: " ", . - ., . .-. ..


, Web of Science / Scopus, ( 2011 ):

 

1. Poluektov, M., Freidin, A.B., Figiel, L. (2018) Modelling stress-affected chemical reactions in non-linear viscoelastic solids with application to lithiation reaction in spherical Si particles International Journal of Engineering Science, 128:44-62. DOI: 10.1016/j.ijengsci.2018.03.007 (link)

2. Freidin, A.B.,Sharipova, L.L. (2018) Forbidden strains and stresses in mechanochemistry of chemical reaction fronts In: Generalized Models and Non-classical Approaches in Complex Materials 1 P. 335—348 (Advanced Structured Materials Vol. 89, Springer) DOI: 10.1007/978-3-319-72440-9_17 (link)

3. Morozov, S. Khakalo, V. Balobanov, A.B. Freidin, W.H. Muller, and J. Niiranen (2018) Modeling Chemical Reaction Front Propagation by Using an Isogeometric Analysis. Technische Mechanik, 38(1):73 – 90. DOI: 10.24352/UB.OVGU-2018-007 (link)

4. Morozov, A. Freidin, W.H. Müller, T. Hauck, I. Schmadlak (2018) Modeling reaction front propagation of intermetallic compounds by using isogeometric analysis. 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Toulouse, 2018, pp. 1-10. DOI: 10.1109/EuroSimE.2018.8369860 (link)

5. A. Grib, Yu. V. Pavlov (2018) Back reaction of the gravitational radiation on the metric of spacetime. International Journal of Modern Physics D Vol. 27 1850071 (9 pages). DOI: 10.1142/S0218271818500712 (link)

6. Yu. V. Pavlov, O. B. Zaslavskii (2018) Number of revolutions of a particle around a black hole: Is it infinite or finite? General Relativity and Gravitation Vol. 50: 14 (19 pages). DOI: 10.1007/s10714-017-2333-5 (link)

7. E. L. Aero, A. N. Bulygin, Yu. V. Pavlov (2018) The solutions of nonlinear equations of flat deformation of the crystal media allowing martensitic transformations: complex representation for macrofield equations. Material Physics and Mechanics 35(1):1–9. DOI: 10.18720/MPM.3512018_1 (link)

8. E. L. Aero, A. N. Bulygin, Yu. V. Pavlov (2018) Exact analytical solutions for nonautonomic nonlinear Klein-Fock-Gordon equation. In ''Advances in Mechanics of Microstructured Media and Structures''. Editors: F. Dell'Isola, V.A.Eremeyev, A.Porubov. Springer International Publishing, pp. 21-33. DOI: 10.1007/978-3-319-73694-5_2 (link)

9. N. Bulygin, Yu. V. Pavlov (2018) Complex representation of general solution of equations for nonlinear model of plane deformation of crystal media with a complex lattice. Proceedings of the International Conference ''Days on Diffraction 2018" pp. 49-53. (link)

10. Boulbitch, A. L. Korzhenevskii (2018) Shape transformation of a wake following the process zone at the tip of a propagating crack. Europhysics Letters 123, 16003 DOI 10.1209/0295-5075/123/16003 (link)

11. A.V. Porubov, A.M. Krivtsov, A. E. Osokina (2018) Two-dimensional waves in extended square lattice. International Journal of Non-Linear Mechanics v. 99, pp. 281-287. DOI: 10.1016/j.ijnonlinmec.2017.12.008 (link)

12. A.V. Porubov (2018) Two-dimensional modeling of diatomic lattice. Advanced Structured Materials v.87, pp. 263-272. DOI: 10.1007/978-3-319-73694-5_15 (link)

13. Erofeev, V.I.Pavlov, I.S.Porubov, A.V.Vasiliev, A.A., (2018) Dispersion properties of a closed-packed lattice consisting of round particles, Advanced Structured Materials, v.90, pp. 101-117. DOI: 10.1007/978-3-319-77504-3_5 (link)

14. Porubov, A.V.Osokina, A.E.Michelitsch, T.M., (2018) Nonlocal approach to square lattice dynamics. Advanced Structured Materials, 89, pp. 641-654. DOI: 10.1007/978-3-319-72440-9_34 (link)

15. F. dell’Isola, V.A. Eremeyev, A.V. Porubov (2018) Preface. Advances in Mechanics of Microstructured Media and Structures, Springer , Ser. Advanced Structural Materials, vol. 87, pp. v-vi (2018) (link)

16. A.V. Porubov, A.E. Osokina, T.M. Michelitch (2018) Operator approach to square lattice nonlinear dynamics. Material Physics and Mechanics, 35(1), pp. 139-144. DOI: 10.18720/MPM.3512018_16 (link)

17. D.A. Indeitsev, A.V. Porubov, D.Yu. Skubov, A.V. Lukin, I.A. Popov, D.S. Vavilov (2018) On the influence of the microstructure on the stress-strain state of material. Material Physics and Mechanics, 35(1), pp. 66-70. DOI: 10.18720/MPM.3512018_9 (link)

18. A.V. Porubov, R.S. Bondarenkov, D. Bouche, A.L. Fradkov (2018) Two-step shock waves propagation for isothermal Euler equations. Applied Mathematics and Computation 332 pp. 160–166. DOI: 10.1016/j.amc.2018.03.055 (link)

19. A.V. Porubov, R.S. Bondarenkov, D. Bouche, A.L. Fradkov (2018) Control of nonlinear shock waves propagation for isothermal Euler equations. ZAMM- Journal of applied mathematics and mechanics: Zeitschrift fur angewandte Mathematik und Mechanik, 98, 3, pp. 448-453. DOI: 10.1002/zamm.201700217 (link)

20. A.V. Porubov, I. D. Antonov, D.A. Indeitsev, A.L. Fradkov (2018) Mechanical system allowing distributive control with feedback. Mechanics Research Communications, 93, pp. 124-127 DOI: 10.1016/j.mechrescom.2017.07.014 (link)

21. N. Bessonova, A. Beuterbc, S. Trofimchukd, V. Volpert (2018) Estimate of the travelling wave speed for an integro-differential equation, Applied Mathematics Letters. 88, pp. 103-110. DOI: 10.1016/j.aml.2018.07.037 (link)

22. G.Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk, V. Volpert (2018) Interplay between reaction and diffusion processes in governing the dynamics of virus infections. Journal of Theoretical Biology, 457, pp. 221-236. DOI: 10.1016/j.jtbi.2018.08.036 (link)

23. N. Bessonov, A. Beuter, S. Trofmchuk, V. Volpert (2018) Estimate of the travelling wave speed for an integro-differential equation. Applied Mathematics Letters , 88:103-110. DOI : 10.1016/j.aml.2018.07.037 (link)

24. N. Bessonov, N. Reinberg, M. Banerjee, V. Volpert (2018) The Origin of Species by Means of Mathematical Modelling. Acta Biotheoretica 66(4):333–344. DOI: 10.1007/s10441-018-9328-9 (link)

25. I.D. Antonov, A.V. Porubov, N.M. Bessonov (2018) Two-dimensional model for hydraulic fracturing with foams. Materials Physics and Mechanics 40, pp. 37-46. DOI: 10.18720/MPM.4012018_5 (link)

26. A.A. Chevrychkina, A.D. Evstifeev, G.A. Volkov (2018) Analysis of the Strength Characteristics of Acrylonitrile–Butadiene–Styrene Plastic under Dynamic Loading. Technical Physics 63(3):381–384. DOI: 10.1134/S1063784218030064 (link)

27. K. Abramyan, N.M. Bessonov, L.V. Mirantsev, A.A. Chevrychkina (2018) Equilibrium structures and flows of polar and nonpolar liquids in different carbon nanotubes. The European Physical Journal B, 91(3):48. DOI: 10.1140/epjb/e2018-80656-1 (link)

28. A.A. Alhimenko, A.K. Belyaev, A.I. Grishchenko, A.S. Semenov, D.A. Tretyakov, V.A. Polyanskiy, Yu.A. Yakovlev (2018) Propagation of acoustic waves during the control of hydrogen-induced destruction of metals by the acoustoelastic effect. Days on Diffraction (DD), St.Petersburg, Russia, 2018, pp.11-16. DOI: 10.1109/DD.2018.8553151 (link)

29. A.K. Belyaev, V.A. Polyanskiy (2018) Some approaches to harmonic wave propagation in elastic solids with random microstructure. Days on Diffraction (DD), St.Petersburg, Russia, 2018, pp. 38-43. DOI: 10.1109/DD.2018.8553491 (link)

30. Polyanskiy V.A., Belyaev A.K., Tretyakov D.A, Yakovlev Yu.A., Polyanskiy A.M. (2018) Averaged equations for bi-continuum material in the long-wavelength approximation. Days on Diffraction (DD), St.Petersburg, Russia, 2018, pp. 245-250. doi: 10.1109/DD.2018.8553499 (link

31. Belyaev AK, Fedotov AV, Irschik H, Nader M, Polyanskiy VA, Smirnova NA. (2018) Experimental study of local and modal approaches to active vibration control of elastic systems. Struct Control Health Monit. 25(2):1545-2255. DOI:10.1002/stc.2105 (link)

32. Konopel’ko, L. A., Polyanskii, A. M., Polyanskii, V. A., Yakovlev, Yu. A. (2018) New Metrological Support for Measurements of the Concentration of Hydrogen in Solid Samples. Measurement Techniques 60(12):1222–1227. DOI:10.1007/s11018-018-1343-3 (link)

33. Polyanskiy, A. M., Polyanskiy, V. A., Belyaev, A. K., & Yakovlev, Y. A. (2018) Relation of elastic properties, yield stress and ultimate strength of polycrystalline metals to their melting and evaporation parameters with account for nano and micro structure. Acta Mechanica, 229(12):4863–4873 DOI:10.1007/s00707-018-2262-8 (link)

34. A.K. Belyaev V.A. Polyansky A.V. Porubov (2018) Nonlinear dynamics of hydrogen concentration in high strength and high entropy alloys. Continuum Mechanics and Thermodynamics, 1-13. DOI:10.1007/s00161-018-0734-7 (link)

35. Ivanova E. A. (2018) Thermal Effects by Means of Two-Component Cosserat Continuum // In: H. Altenbach, A.Öchsner (eds). Encyclopedia of Continuum Mechanics. – Springer Berlin Heidelberg DOI 10.1007/978-3-662-53605-6_66-1 (link)

36. Ivanova E. A., Vilchevskaya E. N. (2018) Truesdell's and Zhilin's Approaches, Derivation of Constitutive Equations // In: H. Altenbach, A. Öchsner (eds). Encyclopedia of Continuum Mechanics. – Springer Berlin Heidelberg DOI 10.1007/978-3-662-53605-6_58-1 (link)

37. Ivanova E. A., Vilchevskaya E. N. (2018) Zhilin's Method and its Modifications // In: H. Altenbach, A.Öchsner (eds). Encyclopedia of Continuum Mechanics. – Springer Berlin Heidelberg (in press) (link)

38. Altenbach H., Ivanova E. A. (2018) Zhilin, Pavel Andreevich // In: H. Altenbach, A. Öchsner (eds). Encyclopedia of Continuum Mechanics. – Springer Berlin Heidelberg (in press) (link)

39. Ivanova E. A. (2018) On the Use of the Continuum Mechanics Method for Describing Interactions in Discrete Systems with Rotational Degrees of Freedom. Journal of Elasticity. Published on-line 23-05-2018. DOI:10.1007/s10659-018-9676-3 (link)

40. Seyedkavoosi , E. Vilchevskaya , I. Sevostianov (2018) Randomly Oriented Cracks in a Transversely Isotropic Material. International Journal of Solids and Structures 150:222-229. doi: 10.1016/j.ijsolstr.2018.06.013 (link)

41. Elena N. Vilchevskaya, Wolfgang H. M¨uller (2018) Some remarks on recent developments in micropolar continuum theory. Journal of Physics Conference Series 991(1):012079, April 2018. DOI: 10.1088/1742-6596/991/1/012079 (link)

42. Müller W.H., Vilchevskaya E.N. (2018) Micropolar Theory with Production of Rotational Inertia: A Rational Mechanics Approach. In: Altenbach H., Pouget J., Rousseau M., Collet B., Michelitsch T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 1. Advanced Structured Materials, vol 89. Springer, Cham DOI: 10.1007/978-3-319-72440-9_30 (link)

43. Polina Grigoreva, Elena N. Vilchevskaya, Wolfgang H. M¨uller (2018) Modeling stress-affected chemical reactions in solids–A rational mechanics approach. In Advances in Mechanics of Microstructured Media and Structures, Francesco dell'Isola, Victor A. Eremeyev, Alexey V. Porubov (Eds). Series Advanced Structured Materials, Vol.87, Springer, Cham, 2018. 346p. ISBN 978-3-319-73694-5 DOI: 10.1007/978-3-319-73694-5_10 (link)

44. Bakharev F.L., Matveenko S.G., Nazarov S.A. (2018) Rectangular lattices of cylindrical quantum waveguides. I. Spectral problems in a finite cross. Algebra i analiz. 2017. 29(3):1–22 (English transl.: St. Petersburg Math. J. 2018. 29(3):423-437). DOI: 10.1090/spmj/1500 (link)

45. Chesnel L., Claeys X., Nazarov S.A. (2018) Small obstacle asymptotics for a 2D semi-linear convex problem. Applicable Analysis. 97(6):962-981. DOI:10.1080/00036811.2017.1295449 (link)

46. Kozlov V. A., Nazarov V. A., Zavorokhin G. (2018) A fractal graph model of capillary type systems. Complex Variables and Elliptic Equations. 63(7–8):1044–1068. DOI: 10.1080/17476933.2017.1349117 (link)

47. Nazarov S.A., Perez M.E. (2018) On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary. Revista Matem´atica Complutense. 31(1):1-62. DOI: 10.1007/s13163-017-0243-4 (link)

48. Nazarov S.A. (2018) Transmission of waves through a small aperture in the cross-wall in an acoustic waveguide. Sibirsk. Mat. Zh. 2018. 59(1):110–129 (English transl.: Siberian Math. J. 2018. 59(1):85-–101). DOI: 10.1134/S003744661801010X (link)

49. Nazarov S.A., Taskinen J. (2018) Singularities at the contact point of two kissing Neumann balls. J. of Differential Equations. 264:1521-1549. DOI: 10.1016/j.jde.2017.09.044 (link)

50. Nazarov S.A. (2018) Spectrum of a problem of elasticity theory in the union of several infinite layers. Russian J. of Mathematical Physics. 25(1):71–85. DOI: 10.1134/S1061920818010077 (link)

51. Bonnet-Ben Dhia A.-S., Chesnel L,. Nazarov S. A. (2018) Perfect transmission invisibility for waveguides with sound hard walls. J. Math. Pures Appl. 111(3):79–105. DOI: 10.1016/j.matpur.2017.07.020 (link)

52. Gomez D., Nazarov S.A., Perez E. (2018) Homogenization of Winkler–Steklov spectral conditions in three-dimensional linear elasticity. Z. Angew. Math. Phys. 69(2):35. DOI: 10.1007/s00033-018-0927-8 (link)

53. Chiado Piat V., Nazarov S.A. Ruotsalainen K. (2018) Spectral gaps and non-Bragg resonances in a water channel. Rend. Lincei Mat. Appl. 29:321–342. DOI: 10.4171/RLM/809 (link)

54. Nazarov S.A. (2018) Finite-dimensional approximations of the Steklov–Poincarґe operator for the Helmholtz equation in periodic waveguides. Probl. mat. analiz. N 93. Novosibirsk, 2018. P. 53–88 (English transl.: Journal of Math. Sci., 232(4):461–502). DOI: 10.1007/s10958-018-3890-1 (link)

55. Nazarov S.A., Taskinen J. (2018) Essential spectrum of a periodic waveguide with non- periodic perturbation. J. Math. Anal. Appl. 463:922-933. DOI: 10.1016/j.jmaa.2018.03.057 (link)

56. Kozlov V.A., Nazarov S. A. (2018) Waves and radiation conditions in a cuspidal sharpening of elastic bodies. Journal of Elasticity 132:103–140. DOI: 10.1007/s10659-017-9658-x (link)

57. Bunoiu R., Cardone G., Nazarov S.A. (2018) Scalar boundary value problems on junctions of thin rods and plates. II. Self-adjoint extensions and simulation models. ESAIM Math. Model. Numer. Anal. 52:481–508. DOI: 10.1051/m2an/2017047 (link)

58. Nazarov S.A. (2018) Asymptotics of the deflection of a cruciform junction of two narrow Kirchhoff plates. Zh. Vychisl. Mat. i Mat. Fiz. 2018. 58(7). P. - (English transl.: Comput. Math. and Math. Physics. 2018. 58(7):1150-1171). DOI: 10.1134/S0965542518070138 (link)

59. Nazarov S.A. (2018) Enhancement and smoothing near-threshold Wood anomaly in an acoustic waveguide. Acoustic journal 64(5):534-546 (English transl.: Acoustical Physics. 2018. 64(5):17–29). DOI: 10.1134/S106377101805007X (link)

60. Nazarov S.A. (2018) Finite-dimensional approximations of the Steklov–Poincare operator in periodic elastic waveguides // Dokl. Ross. Akad. Nauk. 2018. V. 480, №3. P. (English transl.: Doklady Physics, 2018, V. 63, №7. P. 307-312). DOI: 10.1134/S1028335818070108 (link)

61. Chiado Piat V., Nazarov S.A. Taskinen J. (2018) Embedded eigenvalues for water-waves in a three-dimensional channel with a thin screen. Quart. J. Mech. Appl. Math. 71(2)187-220. DOI: 10.1093/qjmam/hby002 (link)

62. Ghosh A., Kozlov V.A. Nazarov S.A., Rule D. (2018) A two-dimensional model of the thin laminar wall of a curvilinear flexible pipe. The Quarterly Journal of Mechanics and Applied Mathematics 71(3):349-–367. DOI: 10.1093/qjmam/hby009 (link)

63. Cardone G., Durante T., Nazarov S.A. (2018) Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation. J. Math. Pures Appl. 112:1-–40. DOI: 10.1016/j.matpur.2018.01.002 (link)

64. Nazarov S.A. (2018) Asymptotics of natural oscillations of a long two-dimensional with varying cross-section // Mat. sbornik. 2018. 209(9):35–86 (English transl.: Sb. Math. 2018. 209(9):1287). DOI: 10.1070/SM8974 (link)

65. Nazarov S.A., Popoff N. (2018) Self-adjoint and skew-symmetric extensions of the Laplacian with singular Robin boundary condition. C.R. Acad. Sci. Paris, Ser.I. 356(9):927-932. DOI: 10.1016/j.crma.2018.07.001 (link)

66. Leugering G., Nazarov S.A., Slutskij A. S. (2018) The asymptotic analysis of a junction of two elastic beams. Z. Angew. Math. Mech. published online. DOI: 10.1002/zamm.201700192 (link)

67. Nazarov S.A. (2018) Various manifestations of Wood anomalies in locally distorted quantum waveguides // Zh. Vychisl. Mat. i Mat. Fiz. 2018. 58(11). P. - (English transl.: Comput. Math. and Math. Physics. 2018. 58(11):1838–1855). DOI: 10.1134/S096554251811009X (link)

68. Pozdnyakov A.O., Voznyakovskii A.P., Kalinin A.V. (2018) Mechanism of Functionalization of the Surfaces of Detonation Nanodiamonds: Mass-Spectrometric Investigation. J. Superhard Mater. 40( 1): 16-20. DOI: 10.3103/S1063457618010033 (link)

69. Breki A.D., Medvedeva V.V., Krylov N.A., Aleksandrov S.E., Kolmakov A.G., Gvozdev A.E., Sergeev N.N., Provotorov D.A., Fadin Y.A. (2018) Antiwear properties of composite greases “Litol-24-magnesium hydrosilicate particles”.Inorganic Materials: Applied Research 8(1): 21–25. DOI: 10.1134/S2075113318010057 (link)

70. Sedakova E. B., Kozyrev Yu. P. (2018) Features of Wear of the Polytetrafluoroethylene and Commercial Composite F4K20 during Friction on Carbon and Alloy Steels. Journal of Machinery Manufacture and Reliability 47(4):362–367. DOI: 10.3103/S1052618818040131 (link)

71. Sedakova E. B., Kozyrev Yu. P. (2018) Influence of Particle Size on the Wear Resistance and Strength of Polymer Composites. Russian Engineering Research 38(7):513–516. DOI: 10.3103/S1068798X1807016X (link)

72. Breki A.D., Kol'tsova T.S., Skvortsova A.N., Tolochko O.V., Aleksandrov S.E., Kolmakov A.G., Lisenkov A.A., Fadin Y.A., Gvozdev A.E., Provotorov D.A. (2018) Tribotechnical properties of composite material “Aluminium –carbon nanofibers” under friction on steels 12kh1 and shkh15 ”. Inorganic Materials: Applied Research 9(4): 639-643. DOI: 10.1134/S207511331804007X (link)

73. Petinov S.V., Guchinsky R.V. (2018) Criteria for Fatigue Failure of Materials: Application in Fatigue Assessment of Structures. Materials Science & Engineering. Advanced Engineering Forum Vol.26: 1-9 doi: 10.4028/www.scientific.net/AEF.26 (link)

74. Petinov S.V. (2018) In-Service Fatigue Reliability of Structures. Springer Intern. Publishing, P.201. ISSN 0925-0042, ISBN 978-3-319-89317-4 DOI: 10.1007/978-3-319-89318-1 (link)

75. Tiwari, A., Shubin, S.N., Alcock, B., Freidin, A.B., Thorkildsen, B., Echtermeyer, A.T. (2017) Feasibility of using microencapsulated phase change materials as filler for improving low temperature performance of rubber sealing materials. Soft Matter 13(42), p.7760-7770. DOI: 10.1039/c7sm01623a (link)

76. Shubin S.N., Akulichev A.J., Freidin A.B. (2017) Elastomer composites based on filler with negarive thermal expansion coefficient: experiments of stress-strain behavior. Materials Physics and Mechanics 32(3), p. 278-287. DOI: 10.18720/MPM.3232017_7 (link)

77. Freidin A.B., Sharipova L.L., Morozov N.F. On locking strains in mechanochemistry of chemical reactions fronts. Chebyshevskii Sbornik. 2017;18(3):469-481. (In Russ.) DOI:10.22405/2226-8383-2017-18-3-469-481 (link)

78. A.V. Porubov, A.M. Krivtsov, A.E. Osokina (2017) Two-dimensional waves in extended square lattice, International Journal of Non-Linear Mechanics. Available online 14 December 2017 DOI: 10.1016/j.ijnonlinmec.2017.12.008 (link)

79. E.L.Aero, A.N. Bulygin, Yu.V.Pavlov (2017) The solutions of equations for nonlinear model of deformation of the crystal media allowing martensitic transformations,  IEEE Transactions, Proceedings of the International  Conference “Days on Diffraction 2017” June 19 - 23, 2017, St.Petersburg, Russia,  7–12. DOI: 10.1109/DD.2017.8167986 (link)

80. A.V. Porubov, I.D. Antonov, D.I. Indeitsev, A.L. Fradkov (2017) Mechanical system allowing distributive control with feedback. Mechanics Research Communications, DOI: 10.1016/j.mechrescom.2017.07.014 (link)

81. Alexey Porubov, Roman Bondarenkov, Daniel Bouche, Alexander Fradkov (2017) Control of nonlinear shock waves propagation for isothermal Euler equations. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik,  1-6. DOI: 10.1002/zamm.201700217 (link)

82. Alexey Porubov, Boris Andrievsky (2017) Control methods for localization of nonlinear waves. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2088):20160212. DOI: 10.1098/rsta.2016.0212 (link)

83. Nikolai Bessonov, Vitaly Volpert (2017) Deformable Cell Model of Tissue Growth. Computation, 5(4):45. DOI: 10.3390/computation5040045 (link)

84. G. Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk, V. Volpert (2017) Modelling the dynamics of virus infection and immune response in space and time. International Journal of Parallel, Emergent and Distributed Systems, 1-15. DOI: 10.1080/17445760.2017.1363203 (link)

85. Andrey A. Grib, Yuri V. Pavlov (2017) Comparison of particle properties in Kerr metric and in rotating coordinates. General Relativity and Gravitation, 49(6) DOI: 10.1007/s10714-017-2238-3 (link)

86. . . , . .  (2017)       , , 190(2):312–324; : Theoret. and Math. Phys., 190(2):268–278. DOI: 10.1134/S0040577917020088 (link)

87. Alexei Boulbitch, Yury M. Gufan, Alexander L. Korzhenevskii (2017) Crack-tip process zone as a bifurcation problem. Physical Review E, 96(1). DOI: 10.1103/PhysRevE.96.013005 (link)

88. A. R. Udalov, A. L. Korzhenevskii, V. Ya. Shur (2017) Topological instability of the ferroelectric domain wall caused by screening retardation. Ferroelectrics 508(1):65-73. DOI: 10.1080/00150193.2017.1288196 (link)

89. A V Porubov, I D Antonov (2017) Control of coupled localized nonlinear wave solutions. Journal of Physics: Conference Series 788:012029. DOI: 10.1088/1742-6596/788/1/012029 (link)

90. A V Porubov, R S Bondarenkov, D Bouche, A L Fradkov (2017) Feedback control of monotonic shocks. Journal of Physics: Conference Series 788:012030. DOI: 10.1088/1742-6596/788/1/012030 (link)

91. A V Porubov, I D Antonov, A L Fradko (2017) Further progress in control of localized nonlinear waves. Journal of Physics: Conference Series 937:012043. DOI: 10.1088/1742-6596/937/1/012043 (link)

92. E.L.Aero, A.N.Bulygin, Yu.V.Pavlov (2017) The solutions of nonlinear equations of flat deformation of the crystal media  allowing martensitic transformations, In: Proceedings of the XLV Summer School - Conference "Advanced Problems in Mechanics", APM 2017, St. Petersburg, 2017, p. 21-30. (link)

93. A. Boulbitch, Y. M. Gufan, A. L. Korzhenevskii (2017) Crack-tip process zone as a bifurcation problem. Physical Review E96(1), 013005. DOI: 10.1103/PhysRevE.96.013005 (link)

94. A. Boulbitch, A. L. Korzhenevskii (2017) Temperature of emergence of a transformational process zone at a crack tip. Physical Review B96(5), 054106. DOI:10.1103/PhysRevB.96.054106 (link)

95. Ivanova E. A., Vilchevskaya E. N., Müller W. H. (2017) A Study of Objective Time Derivatives in Material and Spatial Description. In: Altenbach H., Goldstein R., Murashkin E. (eds) Mechanics for Materials and Technologies. Advanced Structured Materials 46:195-229  – Springer, Cham. DOI: 10.1007/978-3-319-56050-2_11 (link)

96. Vitokhin E. Y., Ivanova E. A. (2017) Dispersion relations for the hyperbolic thermal conductivity, thermoelasticity and thermoviscoelasticity. Continuum Mechanics and Thermodynamics 29(6):1219–1240. DOI: 10.1007/s00161-017-0574-x (link)

97. Ivanova E. A. (2017) Description of nonlinear thermal effects by means of a two-component Cosserat continuum. Acta Mechanica  228(6):2299–2346. DOI: 10.1007/s00707-017-1829-0 (link)

98. Muller W.H., Vilchevskaya E.N. (2017) Micropolar media with structural transformations – Theory and an example problem. Materials Physics and Mechanics 32(3):243-252. DOI: 10.18720/MPM.3232017_2 (link)

99. Muller W.H., Vilchevskaya E.N. (2017) Micropolar theory from the viewpoint of mesoscopic and mixture theories. Physical Mesomechanics 20(3):263-279 DOI: 10.1134/S1029959917030031 (link)

100. Muller W.H., Vilchevskaya E.N., Weiss W. (2017) Micropolar theory with production of rotational inertia: A farewell to material description. Physical Mesomechanics 20(3):250-262. DOI: 10.1134/S102995991703002X (link)

101. Sebastian Glane, Wilhelm Rickert, Wolfgang H. Müller, Elena Vilchevskaya (2017) Micropolar media with structural transformations: Numerical treatment of a particle crusher. Proceedings of XLV International Summer School — Conference APM 2017, 197-211. (link)

102. Cardone G., Durante T., Nazarov S.A. (2017) The spectrum, radiation conditions and the Fredholm property for the Dirichlet Laplacian in a perforated plane with semi-infinite inclusions. J. of Differential Equations. 263(2):1387–1418. DOI: 10.1016/j.jde.2017.03.013 (link)

103. Nazarov S.A. (2017) “Wandering” eigenfrequencies of a two-dimensional elastic body with a blunted cusp. Dokl. Ross. Akad. Nauk. 2017. 477(2):163-167 (English transl.: Doklady Physics, 2017, 62(11):512-516). DOI: 10.1134/S1028335817110040 (link)

104. Leugering G.R., Nazarov S.A., Slutskij A.S. (2017) Korn inequality for a thin periodic corrugated beam. Probl. mat. analiz. N 89. Novosibirsk, P. 39–50 (English transl.: Journal of Math.Sci., 2016. 226(4):375–387). DOI 10.1007/s10958-017-3540-z (link)

105. Nazarov S.A., Slutskij A.S. (2017) A folded plate clamped along one side only. C. R. Mecanique. 345(12):903–907. DOI: 10.1016/j.crme.2017.07.003 (link)

106. Kozlov V.A., Nazarov S. A. (2017) Transmission conditions in one-dimensional model of bifurcating arteries with elastic walls. Zap. Nauchn. Sem. St.-Petersburg Otdel. Mat. Inst. Steklov. 2015. 438:138–177 (English transl.: Journal of Math. Sci., 2017. 224(1):94–118). DOI: 10.1007/s10958-017-3398-0 (link)

107. Nazarov S.A., Taskinen J. (2017) Radiation conditions for the linear water-wave problem in periodic channels. Math. Nachr. 290(11–12):1753–1778. DOI: 10.1002/mana.201600313 (link)

108. Nazarov S.A. (2017) Asymptotics of eigenvalues in spectral gaps under regular perturbations of walls of a periodic waveguide. Probl. mat. analiz. N 89. Novosibirsk, P. 63–98 (English transl.: Journal of Math. Sci., 2017. 226(4):402–444). DOI: 10.1007/s10958-017-3542-x (link)

109. Nazarov S.A. (2017) Open waveguides in a thin Dirichlet lattice: I. Asymptotic structure of the spectrum: Comput. Math. and Math. Physics. 57(1):156–174. DOI: 10.1134/S0965542517010110 (link)

110. Nazarov S.A. (2017) Open waveguides in a thin Dirichlet lattice: II. Localized waves and radiation conditions. Comput. Math. and Math. Physics. 57(2):236–252. DOI: 10.1134/S0965542517020129 (link)

111. Nazarov S.A. (2017) The asymptotic behaviour of the scattering matrix in a neighbourhood of the endpoints of a spectral gap Sb. Math. 208(1):111-164. DOI: 10.1070/SM8624 (link)

112. Nazarov S.A. (2017) The spectra of rectangular lattices of quantum waveguides Math. Izvestiya. 81(1):31–92. DOI: 10.1070/IM8380 (link)

113. Kozlov V.A., Nazarov S.A. (2017) Effective one-dimensional images of arterial trees in the cardiovascular system Doklady Physics 62(3):158–163. DOI: 10.1134/S1028335817030120 (link)

114. Buttazzo G., Cardone G., Nazarov S.A. (2017) Thin elastic plates supported over small areas. II: Variational-Asymptotic Models. J. of Convex Analysis. 24(3):819-855. WOS:000418780000006 (link)

115. Nazarov S.A. (2017) Wave scattering in the joint of a straight and a periodic waveguide J. Appl. Math. Mech. 81(2):129-147. DOI: 10.1016/j.jappmathmech.2017.08.006 (link)

116. Kozlov V.A., Nazarov S.A. (2017) A one-dimensional model of flow in a junction of thin channels, including arterial trees. Sb. Math. 208(8):1138–1186. DOI: 10.1070/SM8748 (link)

117. Bakharev, F.L., Matveenko, S.G., Nazarov, S.A. (2017) Examples of Plentiful Discrete Spectra in Infinite Spatial Cruciform Quantum Waveguides. Z. Anal. Anwend. 36(3):329–341.  DOI: 10.4171/ZAA/1591 (link)

118. Bakharev, F. L., Cardone, G.,  Nazarov, S. A.,  Taskinen, J. (2017) Effects of Rayleigh waves  on the essential spectrum in perturbed doubly periodic elliptic problems. Integral Equations and Operator Theory. 88(3):373–386. DOI: 10.1007/s00020-017-2379-5 (link)

119. Kozlov V.A., Nazarov S.A., Orlof A. (2017) Trapped modes in zigzag graphene nanoribbons. Z. Angew. Math. Phys. 68(4):68–78. DOI: 10.1007/s00033-017-0823-7 (link)

120. Nazarov S.A. (2017) “Wandering” eigenfrequencies of a two-dimensional elastic body with a blunted cusp. Doklady Physics 62(11):512-516.  DOI: 10.1134/S1028335817110040 (link)

121. Cardone G., Durante T., Nazarov S.A. (2017) The spectrum, radiation conditions and the Fredholm property for the Dirichlet Laplacian in a perforated plane with semi-infinite inclusions.  J. of Differential Equations. 263(2):1387–1418; DOI: 10.1016/j.jde.2017.03.013 (link)

122. Nazarov S.A. (2017) Asymptotics of eigenvalues in spectral gaps under regular perturbations of walls of a periodic waveguide Journal of Math. Sci., 226(4):402–444. DOI: 10.1007/s10958-017-3542-x (link)

123. Leugering G.R., Nazarov S.A., Slutskij A.S. (2017) Korn inequality for a thin periodic corrugated beam Journal of Math. Sci. 226(4):375–387. DOI: 10.1007/s10958-017-3540-z (link)

124. Nazarov S.A., Slutskij A.S. (2017) A folded plate clamped along one side only. C. R. Mecanique. 345(12):903–907. DOI: 10.1016/j.crme.2017.07.003 (link)

125. Kozlov V.A., Nazarov S.A. (2017) Transmission conditions in obe-dimensional model of bifurcating arteries with elastic walls. Journal of Math. Sci. 224(1):94–118. DOI: 10.1007/s10958-017-3398-0 (link)

126. Nazarov S.A., Taskinen J. (2017) Radiation conditions for the linear water-wave problem in periodic channels.  Mathematische Nachrichten 290(11–12):1753–1778. DOI: 10.1002/mana.201600313 (link)

127. Berntsson F., Karlsson M., Kozlov V., Nazarov S.A. (2017) A one-dimensional model of a false aneurysm. International Journal of Research in Engineering and Science, 5(6):61–73. (link)

128. F. L. Bakharev, S. G. Matveenko and S. A. Nazarov (2017) The discrete spectrum of cross-shaped waveguides St. Petersburg Mathematical Journal, 28(2):171–180 DOI: 10.1090/spmj/1444 (link)

129. S. A. Nazarov (2017) Almost standing waves in a periodic waveguide with a resonator and near-threshold eigenvalues, St. Petersburg Math. J., 28(3):377–410 DOI:10.1090/spmj/1455 (link)

130. S. A. Nazarov (2017) Open waveguides in a thin Dirichlet ladder: I. Asymptotic structure of the spectrum, Comput. Math. Math. Phys., 57(1):156–174 DOI: 10.1134/S0965542517010110 (link)

131. Breki A.D., Didenko A.L., Kudryavtsev V.V., Vasilyeva E.S., Tolochko O.V., Gvozdev A.E., Sergeyev N.N., Provotorov D.A., Starikov N.E., Fadin Yu.A., Kolmakov A.G. (2017) Composite coatings based on A–OOO polyimide and WS2 nanoparticles with enhanced dry sliding characteristics. Inorganic Materials: Applied Research 8(1):56-59.   DOI: 10.1134/S2075113317010075 (link)

132. Breki A.D., Didenko A.L., Kudryavtsev V.V., Vasilyeva E.S., Tolochko O.V., Kolmakov A.G., Gvozdev A.E., Provotorov D.A., Starikov N.E., Fadin Yu.A. (2017) Synthesis and dry sliding behavior of composite coating with (R–OOO)FT polyimide matrix and tungsten disulfide nanoparticle filler. Inorganic Materials: Applied Research 8(1):32-36. DOI: 10.1134/S2075113317010063 (link)

133. A. A. Shepelevskii, A. V. Esina, A. P. Voznyakovskii and Yu. A. Fadin. (2017) On the Lubrication Mechanism of Detonation-Synthesis Nanodiamond Additives in Lubricant Composites. Technical Physics 62(9):1364-1371. DOI: 10.1134/S1063784217090237 (link)

134. Sedakova E. B.,  Kozyrev Yu. P. (2017) Transfer Films in a PTFE–Steel Pair at Different  Temperatures. Russian Engineering Research  37(10):863–865. DOI: 10.3103/S1068798X17100197 (link)

135. Sedakova E. B.,  Kozyrev Yu. P. (2017) Effect of Material State on the Wear of Filled Polytetrafluoroethylene Composite F4K20 on Its Basis. Journal of Machinery Manufacture and Reliability 46(3):259–264. DOI: 10.3103/S105261881703013X (link)

136. Sedakova E. B. and Kozyrev Yu. P. (2017) Polymer Thermal Loading in the Polytetrafluoroethylene–Steel Friction Pair. Journal of Friction and Wear 38(5):390–394. DOI: 10.3103/S1068366617050117 (link)

137. Petinov S.V., Melnikov (2017) B.E. Stress-Life Criteria for Fatigue Assessment of Structures: Advantages and Drawbacks. In: Proceedings of the XLV Summer School - Conference "Advanced Problems in Mechanics", APM 2017, St. Petersburg, 2017,p. 341-351. (link)

138. A.B. Freidin, V.A. Kucher (2016) Solvability of the equivalent inclusion problem for an ellipsoidal inhomogeneity. Mathematics and Mechanics of Solids. 21(2):255-252. DOI:10.1177/1081286515588636 (link)

139. Shubin, S.N., Freidin, A.B., Akulichev, A.G. (2016) Elastomer composites based on filler with negative thermal expansion coefficient in sealing application. Archive of Applied Mechanics 86(1-2):351-360. DOI: 10.1007/s00419-016-1120-1 (link)

140. A.Freidin, N. Morozov,S. Petrenko, E. Vilchevskaya (2016) Chemical reactions in spherically symmetric problems of mechanochemistry. Acta Mech. 227(1):43-56. DOI: 10.1007/s00707-015-1423-2 (link)

141. M.A. Antimonov, A. Cherkaev, A.B. Freidin (2016) Phase transformations surfaces and exact energy lower bounds. Int. J. of Engineering Science 98:153-182. DOI: 10.1016/j.ijengsci.2015.10.004 (link)

142. E. A. Podolskaya, A. Yu. Panchenko, A. B. Freidin, A. M. Krivtsov (2016) Loss of ellipticity and structural transformations in planar simple crystal lattices. Acta Mech. 227(1):185-201. DOI: 10.1007/s00707-015-1424-1 (link)

143. Alexander B. Freidin, Igor K. Korolev, Sergey P. Aleshchenko, Elena N. Vilchevskaya (2016) Chemical affinity tensor and chemical reaction front propagation: theory and FE-simulations. International Journal of Fracture 202(2):245–259. DOI 10.1007/s10704-016-0155-1 (link)

144. E.L.Aero, A.N.Bulygin, Yu.V.Pavlov (2016) Nonlinear model of deformation of crystal media with complex lattice: mathematical methods of model implementation. Mathematics and Mechanics of Solids21(1), 19-36. DOI: 10.1177/1081286515572243 (link)

145. A. Boulbitch, A. L. Korzhenevskii (2016) Crack velocity jumps engendered by a transformational process zone. Physical Review E93(6), 063001. DOI:10.1103/PhysRevE.93.063001 (link)

146. A.V. Porubov, I.E. Berinskii (2016) Two-dimensional nonlinear shear waves in materials having hexagonal lattice structure. Mathematics and Mechanics of Solids21(1), 94-103. DOI: 10.1177/1081286515577040 (link)

147. V. A. Eremeyev, A.V. Porubov, L. Placidi (2016) Special issue in honor of Eron L. Aero, Mathematics and Mechanics of Solids, 21(1):3-5. DOI: 10.1177/1081286515588690 (link)

148. A.V. Porubov, A.L. Fradkov, R.S. Bondarenkov, B.R. Andrievsky (2016) Localization of the sine-Gordon equation solutions. Communications in Nonlinear Science and Numerical Simulation39:29-37. DOI: 10.1016/j.cnsns.2016.02.043 (link)

149. A.V. Porubov, I.D. Antonov, A.L. Fradkov, B.R. Andrievsky (2016) Control of localized non-linear strain waves in complex crystalline lattices. International Journal of Non-Linear Mechanics86:174-184. DOI: 10.1016/j.ijnonlinmec.2016.09.002 (link)

150. I.S. Pavlov, A.E. Vasiliev, A.V. Porubov (2016) Dispersion properties of the phononic crystal consisting of ellipse-shaped particles. Journal of Sound and Vibration384:163-176. DOI: 10.1016/j.jsv.2016.08.012 (link)

151. G. Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk, V. Volpert (2016). Spatiotemporal dynamics of virus infection spreading in tissues. PloS one11(12), e0168576. DOI: 10.1371/journal.pone.0168576 (link)

152. E.L.Aero, A.N.Bulygin, Yu.V.Pavlov. Proceedings of the International Conference ``Days on Diffraction 2016'' June 27 - July 1, 2016, St.Petersburg, Russia, eds. O.V.Motygin et al., pp. 9-14. Methods of construction of exact analytical solutions for nonautonomic nonlinear Klein-Fock-Gordon equation. DOI: 10.1109/DD.2016.7756804 (link)

153. E. A. Ivanova, E. N. Vilchevskaya (2016) Micropolar continuum in spatial description. Continuum Mech. Thermodyn. 28(6):1759-1780. DOI 10.1007/s00161-016-0508-z. (link)

154. E.Vilchevskaya, I.Sevostianov (2016) Overall thermal conductivity of a fiber reinforced composite with partially debonded inhomogeneities. International Journal of Engineering Science 98:99-109. DOI:10.1016/j.ijengsci.2015.08.014 (link)

155. Elena A. Ivanova, Elena N. Vilchevskaya, Wolfgang H.Muller (2016) A Study of Objective Time Derivatives in Material and Spatial Description. Part of the Advanced Structured Materials book series (STRUCTMAT), 46:195-229. DOI: 10.1007/978-3-319-56050-2_11 (link)

156. Elena A. Ivanova, Elena N. Vilchevskaya, Wolfgang H.Muller (2016) Time Derivatives in Material and Spatial Description—What Are the Differences and Why Do They Concern Us? In book: Advanced Methods of Continuum Mechanics for Materials and Structures, 3-28. DOI: 10.1007/978-981-10-0959-4_1 (link)

157. Wolfgang H.Muller, Elena N.Vilchevskaya (2016) A Closed-Form Solution for a Linear Viscoelastic Self-gravitating Sphere. In book: Advanced Methods of Continuum Mechanics for Materials and Structures, 79-101. DOI: 10.1007/978-981-10-0959-4_5 (link)

158. Olga V. Brazgina,Elena A. Ivanova, Elena N. Vilchevskaya (2016) Saturated porous continua in the frame of hybrid description. Continuum Mechanics and Thermodynamics, 28(5):1553-1581. DOI: 10.1007/s00161-016-0495-0 (link)

159. Frolova, K., Vilchevskaya, E.N., Müller, W.H., Weiss, W. (2016). Comparison of numerical approaches for inverse Laplace transform by the example of intraocular pressure determination. Proc. Advanced Problems of Mechanics. St. Petersburg, 126-138. (link)

160. F. Berntsson, M. Karlsson, V. Kozlov, & S.A. Nazarov (2016) A one-dimensional model of viscous blood flow in an elastic vessel. Applied Mathematics and Computation, 274:125-132. doi:10.1016/j.amc.2015.10.077 (link)

161. V. A. Kozlov, S. A. Nazarov (2016) Asymptotic Models of Anisotropic Heterogeneous Elastic Walls of Blood Vessels. Journal of Mathematical Sciences 213(4):561-581. DOI:10.1007/s10958-016-2725-1 (link)

162. S.A. Nazarov, K.M. Ruotsalainen, M. Silvola (2016) Trapped Modes in Piezoelectric and Elastic Waveguides. Journal of Elasticity, 124(2):193-223. DOI:10.1007/s10659-015-9565-y (link)

163. Nazarov S.A., Ruotsalainen K.M. (2016) A rigorous interpretation of approximate computations of embedded eigenfrequencies of water waves. Z. Anal. Anwend. 35(2):211–242. DOI: 10.4171/ZAA/ (link)

164. Nazarov S.A., Taskinen J. (2016) Elastic and piezoelectric waveguides may have infinite number of gaps in their spectra. C. R. Mecanique 344(3):190-194. DOI: 10.1016/j.crme.2015.12.004 (link)

165. S. A. Nazarov (2016) Discrete spectrum of cranked quantum and elastic waveguides Computational Mathematics and Mathematical Physics, 2016, 56:5, 864–880 DOI: 10.7868/S0044466916050173 (link)

166. V. A. Kozlov, S. A. Nazarov, A. Orlof (2016) Trapped modes supported by localized potentials in the zigzag graphene ribbon.  C. R. Acad. Sci. Paris. S´er. 1. 354(1):63–67. DOI: 10.1016/j.crma.2015.10.007 (link)

167. Nazarov, S.A.; Slutskij, A.S. (2016) Asymptotic analysis of an L-shaped junction of two elastic beams. Math. Sci., 216(2):279-312 DOI: 10.1007/s10958-016-2901-3  (link)

168. Korolkov A.I., Nazarov S.A., Shanin A.V. (2016) Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves. ZAMM. 96(10):1245-1260. DOI: 10.1002/zamm.201500016 (link)

169. Nazarov S.A., Perez E., Taskinen J. (2016) Localization effect for Dirichlet eigenfunctions in thin non-smooth domains. Transactions of the American Mathematical Society 368(7):4787-4829. DOI: 10.1090/tran/6625 (link)

170. Kozlov V., Nazarov S.A. (2016) On the spectrum of an elastic solid with cusps. Adv. Differential Equations 21(9/10):887–944. WOS:000394480300003 (link)

171. Buttazzo G., Cardone G., Nazarov S.A. (2016) Thin elastic plates supported over small areas. I. Korn’s inequalities and boundary layers. J. of Convex Analysis 23(2):347–386. WOS:000379735400003 (link)

172. Nazarov S.A., Slutskij A.S. (2016) Asymptotics of natural oscillations of a spatial junction of thin elastic rods. C. R. Mecanique 344(9):684-688. DOI: 10.1016/j.crme.2016.04.001 (link)

173. S. A. Nazarov (2016) Transmission Conditions in One-Dimensional Model of a Rectangular Lattice of Thin Quantum Waveguides J Math Sci 219(6):994-1015. DOI: 10.1007/s10958-016-3160-z (link) ——- NEXT —->

   
 ( )