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Abstract

Low-frequency time-harmonic flexural-gravitational waves of a small am-
plitude in a floating elastic plate are considered. Straight-line obstacles in
the plate are periodically spaced in the horizontal coordinate with an equal
separation. Propagation of flexural-gravitational waves through the plate is
analytically studied under a thin fluid layer approximation. We are concerned
with stopping and passing frequency bands, of which the boundaries are found.

1 Introduction

In [1] under a shallow-water approximation transmission of flexural-gravitational
waves through a periodic floating elastic plate was investigated. The plate simu-
lated an ice cover of ocean shelf with two kinds of straight-line obstacles: areas of
broken ice and ice hummocks. The paper [2] was devoted to scattering of flexural-
gravitational waves by periodically spaced arrays of straight-line narrow cracks in
ice sheets modelled by a periodic elastic plate floating on water of finite depth. In [3]
wave propagation in periodic plates and cylindrical shells composed by alternating
segments of different elastic materials was considered.

A mathematically similar problem of transmission of waves along a periodically
weighted strings and beams was studied in [4]. It was pointed out that two oncoming
decaying waves can transfer energy. An elastically supported string with point-wise
defects and waves in it were considered in [5]. Flexural waves in an elastic beam
with periodic system of weights were explored in [6].

Note that the study and development of periodic models such as strings, rods, mass-
springs, beams, plates, shells have increasing attention due to a wealth of different
engineering applications, e.g., vibration protection, noise isolation, railway track
dynamics simulation etc.

In our previous work [7| we investigated transmission of flexural-gravitational waves
through multiple straight-line obstacles in a floating elastic plate. In the case of
equidistant obstacles complete transmission of an incident wave was obtained at
certain frequencies. The plot of energy transmission coefficient against the separa-
tion between the obstacles is featured by consecutive peaks reaching 1 in limited
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Figure 1: Energy transmission coefficient 7" of an incident flexural-gravitational
wave against the fractional separation zo/A\ between the movable clamps. N = 7.
A thin fluid layer approximation. The horizontal line displays energy transmission
coefficient 77 in a case of one movable clamp. Hereafter, we use the values of
parameters taken from the work [8]. In particular, the plate density p = 917 kg/m?,
the Young’s module £ = 4.2 - 10° N/m?, the Poisson ratio v = 0.3, the thickness of
the plate h = 1.6 m, the thickness of the fluid layer h; = 50 m, the density of the
fluid p; = 1000 kg/m?. Wave frequency is w = 1.2 s71, wave length is A = 139.4 m.
Vertical dashed lines show the boundaries of the stopping bands. The stopping
bands are shaded.

intervals (Fig. 1). The number of the consecutive peaks is equal to N — 1, where
N is the number of obstacles. As the number of obstacles increases, the peaks fill
in these intervals. Intervals with the peaks alternated with another intervals inside
which the energy transmission coefficient is closed to zero. We suggested in 7] that
in the case of a periodic array of obstacles passing and stopping bands would occur.
The present paper is devoted to this case and organized as follows. We begin with
the study of flexural-gravitational waves in an elastic periodically supported plate
floating on a thin fluid layer. After that, we consider flexural waves in an elastic
periodically supported beam and compare obtained results with each other.

2 An elastic periodically supported floating plate

A thin elastic plate floats on the surface of an ideal incompressible fluid of the
thickness h; and the density p;. A periodic array of movable clamps at lines x,, = xgn
(n € Z) divides the plate into infinite number of identical strips of the width .
Configuration of the model is shown in Fig. 2. We deal with time-harmonic flexural-
gravitational waves of a small amplitude propagating at a low frequency w. Time-
dependent factor e=™7 is omitted everywhere. The fluid layer is thin in comparison
to all wave lengths.

The velocity potential ®(z, z) is developed as a series in z + hy
®(z,2) = ag(z) + a1 (z) (2 + hy) + aa(z) (2 + hy)* + ..., —hy < 2 < 0. (1)
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Figure 2: Cross-section of a periodic elastic plate floating on a thin fluid layer.

From the Laplace equation A®(x, z) = 0, where A = % + g—;, we derive

(—1)* 0% () (—=1)F 0% ay(x)

g () = @ o Qopi1(x) = ST k=1,2,... (2)
In particular, we have
az(z) = —ag()/2. (3)
From the boundary condition w = 0 on the rigid bottom z = —h; we obtain
ap(z) = 0. (4)

With account of the terms of the first order of smallness inclusively, in view of (4),
we have

D (z,0) = a(x). (5)
From the kinematic boundary condition acbéz’o) = —iw((z) at the interface z = 0, in
view of (3), we get

i
((x) = _;O‘g(x)hh (6)

where ((x) is the elevation of the plate. The dynamic boundary condition

D" (z) + (prg — phw?)((z) — iwp1®(2,0) = 0, = #
at the interface z = 0 gives
d®ap () ag(z)  prw?
dxb dx? hy
where D is the flexural rigidity, p is the density, h is the thickness of the plate. Thus,
under a thin fluid layer approximation we will employ the equation (7) instead of

the Laplace equation and the boundary conditions at z = 0 and z = —h;. The
matching conditions are imposed at x = xon (n € Z).

D

+ (Plg - phWQ) 050(1;> =0, x # zy, (7)

lim ap(z) = lim ap(x), lim ap(z) = lim ag(x), lim ((z) = lim ((z),

T—T, T, T—T, T—T, T—T, T—T, (8)
lim ¢'(z) =0, lim ¢"'(z) = lim ¢"(z).
T—Tn =Tt =T,
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Let us consider the equation (7) on the interval (0,2z(). According to the theorem
of Floquet [9], the general solution of the problem takes the form

2
Z (C,J[ei)‘"x + C’;e_i’\"m) , € (0, ),
n=0

ap(z) = 9

(C’,fe“‘"(x’z") + C’e’i’\”(“m)) e, x € (w9, 210),

n
n=0

where Ay, A1, Ay are the roots of the dispersion equation
o prw?

ha

DX° + (p1g — phw?)\? = 0. (10)

Ao is the positive root, Ay and Ay are two complex roots located in the upper half
plane (A = —\;). Satisfying the matching conditions at x = z leads to an inho-
mogeneous linear system of equations Pu = v, with a matrix P equals to

1 1 1 0 0 0
0 0 0 X AN
0 0 0 (1)
0 0 0 —iAg —IA] —i)
AdA A0 0 0
0 0 0 QN iN A

Variables u are introduced by the formulae

Uy = C’;—(eis& _ ei)\nxo) + Cn—(eigo o 6_1')\”1;0)’

Upyz = OF (7 — ™) — O (e — 700 ' = 0,1, 2.

A column-vector v is determined by v = % (0, 0,0,0, %, O)t. The first and second
equations of the system describe continuity of ap(x) and its first derivative o (z) at
x = x9. The third, forth and sixth equations show continuity of the elevation ((z)
and its first ('(x) and third ("'(z) derivatives at x = x¢, respectively. According to
the firth equation, the jump of the second derivative ¢”(x) is non-zero. The quantity
B represents the bending moment at x = xy. Solution of the system is

wB wB

Uy = , Uy = )

T HDOG ) T HDOT - )7 - A3 )
B wB s — s — 0
U HED - R A TR
Coefficients Ci, C, C§ are calculated by

ok _ iwBUy oF _ iwBuf

" 2DH(-A)(AG-A) T 2DHOF - (M A3 (13)
iwBuvF

CZi = 2 /12 2\’
2DH (A3 — A§)(A5 — A7)
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Figure 3: Moduli |e’?| and |e~*| against the fractional separation zo/\ between
the movable clamps. Wave frequency is w = 1.2 s7!, wave length is A = 139.4 m.
Vertical dashed lines show the boundaries of the stopping bands. The stopping
bands are shaded

with vF = 1/(e® — eFirn20) n = 0,1,2. We set ('(z) equal to zero at x = x and
derive a simple algebraic equation

+ —
Uy — Uy

(A3 = A)(A3 = AD)

+ —
U — U

(AT = A (AT = A9)

+ —_
Vg — Ug

(A5 = AD(AG = A3)

o+ AT+ Ay =0. (14)
Let us consider the cases a) |¢*?| = 1 and b) || # 1 separately. In the case a) the
solution agp(x) undergoes a change in phase ¢ across two neighboring cells of the
width zy and represents a wave propagating without attenuation throughout the
periodic array of the movable clamps. The phase velocity of the wave is directed to
the side of increasing or decreasing of coordinate x. The frequency is said to lie in
a passing band. Under condition b) relation ag(z + z9) = e“?ag(x) indicates that
amplitude of the wave process exponentially grows or decays when passing from one
cell to another. The frequency is said to lie in a stopping band.

It can be shown straightforwardly that the boundaries of passing and stopping bands
satisfy the equations

A1Zo

. A .
NSO = 23) ot 252 + XA — 2t

Ao M
X0 = 49 12 250 4 A0 3 1 210 4 A3 M) g

2
sin(Agxo) = 0.

If €% is a solution of the equation (14) then so is e~%. It means that waves have
no preference in the direction in which they propagate. Dependencies of |e**?| from
the fractional separation z/\ between the movable clamps are shown in Fig. 3.

3 An elastic periodically supported beam

We also concern with an infinitely long elastic beam with a periodic array of movable
clamps at the points z, = xgn, n € Z. The wave motion of the beam is governed
by the equation

D" (z) — phw?¢(z) = 0,7 # 0, (16)
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Figure 4: Moduli |¢*?| and |e™*?| against the fractional separation zy/\ between
the movable clamps. Wave frequency is w = 1.2 s7!, wave length is A = 184.6 m.
Vertical dashed lines show the boundaries of the stopping bands. The stopping
bands are shaded.

where ((z) is the elevation of the beam, D is the flexural rigidity, p is the density, h
is the thickness, w is a wave angular frequency. The elevation ((x) must satisfy the
matching conditions at the points z = z,,

lim, C(z) = lim ((z), lim ¢"(x) = lim ¢"(x), mlgn ('(z) =0. (17)

m—m:n T—Tq, :c—)xn T—Tq,

The periodicity of the configuration allows us to consider the equation (16) on the
interval (0,2x) and in accordance with the Floquet theorem write the general so-
lution in the form

() = Cre™ + Che ™ 4 ae™ + Bek* x € (0, x0),
(Cleik(xf:po) + 02€7ik(x7x0) + Oéefk(mfxo) + Bek(acf:z:o))eiap7 = (xO’ 2%0),
(18)

where k is the arithmetical root of the equation Dk* — phw? = 0. Unknown coeffi-
cients C', Cy, o and [ must satisfy the inhomogeneous linear system of equations

/ Cl(€z¢ o ikro) + O (61'4,0 zkmo) + Oé( e—kxo) 4 B(eﬂp . ekxo) — 07
( o zkgco) ( zkxo) + zoz( e—lmg) o zﬂ(ew o ekxo) — 0’
, . B (19
Cl(eup o zkmo) 4 CQ( fzkxo) ( efkmo) _ B(GW) . ekxo) _ 57 ( )
\ Cl(eicp . zkmo) C ( zkzo) ( o —kzo) 4 iﬁ(eig& . ekzo) =0
to which we arrive from the matching conditions (17). The solution of the system is
B B
C, = . . Cy = 4 4
' 4D (et — ek 27 4D(eiv — e=ikwo)’
(20)
B B
o= — . , [B=-

4D(et — e~kwo) 4D(ete — eho)’

The derivative ('(z) must be equated to zero at x = x( to find the characteristic
equation with respect to the unknown factor e®

ikxo e—ikmo e—kmo ekzo

€ . .
, —— — — —— — — +i— = 0. (21)
e — ezkzo el — 67’Lk‘x0 ey — efka:o ety — ekzo
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Figure 5: Passing and stopping bands in relation to the angular frequency w and
the fractional separation zp/\ between the movable clamps. Stopping bands are
shaded. A is a wave length. a) An elastic periodic floating plate. b) An elastic
periodic beam.

The boundaries of passing and stopping bands are described by equations

k k
tg % + th % =0, sin(kzg) =0. (22)

Fig. 4 shows |e**| versus the fractional separation o/ between the movable clamps.
Fig. 5 demonstrates the passing and stopping bands in relation to the frequency w
and the fractional separation z,/A\ between the movable clamps. The left subplot
shows the curves obtained in the case of a floating elastic plate, the right subplot —
in the case of an elastic beam. It is seen that the presence of a fluid layer markedly
affects on the propagation of flexural waves. Stopping bands are narrowed. At very
low frequencies they vanish. On the other hand, passing bands are broaden. Ap-
parently this result has the following physical explanation. A fluid layer represents
an additional channel of energy transfer, which facilitates the transmission of waves.
Another feature is that the width of the first passing band is larger then others and
is equal to a half-wave length.

4 Conclusion

Calculations performed by formulae (15) show that the maxima of energy transmis-
sion coefficient in a case of a finite number of movable clamps are reached within
passing bands, and the minima — within stopping bands (Fig. 1). Since the maxima
of transmission of an incident wave are accompanied by considerable internal efforts
that are developed in all movable clamps and also by great amplitudes of the plate
elevation, the knowledge of the boundaries and location of stopping and passing
bands is of practical value.
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