures synthesis is minutely depicted as follows. The Au-Ag (atom ratio 1:1) layer (about 10 nm in thickness) is deposited on single silicon (001) substrates with area of 5 mm2 by sputtering. The active carbon and SnO$_2$ powders (both 99.99%) are mixed in a 1:4 weight ratio and placed into a small quartz tube. The two Si substrates covered by Au-Ag alloy are put on a ceramic plate near the mixture of carbon and SnO$_2$ inside the small quartz tube. The distance between two substrates is about 2 cm and substrate 1 is 2 cm away from the mixture of carbon and SnO$_2$. Then the small quartz tube, with an inner diameter of 2.5 cm, is pulled into the center of a large quartz tube, with an inner diameter of 6 cm, and together they are inserted in a horizontal tube electric furnace. The whole system is evacuated by a vacuum pump for a couple of hours, then, the nitrogen gas is guided into the system at 200 sccm, and the pressure is kept at 800 Torr. Afterwards, the system is rapidly heated up to 750 °C from the room temperature and kept at the temperature for 15 min. Finally, the system is cooled down to the room temperature in several hours. When two substrates are taken from the small quartz, we can see gray production on substrates. Scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectrum (EDS), X-ray diffraction (XRD) are employed to identify the morphology and structure of the synthesized productions. Room-temperature photoluminescence (PL) is used to characterize the luminescence of SnO$_2$ nanostructures. Note that we can easily repeat the experimental results, suggesting that our method is flexible and reproducible.

3. RESULTS AND DISCUSSION

Morphologies of the synthesized SnO$_2$ nanostructures in two substrates are shown as Figs. 1 and 2. From Fig. 1a, many SnO$_2$ plate-shape nanostructures grown in Substrate 1 in Fig. 1 are clearly seen and the white cirque-shape part exists in most of them. In detailed, the highly-magnified SEM image is displayed in Fig. 1b. Two SnO$_2$ Plate-shape nanostructures are shown clearly. Both of them present radiate-shape from inside to outside. The edge of the two Plate-shape nanostructures is the white and bright pearl-chain-like structure. The FESEM image of a Plate-shape nanostructure is shown in Fig. 1c. The cirque-shape part in this Plate-shape nanostructure divides into three layer cirques
radiating from inside to outside. The higher-magnified FESEM image of one section in Fig. 1c is shown in Fig. 1d, from which the three layer cirques radiating from inside to outside are more clearly displayed and some pearl-like dots distribute outside and inside of the edge of the Plate-shape nanostructure.

The SnO$_2$ Chrysanthemum-shape nanostructures in Fig. 2 are found in the substrate 2. Three Chrysanthemum-shape nanostructures are displayed in Fig. 2a. The EDS pattern (Fig. 2e) recorded at the white powders in Fig. 2a indicates that white powders are Sn (Au, Ag, and Si come from the substrate). The higher-magnified image of one Chrysanthemum-shape nanostructure shown in Fig. 2b indicates that each petal of the Chrysanthemum-shape nanostructure is made up of two pieces of embranchment extending to same direction. The FESEM image of one Chrysanthemum-shape nanostructure in Fig. 2c shows that some nanowires with the diameter of 10-30 nm distribute on the Chrysanthemum-shape nanostructure. The higher-magnified FESEM image of one section in Fig. 2c is shown in Fig. 2d. One petal of the Chrysanthemum-shape nanostructure is made up of two embranchments. In addition, one nanowire with the diameter of 30 nm grows from one embranchment and enwind the embranchment, the other nanowire with the diameter of 30 nm grows from the other embranchment and connects the embranchment, and then both nanowires extend
outside of the embranchment so that some of these nanowires form net-shape structure and cover the whole Chrysanthemum-shape nanostructure as shown in Fig. 2c.

The X-ray diffraction (XRD) measurement is carried out to identify the crystalline structure of the two kinds of SnO$_2$ nanostructures and Fig. 3 shows the XRD patterns. Both samples show tetragonal rutile SnO$_2$ phase with (110), (101), (200), (210), (211), (220), (310), (112), (301), (202), and (321) diffraction peaks, and a highly preferred direction along with (110) direction. The XRD patterns of the samples indicate the crystalline structural parameters can be indexed to the tetragonal rutile structure of SnO$_2$ with lattice constants of $a = 4.738$ Å and $c = 3.188$ Å (JCPDS 21-1250). The Intensity of the peak in the XRD pattern of SnO$_2$. Plate-shape nanostructures higher than that of SnO$_2$. Chrysanthemum-shape nanostructures attributes to the thickness of the density of the SnO$_2$. Plate-shape nanostructures higher than those of the SnO$_2$. Chrysanthemum-shape nanostructures. In addition, the peak (111) and (002) do not appear in the XRD pattern of SnO$_2$. Plate-shape nanostructures higher than that of SnO$_2$. Chrysanthemum-shape nanostructures attributes to the thickness of the density of the SnO$_2$. Plate-shape nanostructures higher than those of the SnO$_2$. Chrysanthemum-shape nanostructures. In addition, the peak (111) and (002) do not appear in the XRD pattern of the SnO$_2$. Chrysanthemum-shape nanostructures. The diffraction peak at 2$\theta = 69.02^\circ$ is quite broad due to the overlapping with that of Si (400) in both of XRD pattern. In the XRD pattern of the SnO$_2$. Chrysanthemum-shape nanostructures, body-centered tetragonal β-Sn phase with (200), (101), (220), and (211) diffraction peaks appear too besides the diffraction peaks of SnO$_2$. The appearance of four diffraction peaks of Sn indicates that the crystalline structural parameters can be indexed to the body-centered tetragonal structure of Sn with lattice constants of $a = 5.83$ Å, $b = 3.18$ Å (JCPDS 04-0673). This conclusion means that both SnO$_2$ and Sn exist in the second sample. According to the EDS result in Fig. 2e, the white powders in Fig. 2a are Sn, so the SnO$_2$. Chrysanthemum-shape nanostructures is SnO$_2$.

Photoluminescence of the obtained SnO$_2$ nanostructures in two samples is investigated at room temperature and the result is shown in Fig. 4. Both of the PL spectra of the SnO$_2$. Plate-shape nanostructures and that of the SnO$_2$. Chrysanthemum-shape nanostructures consist of the emission band located at 343, 399, 470, 549, and 575 nm. Firstly, the peak at 343 nm is the band-to-band emission peak of the two kinds of SnO$_2$.nanostructures, which is originated from the recombination of free exciton electron-hole [23]. We also calculated and investigated the band gap of SnO$_2$ by using an accurate full-potential linearized augmented planewave method in Fig. 5. The calculations were implemented in the latest WIEN2K code [24,25]. From Fig. 5 we can see that SnO$_2$ have a direct band gap. The band gap is about 3.615 eV which has revised from the experimentation. The reason that the peak is weaker than other peaks is that the peaks caused by defect levels associated with oxygen vacancies or tin interstitials resulting from the size effect of the SnO$_2$ nanostructures is strong so as to cripple the band-to-band emission peak [26]. Secondly, the appearance of the 399 nm peak is independent of the concentration of oxygen vacancies, while due to...
Fig. 4. The room temperature PL spectrum of the synthesized two kinds of SnO$_2$ nanostructures.

Fig. 5. The band gap of SnO$_2$ by using an accurate full-potential linearized augmented planewave method.

to structural defects or luminescent centers, such as nanocrystals or defects in the SnO$_2$ nanostructures [26,27]. Thirdly, the peak at 470 nm is possibly attributed to the electron transition mediated by defect levels such as oxygen vacancies in the band gap [28]. Fourth, the 549, 575 nm peak has been observed in previous report [21,29]. In addition, the PL spectra of the SnO$_2$ Plate-shape nanostructures consist of the emission band located at 370 and 416 nm. The 370 nm peak is attributed to the band-to-acceptor peak and related to the impurity or defect concentration and not to the structural properties [27]. The 416 nm peak is newly found in our case, should be from new luminescence centers existing in SnO$_2$ Plate-shape nanostructures, such as nanometer sized crystals and defects [30]. While the PL spectra of the SnO$_2$ Chrysanthemum-shape nanostructures consist of the emission band located at 512 nm, which is attributed to the concentration of oxygen vacancies [25]. It has been reported that the concentration of oxygen vacancies increases with increasing substrate temperature [31]. These oxygen vacancies are created as the donor level below the conduction band and are the origin of the n-type SnO$_2$ nanostructures. The intensity of this peak increases with the increasing concentration of oxygen vacancies [27].

The growth mechanism of SnO$_2$ Plate-shape nanostructures can be explained on the basis of the vapor–liquid–solid (VLS) processes. In experimental, Au in Au-Ag alloy as catalysts is usually used to assist the SnO$_2$ Plate-shape nanostructures synthesis. The reason that the application of the Au-Ag alloy is that the cost of the Au-Ag alloy is lower than that of the pure Au. SnO$_2$ powders first react with the active carbon, and then SnO can be produced. Subsequently, the produced SnO decomposes into Sn and SnO$_2$. Sn droplets are still liquid at the reaction temperature due to the low melting point (231.9 C) and fall on the substrate and form Sn-Au alloyed droplets by reacting with the Au particles [26]. Simultaneously, these Sn-Au alloying droplets can provide the energetically favored sites for the adsorption of SnO$_2$ vapor, so the SnO$_2$ dissolves in the Sn-Au alloying droplets, forms state of solid-dissolution and grows bigger and bigger so as to form some island-shape structures along different directions [32]. When neighboring two
islands butting and combining, the bridge forms between two islands and this formation process shows liquid behavior so as to decrease the surface energy. If the surface energy is not relative with the growth direction of the crystal, it will decrease the surface area to the least degree so that the circle-shape crystal structures form with continuous combination of the islands. The concentration of the SnO$_2$ produced by decomposition of SnO in the centre of the circle-shape crystal structures is relatively high so that SnO$_2$ begins to nucleate and continuous dissolution of SnO$_2$ in the Sn-Au alloy results in a supersaturated solution. Ultimately, the SnO$_2$ nanostructure grows out by precipitation of SnO$_2$ from the supersaturated droplets. So the SnO$_2$ Plate-shape nanostructures in Fig. 1 can form.

The growth mechanism of SnO$_2$ Chrysanthemum-shape nanostructures is similar with that of SnO$_2$ Plate-shape nanostructures. The different distance of the sample away from the source could lead to the different temperature of substrates, which is one of the main reason causing different synthesized morphologies of SnO$_2$ nanostructures. Naturally, the different supersaturating degree of alloying droplets plays an important role in the formation of different nanostructures due to different substrate’s temperatures [33]. At the Substrate 2, the temperature is relatively low comparing with that of Substrate 1, so the supersaturating degree is relatively high. More and more atomics connect with each other so that big multi-crystal nuclear form. After that, atomics evaporated grow selectively along optimized growth directions so that the SnO$_2$ Chrysanthemum-shape nanostructures shown in Fig. 2 can be formed.

4. CONCLUSION

Two new SnO$_2$ nanostructures, Plate-shape nanostructure and Chrysanthemum-shape nanostructure, have been synthesized on single silicon substrates by Au-Ag alloy assisted carbothermal evaporation of SnO$_2$ and active carbon powders (thermal CVD). The peak at 343 nm is the band-to-band emission peak and the corresponding band gap of SnO$_2$ is calculated by using an accurate full-potential linearized augmented planewave method. The new peak at 416 nm in the measured photoluminescence spectra of SnO$_2$ Plate-shape nanostructures is observed, implying that more luminescence centers exist in SnO$_2$ Plate-shape nanostructures due to nanocrystals and defects.

ACKNOWLEDGEMENTS

This work was supported by National Natural Science Foundation of China (50902097), Three Industry Basic Research Emphasis Project of Shenzhen (JC201104210013A), None Three Industry Basic Research Common Project of Shenzhen (JC201105170694A), Open Project of Shenzhen Key Laboratory of Micro-nano Photonic Information Technology (MN2011107), Guangdong Natural Science Foundation of China (9451806001002303), and Foundation for Distinguished Young Talents in Higher Education of Guang dong China (LYM08088). In addition, Dr. I. L. Li is grateful for the financial support from NSFC(10704050) and Fok Ying Tung Educational Foundation (114009). State key laboratory of optoelectronic materials and technologies, School of Physics Science & Engineering, Zhongshan University, Guangzhou 510275, China.

REFERENCES