Направление: "Прочность, разрушение и структурные превращения в материалах и конструкциях при экстремальных воздействиях", научн. руководитель - чл.-корр. РАН, докт. физ.-мат. наук Ю.В. Петров


Полноформатные статьи, индексируемые в базах Web of Science и/или Scopus, опубликованные в рамках данного направления (с 2011 года):

 

1. N.S. Selyutina, Yu.V. Petrov (2018) Prediction of the Dynamic Yield Strength of Metals Using Two Structural–Temporal Parameters. Physics of the Solid State  60(2), 244–249. DOI: 10.1134/S1063783418020221 (link)  

2. N. Gorbushin, Y. Petrov, Y.P. Zhao, Y. Zhang (2018) Threshold characteristics of short-pulsed loads combined with the ultra-sound field causing dynamic delamination of adhesive joints. Theoretical and Applied Mechanics Letters 8(1) 28-31. DOI:10.1016/j.taml.2017.11.002 (link)   

3. Y.V. Petrov, V.V. Silberschmidt (2018) Dynamics and Thermodynamics of Fracture Mechanics. In: Altenbach H., Öchsner A. (eds) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg    DOI:10.1007/978-3-662-53605-6_241-1 (link)

4. M.V. Volkova, O.N. Granichin, G.A. Volkov, Yu.V. Petrov (2018) On the Possibility of Using the Method of Sign-Perturbed Sums for the Processing of Dynamic Test Data. Vestnik St. Petersburg University, Mathematics 51(1)  23–30. DOI:10.3103/S1063454118010132 (link)      

5. А. Evstifeev, N. Kazarinov, Y.Petrov, L. Witek, A. Bednarz (2018) Experimental and theoretical analysis of solid particle erosion of a steel compressor blade based on incubation time concept. Engineering Failure Analysis 87, 15–21. DOI:10.1016/j.engfailanal.2018.01.006 (link    

6. A.A. Chevrychkina, A.D. Evstifeev, G.A. Volkov (2018) Analysis of the Strength Characteristics of Acrylonitrile–Butadiene–Styrene Plastic under Dynamic Loading. Technical Physics  63(3) 381–384. DOI: 10.1134/S1063784218030064 (link)     

7. A.N. Martemyanov, Y.V. Petrov (2018) Understanding of Rock Material Behavior Under Dynamic Loadings Based on Incubation Time Criteria Approach. In: Karev V., Klimov D., Pokazeev K. (eds) Physical and Mathematical Modeling of Earth and Environment Processes. PMMEEP 2017. Springer Geology. Springer, Cham 233-248. DOI: 10.1007/978-3-319-77788-7_25 (link)   

8. N.A. Kazarinov, A.D. Evstifeev, Y.V. Petrov, S.A. Atroshenko, R.R. Valiev (2018) The Effect of Grain Refinement on Solid Particle Erosion of Grade 5 Ti Alloy. Journal of Materials Engineering and Performance, online from April 19, 2018     DOI:10.1007/s11665-018-3332-8 (link)  

9. N.A. Gorbushin, N.O. Granichin, A.N. Logachev, Y.V. Petrov, G.A. Volkov (2018) Destruction of the adhesion zone by combined pulsed - vibrational impacts. Materials  Physics and Mechanics  36(1):114-120.  DOI: 10.18720/MPM.3612018_12 (link)   

10. N.S. Selyutina, I.N. Borodin, Yu.V. Petrov (2018) Structural Time Peculiarities of Dynamic Deformation of Nanostructured and Nanoscaled Metals. Physics of the Solid State 60(9):1813–1820. DOI: 10.1134/S1063783418090275 (link)  

11. V.I. Smirnov, Yu.V. Petrov (2018) Effect of pulse shape on spall strength. Journal of Applied Mechanics and Technical Physics 59(2):303–309.   DOI: 10.1134/S002189441802013X (link)  

12. E.N. Borodin, V. Bratov (2018) Non-equilibrium approach to prediction of microstructure evolution for metals undergoing severe plastic deformation. Materials Characterization. 141, 267-278, DOI:10.1016/j.matchar.2018.05.002  (link)

13. Yu.I. Meshcheryakov, S.A. Atroshenko (2018) On the mesoscopic mechanisms of spall fracture. Materials Physics and Mechanics 36:121-130. DOI:10.18720/MPM.3612018_13  (link)

14. R. Springhetti, N.S. Selyutina (2018) Viscoelastic modeling of articular cartilage under impact loading. Meccanica. 53:519-530. DOI: 10.1007/s11012-017-0717-y (link

15. E.N. Borodin, A.A. Gruzdkov, A.E. Mayer, N.S. Selyutina (2018) Physical nature of strain rate sensitivity of metals and alloys at high strain rates.IOP Conf. Series: Journal of Physics: Conf. Series 991, 012012 DOI: 10.1088/1742-6596/991/1/012012 (link

16. Yu.V. Petrov, N.S. Selyutina (2017) Prediction of the Effect of Plastic-Strain Stabilization under Cyclic Deformation Based on the StructuralTemporal Approach. Doklady Physics 62(10): 475–477. DOI: 10.1134/S1028335817100068 (link)

17. A.A. Chevrychkina, A.A. Gruzdkov, Yu.V. Petrov (2017) Application of nonlocal criteria for destruction in problems with a nonuniform stress field. Physics of the Solid State. 59(8): 1594-1599. DOI: 10.1134/S1063783417080042. (link)

18. Y.V. Petrov, I.V. Smirnov, G.A. Volkov, A.K. Abramian, A.M. Bragov, S.N. Verichev (2017) Dynamic failure of dry and fully saturated limestone samples based on incubation time concept. Journal of Rock Mechanics and Geotechnical Engineering 9(1): 125-134. DOI: 10.1016/j.jrmge.2016.09.004. (link)

19. Yu.V. Petrov, S.A. Atroshenko, N.A. Kazarinov, A.D. Evstifeev, V.Yu. Solov’ev (2017) Dynamic fracture of the surface of an aluminum alloy under conditions of high-speed erosion. Physics of the Solid State. 59(4): 661-666. DOI: 10.1134/S1063783417040175. (link)

20. Yu.V. Petrov, A.M. Bragov, N.A. Kazarinov, A.D. Evstifeev (2017) Experimental and Numerical Analysis of the High-Speed Deformation and Erosion Damage of the Titanium Alloy VT-6. Physics of the Solid State 59(1) 93-97. DOI: 10.1134/S1063783417010267. (link)

21. M.V. Volkova, O.N. Granichin, Y.V. Petrov, G.A. Volkov (2017) Dynamic Fracture Tests Data Analysis Based on the Randomized Approach. Adv Syst Sci Appl. 2017, 3, 34–41 (link)

22. N.S. Selyutina, Yu.V. Petrov (2017) Structural and temporal features of high-rate deformation of metals. Doklady Physics 62(2) 102-105. DOI: 10.1134/S1028335817020136. (link)

23. N.V. Mikhailova, G.A. Volkov, Yu.I. Meshcheryakov, Yu.V. Petrov, A.A. Utkin. (2017) Failure-Delay Effect in Destruction of Steel Samples under Spalling Conditions. Technical Physics 62(4): 547-552. DOI: 10.1134/S106378421704017X. (link)

24. A.D. Evstifeev, N.A. Kazarinov, Yu.V. Petrov, S.A. Atroshenko, R.R. Valiev (2017) High-rate erosion of Ti-6Al-4V ultrafine-grained titanium alloy obtained via intensive plastic torsional deformation. Physics of the Solid State 59(9): 1794-1797. DOI: 10.1134/S1063783417090086 (link)

25. G.A. Volkov, Yu.V. Petrov, A.A. Utkin (2017) On some principal features of data processing of spall fracture tests. Physics of the Solid State 59(2): 310-315. DOI: 10.1134/S1063783417020329. (link)

26. A.Yu. Kuchmin, A.K. Abramyan, Yu.V. Petrov, I.V. Smirnov, A.M. Bragov (2017)  Structural-time and pulse characteristics of dynamic fracture of some construction materials. Doklady Physics 62(1): 27-29. DOI: 10.1134/S1028335817010049 (link)

27. Yu.V. Petrov, V.I. Smirnov (2017) Estimate of the Limit Displacement Wave Amplitude in the Dynamic Problem on an Out-of-Plane Crack. Mechanics of Solids 52(4): 397–406. DOI: 10.3103/S0025654417040069. (link)

28. N. Gorbushin, Yu. Petrov, Ya-Pu Zhao, Yin Zhang (2017) Threshold characteristics of short-pulsed loads combined with the ultra-sound field causing dynamic delamination of adhesive joints. Theoretical and Applied Mechanics Letters. DOI: 10.1016/j.taml.2017.11.002 (link) 

29. Y.V. Petrov, A.A. Utkin (2017) Structural-temporal approach and geometry of the fracture zone in spalling. Procedia Structural Integrity 6:134–139 (link)

30. Yu.I. Meshcheryakov, G.V. Konovalov, A. K. Divakov, N.I. Zhigacheva, E.P. Osokin (2017) Shock-induced structural heterogenization. Procedia Structural Integrity, 6: 146-153 https://doi.org/10.1016/j.prostr.2017.11.023 (link)

31. Yu.I. Mescheryakov, N.I. Zhigacheva, A.K. Divakov, Yu.A. Petrov (2017)     Shock-induced structural instabilities and spall-strength of maraging steels. Material Physics and Mechanics, 32(2): 152-164 https://doi.org/10.18720/MPM.3222017_7 (link)

32. Yu.I. Meshcheryakov, N.I. Zhigacheva, A.K. Divakov, G.V. Konovalov, B.K. Barakhtin (2017)     On the  Shock-Induced Structures in Copper. Proceeding of 30-th International Symposium on Shock Waves (ISSW-30)2: 891-895 https://doi.org/10.1007/978-3-319-44866-4_17 (link)

33. Y.V. Petrov, N.S. Selyutina (2017) On the temporal peculiarities of stabilization effect under cyclic deformation for steel. Procedia Structural Integrity 6: 265–268. DOI: 10.1016/j.prostr.2017.11.040. (link)

34. S.A. Atroshenko, A.D. Evstifeev, N.A. Kazarinov, Yu.V. Petrov, R.Z. Valiev (2017) Behavior of the grade 5 titanium alloy in different structural states in conditions of high-speed erosion. Procedia Structural Integrity 6: 190–195. DOI: 10.1016/j.prostr.2017.11.029 (link)

35. Yu.I. Meshcheryakov (2017) Particle velocity non-uniformity and steady-wave propagation  Intern. J. Shock Waves, Detonation and Explosives 27(2): 291-297 https://doi.org/10.1007/s00193-016-0659-7 (link)

36. А.M. Bragov, L.A. Igumnov, B.L. Karihaloo, A.Yu. Konstantinov, D.A. Lamzin, A.K. Lomunov, Yu.V. Petrov, I.V. Smirnov (2017) The investigations of the dynamics of fracture of brittle media on the basis of experimental data and theoretical analysis. Procedia Structural Integrity 6: 161–167. DOI: 10.1016/j.prostr.2017.11.025. (link)

37. N. Kazarinov, I. Smirnov, Y. Sudenkov, Y. Petrov, V. Slesarenko (2017) Experimental investigation of dynamic crack propagation in PMMA plates. Procedia Structural Integrity 6: 83–89. DOI: 10.1016/j.prostr.2017.11.013. (link)

38. N.S. Selyutina, Yu.V. Petrov (2017) The definition of flow stress under dynamic loading based on relaxation model of plasticity. Procedia Structural Integrity 6: 77–82. DOI: 10.1016/j.prostr.2017.11.012. (link)

39. Yu.I. Meshcheryakov.(2017) Kinetic theory of structural heterogenization. Procedia Structural Integrity, 6: 109-114 https://doi.org/10.1016/j.prostr.2017.11.017 (link)

40. A.Martemyanov, N.S. Selyutina, A. Katorina (2017) Incubation time criterion analysis of rock materials under dynamic loadings. Procedia Structural Integrity 6: 336–343. DOI: 10.1016/j.prostr.2017.11.051 (link)

41. N. Selyutina, Y. Petrov. (2017) Structural-temporal features of high-rate deformation of high strength steels. METAL 2017 - 26th International Conference on Metallurgy and Materials, Conference Proceedings, 2017-January: 623-628 (link)

42. A.A. Chevrychkina, G.A. Volkov, A.D. Evstifeev (2017) An experimental investigation of the strength characteristics of ABS plastic under dynamic loads. Procedia Structural Integrity 6: 283–285 DOI: 10.1016/j.prostr.2017.11.043 (link

43. V.А. Morozov, S.A. Atroshenko, V.M. Kats (2017Сomparative analysis of characteristics of material damage at various load speeds by electric explosion of conductors. Procedia Structural Integrity, V6: 154–160   DOI: 10.1016/j.prostr.2017.11.024 (link)

44. S.A. Atroshenko, Yu.V. Sudienkov, I.V. Smirnov, W.Z. Shao, N.F. Morozov (2017) Investigation of the elatoplastic and strength properties of the magnesium alloy AZ31B under quasistatic and dynamic loading. Procedia Structural Integrity, V6: 265–268  DOI: 10.1016/j.prostr.2017.11.039 (link)

45. A.D. Evstifeev, A.A. Chevrychkina, Y.V. Petrov (2017) Dynamic strength properties of an ultra-fine-grained aluminum alloy under tension conditions. Materials Physics and Mechanics 32:258-261 DOI: 10.18720/MPM.3232017_4 (link)

46. I.I. Argatov, N.S. Selyutina, G.S.Mishuris (2016) Impact problem for the quasi-linear viscoelastic standard solid model. The Journal of Strain Analysis for Engineering Design. 51 (4): 294–303. DOI: 10.1177/0309324715610027 (link)

47. G.V. Garkushin, N.S. Naumova, S.A. Atroshenko, S.V. Razorenov (2016) Influence of the Reversible αε Phase Transition and Preliminary Shock Compression on the Spall Strength of Armco Iron. Technical Physics, 61 (1): 84–90   DOI:10.1134/S1063784216010102  (link)

48. S. Atroshenko (2016) Metals dynamic recrystallization up to nanocrystalline size induced shock loading. AIP Conference Proceedings 1748, 030005; DOI: 10.1063/1.4954351 (link)

49. N. Kazarinov, A. Evsyifeev, Y. Petrov,  V. Lashkov, S. Atroshenko, R. Valiev (2016) Surface roughness investigation of ultrafine-grained aluminum alloy subjected to high speed erosion. Procedia Structural Integrity, V2,   485-492  DOI: 10.1016/j.prostr.2016.06.063  (link)

50. V.A. Morozov, A.A. Lukin, S.A. Atroshenko, D.A. Gribanov, Yu.V. Petrov (2016) Deformation and fracture of metal ring samples under the explosion of conductors. Procedia Structural Integrity, V2, 1002-1006  DOI: 10.1016/j.prostr.2016.06.128 (link)

51. S.A. Atroshenko (2016) Scale levels of dynamic translational fracture mechanisms. MPM, N1, V.26, 2016, 16-18 (link

52. S.A. Atroshenko, I.A. Korolyov, N. Didenko (2016) Evaluation of physico-mechanical properties of high-chromium tool steels modified with Hurrington method. MPM, N1, V.26, 26-29 (link)

53. A.E. Mayer, S.A. Atroshenko, I.N. Borodin (2016) Experimental and numerical investigations of the scale levels in spall fracture of D16 aluminum. MPM, N1, V.26, 23-25 (link)

54. Y. Petrov, I. Smirnov (2016) General effects of pulse electric breakdown of dielectric gaps and dynamic failure of continuous media. Procedia Structural Integrity 2: 430–437. DOI: 10.1016/j.prostr.2016.06.056. (link)

55. Yu.I. Meshcheryakov, A.К. Divakov, N.I. Zhigacheva, G. Konovalov (2016) Shock-induced structural instability and dynamic strength of brittle materials. Procedia Structural Integrity, 2: 468-472. https://doi.org/10.1016/j.prostr.2016.06.062 (link)

56. Yu.I. Meshcheryakov, A.K. Divakov, N.I. Zhigacheva (2016) On the structural instabilities of shock loaded materials. Material Physics and Mechanics,  2: 183-186 (link)

57. A.A. Utkin (2016) Effects of spall fracture and structural-time approach. Materials Physics and Mechanics, 26, 97-100 (link)

58. N. Selyutina, E.N. Borodin, Y. Petrov, A.E. Mayer (2016) The definition of characteristic times of plastic relaxation by dislocation slip and grain boundary sliding in copper and nickel. International Journal of Plasticity 82: 97-111. DOI: 10.1016/j.ijplas.2016.02.004 (link)

59. N.A. Gorbushin, Yu.V. Petrov (2016) Effect of Combined High-Frequency and Pulse-Dynamic Impact on Adhesive-Joint Strength. Doklady Physics 61(8): 384–388 DOI: 10.1134/S1028335816080036. (link)

60. N.A. Kazarinov, A.D. Evstifeev, Y.V. Petrov, S.A. Atroshenko, V.A. Lashkov, R.Z. Valiev, A.S. Bondarenko (2016) Surface Roughness Investigation of Ultrafine-Grained Aluminum Alloy Subjected to High-Speed Erosion of HighSpeed Erosion. Journal of Materials Engineering and Performance 25: 3573–3579. DOI: 10.1007/s11665-016-2199-9. (link)

61. E.N. Borodin, N.S. Selyutina, Yu.V. Petrov (2016) Determining Characteristic Plastic Relaxation Times Using Micro  and Nanocrystalline Nickel as an Example. Doklady Physics 61(3): 143–146.  DOI: 10.1134/S1028335816030095. (link)

62. N. Selyutina, Y. Petrov (2016) The dynamic strength of concrete and macroscopic temporal parameter characterized in fracture process. Procedia Structural Integrity 2: 438–445. DOI: 10.1016/j.prostr.2016.06.057. (link)

63. N.A. Kazarinov, A.D. Evstifeev, Yu.V. Petrov, V.A. Lashkov (2016) Dynamic Strength Properties of the Surface of an Ultra Fine Grained Aluminum Alloy under Conditions of High Speed Erosion. Doklady Physics 61(5): 232–234  DOI: 10.1134/S1028335816050062. (link)

64. Y. Petrov, N. Kazarinov, V. Bratov (2016) Dynamic crack propagation: quasistatic and impact loading. Procedia Structural Integrity, 2: 389–394, DOI: 10.1016/j.prostr.2016.06.050. (link)

65. E.N. Borodin, N. Selyutina, Y. Petrov, A.E. Mayer (2016) Dependence of relaxation times on the material microstructure for different mechanisms of plasticity. Materials Physics and Mechanics 26:  42-44. (link)

66. А. Evstifeev, Y. Petrov, A. Bragov, A. Konstantinov (2016) The strength competition effect at different strain rates. Procedia Structural Integrity 2: 446–451. DOI: 10.1016/j.prostr.2016.06.058. (link)

67. I.V. Smirnov, Yu.V. Petrov, A.Yu. Konstatntinov, A.M. Bragov, and A.K. Lomunov (2016) Study of Deformation and Failure of Bitumens for Asphalt Mixtures under Dynamic Loads. Key Engineering Materials 715: 43-47. DOI: 10.4028/www.scientific.net/KEM.715.43. (link)

68. D. Peck, G. Volkov, G. Mishuris, Y. Petrov (2016) Resolution of the threshold fracture energy paradox for solid particle erosion. Philosophical Magazine,   DOI: 10.1080/14786435.2016.1240378 (link)

69. Yu.V. Petrov, E.N. Borodin (2015) Relaxation Mechanism of Plastic Deformation and Its Justification Using the Example of the Sharp Yield Point Phenomenon in Whiskers. Physics of the Solid State57(2),  353–359   DOI: 10.1134/S1063783415020286  (link)

70. V. Bratov, Yu. Petrov, B. Semenov, I. Darienko (2015) Modeling the high-speed train induced dynamic response of railway embankment. Materials Physics and Mechanics, 22 (1)   (hlink) 

71. G.A. Volkov, Y.V. Petrov, A.A. Gruzdkov (2015) Liquid–Vapor Phase Equilibrium Conditions in an Ultrasonic Field. Doklady Physics60(5), 229–231    DOI: 10.1134/S1028335815050122    (link)

72. G.A. Volkov, Yu.V. Petrov, A.A. Gruzdkov (2015) Acoustic Strength of Water and Effect of Ultrasound on the Liquid–Vapor Phase Diagram. Technical Physics60(5), 753–756    DOI: 10.1134/S1063784215050278  (link)

73. D. Peck, M. Wrobel, G. Mishuris, Yu. Petrov (2015) Threshold fracture energy in solid particle erosion: improved estimate for a rigid indenter impacting an elastic medium. Meccanica 50(12), 2995-3011  DOI 10.1007/s11012-015-0173-5 (link)

74. A.M. Bragov, A.Y. Konstantinov, Y.V. Petrov, A.D. Evstifeev (2015) Structural-temporal approach for dynamic strength characterization of rock. Materials Physics and Mechanics 23, 61-65    (link)

75. V. Bratov, N. Kazarinov and Y. Petrov (2015) Numerical simulation of ZrO2(Y2O3) ceramic plate penetration by cylindrical plunger. EPJ Web of Conferences 94, 04056 (2015)    DOI: http://dx.doi.org/10.1051/epjconf/20159404056     (link)

76. Y. Petrov, A. Bragov, A. Evstifeev and E. Cadoni (2015) Structural-temporal approach for dynamic strength characterization of gabbro-diabase. EPJ Web of Conferences 94, 01042 (2015)   DOI: http://dx.doi.org/10.1051/epjconf/20159401042         (link)

77. S. Atroshenko, V. Morozov, D. Gribanov, A. Lukin and Y. Petrov (2015) Behavior of metals Induced by magnetic pulse loading. EPJ Web of Conferences 94, 02014 (2015)  DOI: http://dx.doi.org/10.1051/epjconf/20159402014   (link)

78. Y. Petrov and N. Selyutina (2015) Scale and size effects in dynamic fracture of concretes and rocks. EPJ Web of Conferences 94, 04005 (2015)    DOI: http://dx.doi.org/10.1051/epjconf/20159404005   (link)

79. NA Kazarinov, VA Bratov and YV Petrov (2015) Simulation of ceramics fracture due to high rate dynamic impact. JOP Conf Series 653 (2015) 012050   DOI:10.1088/1742-6596/653/1/012050  (link)

80. Y. Petrov, E. Borodin, E. Cadoni and N. Selyutina (2015) Relaxation model for dynamic plastic deformation of materials.  EPJ Web of Conferences 94, 04039 (2015)    DOI: (link)

81. Yu.V. Petrov, V.A. Morozov, I.V. Smirnov, and A.A. Lukin (2015) Electrical Breakdown of a Dielectric on the Voltage Pulse Trailing Edge: Investigation in Terms of the Incubation Time Concept. Technical Physics, Vol. 60, No. 12, pp. 1733–1737     DOI: 10.1134/S1063784215120178   (link)  

82. VA Bratov, NA Kazarinov and YV Petrov (2015) Numerical implementation of the incubation time fracture criterion. JOP Conf Series 653 (2015) 012049   DOI:10.1088/1742-6596/653/1/012049    (link)

83. Yu.V. Petrov, A.A. Utkin (2015) Time dependence of the spall strength under nanosecond loading.  Technical Physics, 60(8), 1162-1166     DOI: 10.1134/S1063784215080216 (link) 

84. Yu.I. Meshcheryakov, T.A. Khantuleva. (2015) Nonlocal mechanics of nonequilibrium shock-wave processes. Material Physics and Mechanics.- No 2. - Р.136-156. (link)

85. Yu. I. Meshcheryakov , N.I. Zhigacheva, A. K.  Divakov,  G.V. Konovalov, B.K. Barakhtin, S.V. Rasorenov,  O.V. Vyvenko, A.S. Bondarenko, I.V. Khomkaya. (2015)  Shock-induced structures in copper. - Material Physics and Mechanics. – Vol. 24. – P. 347-358. (link)

86. D.A. Indeitzev, Yu.I. Meshcheryakov, A.YU. Kuchmin, D.A. Vaviliv. (2015) Multi-scale modelof steady wave shock in medium with relaxation. Acta Mechanica.- Vol. 226 Issue 3, pp. 917-930. DOI: 10.1007/S00707-014-1231-0   (link)

87. E.N. Borodin, A.E. Mayer (2015) Structural model of mechanical twinning and its application for modeling of the severe plastic deformation of copper rods in Taylor impact tests. International Journal of Plasticity 74, 141-157. DOI:10.1016/j.ijplas.2015.06.006 (link)

88. V. Bratov, E.N. Borodin (2015) Comparison of dislocation density based approaches for prediction of defect structure evolution in aluminium and copper processed by ECAP. Materials Science and Engineering A 631, 10-17. DOI:10.1016/j.msea.2015.02.019 (link)

89. A.E. Mayer, E.N. Borodin (2015) Kinetic model for mechanical twinning and its application for intensive loading of metals. The European Physical Journal Conferences 94, 04041. DOI:10.1051/epjconf/20159404041 (link)

90. E.N. Borodin, A.E. Mayer (2015) Energy approach to kinetics equations for dislocations and twins and its application for high strain rate collision problems. Journal of Physics: Conference Series 653, 012042. DOI:10.1088/1742-6596/653/1/012042 (link)

91. Voronin A.V., Sud'enkov Y.V., Semenov B.N., Atroshenko S.A., Naumova N.S. (2014) Degradation of tungsten under the action of a plasma jet. Technical Physics, Vol. 59, Issue 7 pp.981-988   (link)

92. Yu.V. Petrov (2014) Structural–Time Criterion of Pulsed Electric Strength. Doklady Physics, 59 (1): 56–58, doi: 10.1134/S1028335814010108  (link)

93. N.A. Gorbushin, Yu.V. Petrov (2014) Dynamic Fragmentation of Solid Particles Interacting with a Rigid Barrier. Technical Physics, 59(2): 194–198, doi: 10.1134/S1063784214020091 (link)

94. S.A. Atroshenko, V.A. Morozov, D.A. Gribanov, A.A. Lukin, Yu.V. Petrov (2014) Metallic Ring Fracture Induced by Magnetic Pulse Loading of Short Duration. Procedia Materials Science, 3, 906–911. DOI: 10.1016/j.mspro.2014.06.147 (link)

95. A.E. Mayer, E.N. Borodin, V.S. Krasnikov, P.N. Mayer (2014) Numerical modelling of physical processes and structural changes in metals under intensive irradiation with use of CRS code: Dislocations, twinning, evaporation and stress waves. Journal of Physics: Conference Series 552, 012002. DOI: 10.1088/1742-6596/552/1/012002 (link)

96. E.N. Borodin, S.A. Atroshenko, A.E. Mayer (2014) Distribution of dislocations and twins in copper and 18Cr-10Ni-Ti steel under shock-wave loading. Technical Physics, 59, 8, 1163–1170. DOI: 10.1134/S1063784214080076 (link)

97. N.A. Kazarinov, V.A. Bratov, Yu.V. Petrov (2014) Simulation of  Dynamic Crack Propagation under Quasi-Static Loading// Doklady Physics, Vol. 59, No. 2, pp. 99–102 (link)

98. Yu. Petrov, V. Smirnov, A. Utkin, V. Bratov (2014) Energy of a solid sphere under nonstationary oscillations. Science China Physics, Mechanics and Astronomy,  57(3): 469–476, doi: 10.1007/s11433-013-5370-4 (link)

99. Y. Petrov (2014) Fracture, electric breakdown and phase transformations under impact loading. Procedia Materials Science 3, 467–472    doi: 10.1016/j.mspro.2014.06.078 (link)

100. N. A. Gorbushin, Y. V. Petrov (2014). Fracture of solid particles during interaction with a rigid obstacle. Doklady Physics, 59(4), 181-183.   DOI: 10.1134/S1028335814040016   (link)

101. Sudenkov Y, Atroshenko S., Smirnov I., Naumova N. and Sun X. (2014) Investigation of High-Speed Loading Effects on the Properties of Ferromagnetic Alloys Processed in an External Magnetic Field. Applied Mechanics and Materials, Vol. 566, pp 542-547.   DOI: 10.4028/www.scientific.net/AMM.566.542    (link)

102. E.N. Borodin, S.A. Atroshenko, A.E. Mayer (2014) Distribution of dislocations and twins in copper and 18Cr-10Ni-Ti steel under shock-wave loading. Technical Physics, Vol. 59, Issue 8,  P.1163-1170. (link)

103. V.A. Morozov, Y.V. Petrov, A.A. Lukin, S.A. Atroshenko, D.A. Gribanov (2014). Fracture of metallic rings during magnetic-pulse shock loading. Technical Physics, 59(9), 1338-1345     DOI: 10.1134/S1063784214090187   (link)

104. N.A. Gorbushin, Y.V. Petrov (2014). Freezing of water under intense short-time shock. Doklady Physics, 59(6), 283-285.      DOI: 10.1134/s102833581406010x    (link)

105. N.A. Gorbushin, G.A. Volkov, Y.V. Petrov (2014). Simulation of the behavior of the cutting force during ultrasonic rotary machining of materials using structure-time fracture mechanics. Technical Physics, 59(6), 852-856.   DOI: 10.1134/s1063784214060103 (link)

106. N.A. Kazarinov, V.A. Bratov, Yu.V. Petrov, G.D. Fedorovsky (2014). Evaluation of fracture incubation time from quasistatic tensile strength experiment. Materials Physics and Mechanics, 19, 16-24    (link)

107. N. Kazarinov, V.Bratov, Y.Petrov (2014) Simulation of dynamic crack propagation under quasistatic loading. Applied Mechanics and Materials,. 532, 337-341 doi:10.4028/www.scientific.net/AMM.532.337 (link)

108. I. Smirnov, Y. Petrov, G. Volkov, A. Abramian, S. Verichev, A. Bragov, A. Konstantinov, D. Lamzin (2014) Dynamic Strength of Limestone in Terms of the Incubation Fracture Time CriterionOriginal. Procedia Materials Science 3, 778–783    doi: 10.1016/j.mspro.2014.06.127 (link)

109. S.A. Atroshenko, V.A. Morozov, D.A. Gribanov, A.A. Lukin, Yu. V. Petrov (2014) Metallic Ring Fracture Induced by Magnetic Pulse Loading of Short Duration Original Research Article. Procedia Materials Science, 3,  906-911.  doi: 10.1016/j.mspro.2014.06.147    (link)

110. A.A. Lukin, N.F. Morozov, V.A. Morozov, Yu.V. Petrov (2014) Fracture of Metal Ring Samples Caused by Magnetic Pulse Loading in a Wide Time Range of DurationsOriginal Research Article. Procedia Materials Science, 3, 686-690.   doi: 10.1016/j.mspro.2014.06.113 (link)

111. Morozov N. F., Berinskii I. E., Indeitsev D. A., Privalova O. V., Skubov D. Y., Shtukin L. V. (2014). Oscillation stop as a way to determine spectral characteristics of a graphene resonator. In Doklady Physics 59(6), 254-258.    DOI: 10.1134/S1028335814060068    (link)

112. Morozov N. F., Berinskii I. E., Indeitsev D. A., Skubov D. Y., Shtukin L. V. (2014). A differential graphene-based resonator. In Doklady Physics 59 (7) , 295-298. DOI: 10.1134/S1028335814070040   (link)

113. Indeitsev  D. A., Osipova E. V., Polyanskiy V. A. (2014). A statistical model of hydrogen-induced fracture of metals. In Doklady Physics 59 (11), 534-538.   DOI: 10.1134/S1028335814110093   (link)

114. Yury Meshcheryakov , Alexandre Divakov, Natali Zhigacheva, Boris Barakhtin (2014) Multiscale Deformation and Dynamic Recrystallization in Shock Deformed Aluminum Alloy. - Materials Science Forum Vol. 794-796 pp. 815-820 ©  Trans Tech Publications, Switzerland. DOI 10.4028/www.scientific.net/MSF794-796,815    (link)

115. Yu.I. Meshcheryakov, A.K. Divakov,  H.I.  Zhigacheva., G.V. Konovalov,  B.K. Barakhtin G.Yu. Kalinin., S.Yu.  Mushnikova, O.V. Fomina. (2014Shock-wave behavior of structural nitrogen-bearing steel after heat treatment under various conditions Russian Metallurgy. Pleiades Publishing, Ltd. Vol. 2. No 10. P.826-831. DOI:0.1134/S0036029514100085.10.  (link)

116. D.A. Indeitsev, D.Yu. Skubov, D.S. Vavilov (2014) Problems of describing phase transitions in solids. Mechanics and Model-Based Control of Advanced Engineering Systems: 181-188, doi:10.1007/978-3-7091-1571-8_20 (link)

117. I. Argatov, G. Mishuris, Yu. Petrov (2013) Threshold fracture energy in solid particle erosion. Philosophical Magazine, 93 (19): 2485-2496, doi:10.1080/14786435.2013.780667 (link)

118. N.A. Gorbushin, G.A. Volkov, Yu.V. Petrov (2013) On the effect of the geometrical shape of a particle on threshold energy in erosion damage. Technical Physics, 58 (3): 388–392, doi:10.1134/S1063784213030080 (link)

119. A.M. Bragov, Yu.V. Petrov, B.L. Karihaloo, A.Yu. Konstantinov, D.A. Lamzin, A.K. Lomunov, I.V. Smirnov (2013) Dynamic strengths and toughness of an ultra high performance fibre reinforced concrete. Engineering Fracture Mechanics, 110: 477–488, doi:10.1016/j.engfracmech.2012.12.019 (link)

120. Y.V. Petrov (2013) Structural-temporal approach to modeling of fracture dynamics in brittle media. Rock Dynamics and Applications - State of the Art /Eds J. Zhao, J. Li/ (CRC Press, Taylor & Francis Group, London): 101-110, doi:http://books.google.ru/books?id=BAqLDGzr_8UC&dq=ISBN+978-1-138-00056-8,+petrov&hl=ru&source=gbs_navlinks_s (link)

121. D. Evstifeev, A.A. Gruzdkov, Yu.V. Petrov (2013) Dependence of the type of fracture on temperature and strain rate. Technical Physics, 58 (7): 989-993, doi:10.1134/S1063784213070086 (link)

122. Y. Petrov, N. Selyutina (2013) Dynamic behaviour of concrete and mortar at high strain rates. Materials Physics and Mechanics, 18: 101-107(link)

123. Y. Petrov, I. Smirnov, A. Evstifeev, N. Selyutina (2013) Temporal peculiarities of brittle fracture of rocks and concrete. Frattura ed Integrità Strutturale (Fracture and Structural Integrity - European Structural Integrity Society), 24: 112-118, doi:10.3221/IGF-ESIS.24.12 112 (link)

124. A.E. Mayer, E.N. Borodin, P.N. Mayer (2013) Localization of plastic flow at high-rate simple shear. International Journal of Plasticity, 51: 188-199, doi:10.1016/j.ijplas.2013.05.005 (link)

125. D.Yu. Skubov, D.S. Vavilov (2013) Dynamics of the conductivity solid bodies in a high-frequency alternating magnetic field. Acta Mechanica., doi:10.1007/s00707-013-1025-9 (link)

126. E.N. Borodin, A.E. Mayer (2013) Localization of plastic flow at dynamic channel angular pressing. Technical Physics, 58 (8): 1159-1163, doi:10.1134/S1063784213080070 (link)

127. X.Y.Sun, C.L.Chen, L.Yang, L.X.Lv, S.Atroshenko, W.Z.Shao, X.D.Sun, L.Zhen (2013) Experimental study on modulated structure in Alnico alloys under high magnetic field and comparison with phase-field simulation. Journal of Magnetism and Magnetic Materials, 348: 27-32, doi:10.1016/j.jmmm.2013.07.050 (link)

128. Yu.I. Meshcheryakov, A.K. Divakov, N.I. Zhigacheva, B.K. Baraktin (2013) Regimes of interscal momentum exchange in shock deformed solids. International Journal of Impact Engineering, 57: 99-107, doi:10.1016/j.ijimpeng.2013.01.005 (link)

129. Y.V. Petrov, B.L. Karihaloo, V.V. Bratov, A.M. Bragov (2012) Multi-scale dynamic fracture model for quasi-brittle materials. International Journal of Engineering Science, 61: 3-9, doi:10.1016/j.ijengsci.2012.06.004 (link)

130. V. Smirnov, Y. Petrov, V. Bratov (2012) Incubation time approach in rock fracture mechanics. Science in China Series G Physics Mechanics and Astronomy, 55 (1): 78-85, doi:10.1007/s11433-011-4579-3 (link)

131. G. A. Volkov, N. A. Gorbushin, Yu. V. Petrov (2012) On the dependence of the threshold energy of small erodent particles on their geometry in erosion fracture. Mechanics of Solids, 47 (5): 491-497, doi:10.3103/S0025654412050019 (link)

132. V. A. Morozov, Yu. V. Petrov, G. G. Savenkov (2012) Criterion of Shock-Wave Initiation of Detonation in Solid Explosives . Doklady Physics, 57 (7): 288-290, doi:10.1134/S1028335812070075 (link)

133. A.M. Bragov, B.L. Karihaloo, Yu.V. Petrov, A.Yu. Konstantinov, D.A. Lamzin, A.K. Lomunov, I.V. Smirnov (2012) High-rate deformation and fracture of fiber reinforced concrete. Journal of Applied Mechanics and Technical Physics, 53 (6): 926-933, doi:10.1134/S0021894412060168 (link)

134. Yu.V. Petrov, A.A. Gruzdkov, V.A. Bratov (2012) Structural-temporal theory of fracture as a multiscale process. Physical Mesomechanics, 15 (3-4): 232-237, doi:10.1134/S1029959912020117 (link)

135. E.N. Borodin, A.E. Mayer (2012) A simple mechanical model for grain boundary sliding in nanocrystalline metals. Materials Science and Engineering: A, 532: 245-248, doi:10.1016/j.msea.2011.10.086 (link)

136. E.N. Borodin, A.E. Mayer (2012) Yield strength of nanocrystalline materials under high-rate plastic deformation. Physics of the Solid State, 54 (4): 808-815, doi:10.1134/S1063783412040038 (link)

137. I.I. Argatov, Yu.V. Petrov (2012) Electrical contact resistance and dynamic contact stiffness for a cluster of microcontacts: cross-property connection in the low-frequency range. Philosophical Magazine, 92 (14): 1764-1776, doi:10.1080/14786435.2012.661482 (link)

138. A.Evstifeev, E.Cadoni, Y.Petrov (2012) Incubation time approach to rock dynamic strength characterization. . The European Physical Journal Conferences., 26: 01041, doi:10.1051/epjconf/20122601041 (link)

139. S.N. Gavrilov, G.C. Herman (2012) Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading. Journal of Sound and Vibration, 331 (20): 4464–4480, doi:10.1016/j.jsv.2012.05.022 (link)

140. B.N. Semenov, M.D. Sterlin (2012) The phenomenon of localization of diffusion process in a dynamically deformed solid. Doklady Physics, 57 (4): 171-173, doi:10.1134/S1028335812040052 (link)

141. D. A. Indeitsev, A. K. Abramyan, N. M. Bessonov, Yu. A. Mochalova, B.N. Semenov (2012) Motion of the exfoliation boundary during localization of wave processes. Doklady Physics, 57 (4): 179-182, doi:10.1134/S1028335812040106 (link)

142. Yu.I. Meshcheryakov (2012) Interscale momentum exchange and stead-wave propagation. AIP Conference Proceedings. 17th Biennial Conference of the American Physical Society: 1117-1120, doi:http://dx.doi.org/10.1063/1.3686475 (link)

143. I. Smirnov, S. Atroshenko, Yu. Sudenkov, N. Morozov, Wei Zheng, N. Naumova, Jun Shen (2012) Dynamic properties of bulk metallic glass on the base of Zr. Proceedings of the Conference of the American Physical Society. Shock Compression of Condensed Matter – 2011: 1121-1124, doi:10.1063/1.3686476 (link)

144. Yu.I. Meshcheryakov,A.K. Divakov, B.K. Barakhtin, N.I. Zhigacheva (2012) Interscale momentum exchange in dynamically deformed heterogeneous medium. AIP Conference Proceedings. 17th Biennial Conference of the American Physical Society: 1109-1112, doi:http://dx.doi.org/10.1063/1.3686473 (link)

145. V. Bratov (2011) Incubation time fracture criterion for FEM simulations. Acta Mechanica Sinica, 27: 541-549, doi:10.1007/s10409-011-0484-2 (link)

146. Y.I. Meshcheryakov, A.K. Divakov, N.I. Zhigacheva, B.K. Barakhtin (2011) Threshold regimes and micromechanisms of dynamic straining. Materials Physics and Mechanics, 11 (1): 23-59 (link)

147. V.A. Morozov, Yu.V. Petrov, A.A. Lukin, V.M. Kats, A.G. Udovik, S.A. Atroshenko, D.A. Gribanov, G.D. Fedorovsky (2011) Impact failure of metallic rings by a magnetic pulse technique. Technical Physics, 56 (6): 797-802, doi:10.1134/S106378421106017X (link)

148. G.A. Volkov, V.A. Bratov, A.A. Gruzdkov, V. Babitsky, Yu.V. Petrov, V. Silberschmidt (2011) Energy-based analysis of ultrasonically assisted turning. Shock and Vibration, 18 (1-2): 333-341, doi:10.3233/SAV-2010-0606 (link)

149. E.N. Borodin, A.E. Mayer, V.S. Krasnikov (2011) Wave attenuation in microcrystal copper at irradiation by a powerful electron beam. Current Applied Physics, 11 (6): 1315–1318, doi:10.1016/j.cap.2011.03.062 (link)

150. A.K. Abramyan, N.M. Bessonov, D.A. Indeitsev, Yu.A. Mochalova, B.N. Semenov (2011) Influence of oscillation localization on film detachment from a substrate. Vestnik St. Petersburg University: Mathematics, 44 (1): 5-12, doi:10.3103/S1063454111010031 (link)

151. D.A. Indeitsev, E.V. Osipova (2011) A statistical model of hydride phase formation in hydrogenated metals under loading. Doklady Physics, 56 (10): 523-526, doi:10.1134/S1028335811100028 (link)

152. D.A. Indeitsev, M.D. Sterlin (2011) Dynamics of rearrangement of a solid under physicochemical actions. Doklady Physics, 56 (1): 53-57, doi:10.1134/S1028335811010101 (link)

153. Yu. Mescheryakov, S. Atroshenko, A. Divakov, N. Naumova (2011) The conditions for dynamic recrystallization of metals in shock waves. Proceedings of the Conference of the American Physical Society. Shock Compression of Condensed Matter – 2011, doi:10.1063/1.3686535(link)

154. V.Bratov, Y.Petrov, G.Volkov (2011) Existence of optimal energy saving parameters for different industrial processes. Applied Mechanics and Materials, 82: 208-213, doi:10.4028/www.scientific.net/AMM.82.208 (link)

155. V.A. Morozov, Yu.V. Petrov, A.A. Lukin, V.M. Katz, A.G. Udovik, S.A. Atroshenko, G.D. Fedorovskii (2011) Metal-ring stretching under magnetic-pulse shock action. Doklady Physics, 56 (8): 452-454, doi:10.1134/S1028335811080106 (link)

156. Y.V. Petrov, V. Bratov (2011) Multiscale fracture model for quasi-brittle materials. Applied Mechanics and Materials, 82: 160-165, doi:10.4028/www.scientific.net/AMM.82.160 (link)

157. I.V. Smirnov, Y.V. Petrov, Y.V. Sudenkov, E. Cadoni (2011) Threshold characteristics of short pulse loads causing fracture in concrete and rocks. Applied Mechanics and Materials, 82: 106-111, doi:10.4028/www.scientific.net/AMM.82.106 (link)

158. V. Bratov, Y. Petrov, A. Utkin (2011) Transient near tip fields in crack dynamics. Science China Physics Mechanics and Astronomy, 54 (7): 1309–1318, doi:10.1007/s11433-011-4362-5 (link)

Федеральное Государственное Бюджетное Учреждение Науки

Институт Проблем Машиноведения 
Российской Академии Наук (ИПМаш РАН)