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Abstract

Low-frequency time-harmonic �exural-gravitational waves of a small am-
plitude in a �oating elastic plate are considered. Straight-line obstacles in
the plate are periodically spaced in the horizontal coordinate with an equal
separation. Propagation of �exural-gravitational waves through the plate is
analytically studied under a thin �uid layer approximation. We are concerned
with stopping and passing frequency bands, of which the boundaries are found.

1 Introduction

In [1] under a shallow-water approximation transmission of �exural-gravitational
waves through a periodic �oating elastic plate was investigated. The plate simu-
lated an ice cover of ocean shelf with two kinds of straight-line obstacles: areas of
broken ice and ice hummocks. The paper [2] was devoted to scattering of �exural-
gravitational waves by periodically spaced arrays of straight-line narrow cracks in
ice sheets modelled by a periodic elastic plate �oating on water of �nite depth. In [3]
wave propagation in periodic plates and cylindrical shells composed by alternating
segments of di�erent elastic materials was considered.
A mathematically similar problem of transmission of waves along a periodically
weighted strings and beams was studied in [4]. It was pointed out that two oncoming
decaying waves can transfer energy. An elastically supported string with point-wise
defects and waves in it were considered in [5]. Flexural waves in an elastic beam
with periodic system of weights were explored in [6].
Note that the study and development of periodic models such as strings, rods, mass-
springs, beams, plates, shells have increasing attention due to a wealth of di�erent
engineering applications, e.g., vibration protection, noise isolation, railway track
dynamics simulation etc.
In our previous work [7] we investigated transmission of �exural-gravitational waves
through multiple straight-line obstacles in a �oating elastic plate. In the case of
equidistant obstacles complete transmission of an incident wave was obtained at
certain frequencies. The plot of energy transmission coe�cient against the separa-
tion between the obstacles is featured by consecutive peaks reaching 1 in limited
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Figure 1: Energy transmission coe�cient T of an incident �exural-gravitational
wave against the fractional separation x0/λ between the movable clamps. N = 7.
A thin �uid layer approximation. The horizontal line displays energy transmission
coe�cient T1 in a case of one movable clamp. Hereafter, we use the values of
parameters taken from the work [8]. In particular, the plate density ρ = 917 kg/m3,
the Young's module E = 4.2 · 109 N/m2, the Poisson ratio ν = 0.3, the thickness of
the plate h = 1.6 m, the thickness of the �uid layer h1 = 50 m, the density of the
�uid ρ1 = 1000 kg/m3. Wave frequency is ω = 1.2 s−1, wave length is λ = 139.4 m.
Vertical dashed lines show the boundaries of the stopping bands. The stopping
bands are shaded.

intervals (Fig. 1). The number of the consecutive peaks is equal to N − 1, where
N is the number of obstacles. As the number of obstacles increases, the peaks �ll
in these intervals. Intervals with the peaks alternated with another intervals inside
which the energy transmission coe�cient is closed to zero. We suggested in [7] that
in the case of a periodic array of obstacles passing and stopping bands would occur.
The present paper is devoted to this case and organized as follows. We begin with
the study of �exural-gravitational waves in an elastic periodically supported plate
�oating on a thin �uid layer. After that, we consider �exural waves in an elastic
periodically supported beam and compare obtained results with each other.

2 An elastic periodically supported �oating plate

A thin elastic plate �oats on the surface of an ideal incompressible �uid of the
thickness h1 and the density ρ1. A periodic array of movable clamps at lines xn = x0n
(n ∈ Z) divides the plate into in�nite number of identical strips of the width x0.
Con�guration of the model is shown in Fig. 2. We deal with time-harmonic �exural-
gravitational waves of a small amplitude propagating at a low frequency ω. Time-
dependent factor e−iωτ is omitted everywhere. The �uid layer is thin in comparison
to all wave lengths.
The velocity potential Φ(x, z) is developed as a series in z + h1

Φ(x, z) = α0(x) + α1(x)(z + h1) + α2(x)(z + h1)2 + . . . , −h1 < z < 0. (1)
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Figure 2: Cross-section of a periodic elastic plate �oating on a thin �uid layer.

From the Laplace equation 4Φ(x, z) = 0, where 4 = ∂2

∂x2
+ ∂2

∂z2
, we derive

α2k(x) =
(−1)k

(2k)!

∂2kα0(x)

∂x2k
, α2k+1(x) =

(−1)k

(2k + 1)!

∂2kα1(x)

∂x2k
, k = 1, 2, . . . (2)

In particular, we have

α2(x) = −α′′0(x)/2. (3)

From the boundary condition ∂Φ(x,−h1)
∂z

= 0 on the rigid bottom z = −h1 we obtain

α1(x) = 0. (4)

With account of the terms of the �rst order of smallness inclusively, in view of (4),
we have

Φ(x, 0) = α0(x). (5)

From the kinematic boundary condition ∂Φ(x,0)
∂z

= −iωζ(x) at the interface z = 0, in
view of (3), we get

ζ(x) = − i
ω
α′′0(x)h1, (6)

where ζ(x) is the elevation of the plate. The dynamic boundary condition

Dζ ′′′′(x) + (ρ1g − ρhω2)ζ(x)− iωρ1Φ(x, 0) = 0, x 6= xn

at the interface z = 0 gives

D
d6α0(x)

dx6
+ (ρ1g − ρhω2)

d2α0(x)

dx2
+
ρ1ω

2

h1

α0(x) = 0, x 6= xn, (7)

where D is the �exural rigidity, ρ is the density, h is the thickness of the plate. Thus,
under a thin �uid layer approximation we will employ the equation (7) instead of
the Laplace equation and the boundary conditions at z = 0 and z = −h1. The
matching conditions are imposed at x = x0n (n ∈ Z).

lim
x→x+n

α0(x) = lim
x→x−n

α0(x), lim
x→x+n

α′0(x) = lim
x→x−n

α′0(x), lim
x→x+n

ζ(x) = lim
x→x−n

ζ(x),

lim
x→xn

ζ ′(x) = 0, lim
x→x+n

ζ ′′′(x) = lim
x→x−n

ζ ′′′(x).
(8)
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Let us consider the equation (7) on the interval (0, 2x0). According to the theorem
of Floquet [9], the general solution of the problem takes the form

α0(x) =



2∑
n=0

(
C+
n e

iλnx + C−n e
−iλnx

)
, x ∈ (0, x0),

2∑
n=0

(
C+
n e

iλn(x−x0) + C−n e
−iλn(x−x0)

)
eiϕ, x ∈ (x0, 2x0),

(9)

where λ0, λ1, λ2 are the roots of the dispersion equation

Dλ6 + (ρ1g − ρhω2)λ2 − ρ1ω
2

h1

= 0. (10)

λ0 is the positive root, λ1 and λ2 are two complex roots located in the upper half
plane (λ2 = −λ1). Satisfying the matching conditions at x = x0 leads to an inho-
mogeneous linear system of equations Pu = v, with a matrix P equals to

P =



1 1 1 0 0 0

0 0 0 λ0 λ1 λ2

−λ2
0 −λ2

1 −λ2
2 0 0 0

0 0 0 −iλ3
0 −iλ3

1 −iλ3
2

λ4
0 λ4

1 λ4
2 0 0 0

0 0 0 iλ5
0 iλ5

1 iλ5
2


. (11)

Variables u are introduced by the formulae

un = C+
n (eiϕ − eiλnx0) + C−n (eiϕ − e−iλnx0),

un+3 = C+
n (eiϕ − eiλnx0)− C−n (eiϕ − e−iλnx0), n = 0, 1, 2.

A column-vector v is determined by v = iω
H

(
0, 0, 0, 0, B

D
, 0
)t
. The �rst and second

equations of the system describe continuity of α0(x) and its �rst derivative α′0(x) at
x = x0. The third, forth and sixth equations show continuity of the elevation ζ(x)
and its �rst ζ ′(x) and third ζ ′′′(x) derivatives at x = x0, respectively. According to
the �rth equation, the jump of the second derivative ζ ′′(x) is non-zero. The quantity
B represents the bending moment at x = x0. Solution of the system is

u0 =
iωB

HD(λ2
0 − λ2

1)(λ2
0 − λ2

2)
, u1 =

iωB

HD(λ2
1 − λ2

0)(λ2
1 − λ2

2)
,

u2 =
iωB

HD(λ2
2 − λ2

0)(λ2
2 − λ2

1)
, u3 = u4 = u5 = 0.

(12)

Coe�cients C±0 , C
±
1 , C

±
2 are calculated by

C±0 =
iωBυ±0

2DH(λ2
0 − λ2

1)(λ2
0 − λ2

2)
, C±1 =

iωBυ±1
2DH(λ2

1 − λ2
0)(λ2

1 − λ2
2)
,

C±2 =
iωBυ±2

2DH(λ2
2 − λ2

0)(λ2
2 − λ2

1)
,

(13)
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Figure 3: Moduli |eiϕ| and |e−iϕ| against the fractional separation x0/λ between
the movable clamps. Wave frequency is ω = 1.2 s−1, wave length is λ = 139.4 m.
Vertical dashed lines show the boundaries of the stopping bands. The stopping
bands are shaded

with υ±n = 1/(eiϕ − e±iλnx0), n = 0, 1, 2. We set ζ ′(x) equal to zero at x = x0 and
derive a simple algebraic equation

υ+
0 − υ−0

(λ2
0 − λ2

1)(λ2
0 − λ2

2)
λ3

0 +
υ+

1 − υ−1
(λ2

1 − λ2
0)(λ2

1 − λ2
2)
λ3

1 +
υ+

2 − υ−2
(λ2

2 − λ2
0)(λ2

2 − λ2
1)
λ3

2 = 0. (14)

Let us consider the cases a) |eiϕ| = 1 and b) |eiϕ| 6= 1 separately. In the case a) the
solution α0(x) undergoes a change in phase ϕ across two neighboring cells of the
width x0 and represents a wave propagating without attenuation throughout the
periodic array of the movable clamps. The phase velocity of the wave is directed to
the side of increasing or decreasing of coordinate x. The frequency is said to lie in
a passing band. Under condition b) relation α0(x + x0) = eiϕα0(x) indicates that
amplitude of the wave process exponentially grows or decays when passing from one
cell to another. The frequency is said to lie in a stopping band.
It can be shown straightforwardly that the boundaries of passing and stopping bands
satisfy the equations

λ3
0(λ2

1 − λ2
2) ctg

λ0x0

2
+ λ3

1(λ2
2 − λ2

0) ctg
λ1x0

2
+ λ3

2(λ2
0 − λ2

1) ctg
λ2x0

2
= 0,

λ3
0(λ2

1 − λ2
2) tg

λ0x0

2
+ λ3

1(λ2
2 − λ2

0) tg
λ1x0

2
+ λ3

2(λ2
0 − λ2

1) tg
λ2x0

2
= 0,

sin(λ0x0) = 0.

(15)

If eiϕ is a solution of the equation (14) then so is e−iϕ. It means that waves have
no preference in the direction in which they propagate. Dependencies of |e±iϕ| from
the fractional separation x0/λ between the movable clamps are shown in Fig. 3.

3 An elastic periodically supported beam

We also concern with an in�nitely long elastic beam with a periodic array of movable
clamps at the points xn = x0n, n ∈ Z. The wave motion of the beam is governed
by the equation

Dζ ′′′′(x)− ρhω2ζ(x) = 0, x 6= xn, (16)
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Figure 4: Moduli |eiϕ| and |e−iϕ| against the fractional separation x0/λ between
the movable clamps. Wave frequency is ω = 1.2 s−1, wave length is λ = 184.6 m.
Vertical dashed lines show the boundaries of the stopping bands. The stopping
bands are shaded.

where ζ(x) is the elevation of the beam, D is the �exural rigidity, ρ is the density, h
is the thickness, ω is a wave angular frequency. The elevation ζ(x) must satisfy the
matching conditions at the points x = xn

lim
x→x+n

ζ(x) = lim
x→x−n

ζ(x), lim
x→x+n

ζ ′′′(x) = lim
x→x−n

ζ ′′′(x), lim
x→xn

ζ ′(x) = 0. (17)

The periodicity of the con�guration allows us to consider the equation (16) on the
interval (0, 2x0) and in accordance with the Floquet theorem write the general so-
lution in the form

ζ(x) =

{
C1e

ikx + C2e
−ikx + αe−kx + βekx, x ∈ (0, x0),

(C1e
ik(x−x0) + C2e

−ik(x−x0) + αe−k(x−x0) + βek(x−x0))eiϕ, x ∈ (x0, 2x0),

(18)

where k is the arithmetical root of the equation Dk4 − ρhω2 = 0. Unknown coe�-
cients C1, C2, α and β must satisfy the inhomogeneous linear system of equations

C1(eiϕ − eikx0) + C2(eiϕ − e−ikx0) + α(eiϕ − e−kx0) + β(eiϕ − ekx0) = 0,

C1(eiϕ − eikx0)− C2(eiϕ − e−ikx0) + iα(eiϕ − e−kx0)− iβ(eiϕ − ekx0) = 0,

C1(eiϕ − eikx0) + C2(eiϕ − e−ikx0)− α(eiϕ − e−kx0)− β(eiϕ − ekx0) =
B

D
,

C1(eiϕ − eikx0)− C2(eiϕ − e−ikx0)− iα(eiϕ − e−kx0) + iβ(eiϕ − ekx0) = 0

(19)

to which we arrive from the matching conditions (17). The solution of the system is

C1 =
B

4D(eiϕ − eikx0)
, C2 =

B

4D(eiϕ − e−ikx0)
,

α = − B

4D(eiϕ − e−kx0)
, β = − B

4D(eiϕ − ekx0)
.

(20)

The derivative ζ ′(x) must be equated to zero at x = x0 to �nd the characteristic
equation with respect to the unknown factor eiϕ

eikx0

eiϕ − eikx0
− e−ikx0

eiϕ − e−ikx0
− i e−kx0

eiϕ − e−kx0
+ i

ekx0

eiϕ − ekx0
= 0. (21)
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Figure 5: Passing and stopping bands in relation to the angular frequency ω and
the fractional separation x0/λ between the movable clamps. Stopping bands are
shaded. λ is a wave length. a) An elastic periodic �oating plate. b) An elastic
periodic beam.

The boundaries of passing and stopping bands are described by equations

tg
kx0

2
± th

kx0

2
= 0, sin(kx0) = 0. (22)

Fig. 4 shows |e±iϕ| versus the fractional separation x0/λ between the movable clamps.
Fig. 5 demonstrates the passing and stopping bands in relation to the frequency ω
and the fractional separation x0/λ between the movable clamps. The left subplot
shows the curves obtained in the case of a �oating elastic plate, the right subplot �
in the case of an elastic beam. It is seen that the presence of a �uid layer markedly
a�ects on the propagation of �exural waves. Stopping bands are narrowed. At very
low frequencies they vanish. On the other hand, passing bands are broaden. Ap-
parently this result has the following physical explanation. A �uid layer represents
an additional channel of energy transfer, which facilitates the transmission of waves.
Another feature is that the width of the �rst passing band is larger then others and
is equal to a half-wave length.

4 Conclusion

Calculations performed by formulae (15) show that the maxima of energy transmis-
sion coe�cient in a case of a �nite number of movable clamps are reached within
passing bands, and the minima � within stopping bands (Fig. 1). Since the maxima
of transmission of an incident wave are accompanied by considerable internal e�orts
that are developed in all movable clamps and also by great amplitudes of the plate
elevation, the knowledge of the boundaries and location of stopping and passing
bands is of practical value.
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