Brief paper

Exciting multi-DOF systems by feedback resonance

Denis Efimov a,1, Alexander Fradkov b,c,d, Tetsuya Iwasaki e

a Institute for Problems of Mechanical Engineering, 61, Bolshoy av., V.O., St-Petersburg 199178, Russia
b National Research University of Information Technology, Mechanics and Optics, Russia
c St. Petersburg State University, Russia
d Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States

Article history:
Received 7 May 2012
Received in revised form 27 August 2012
Accepted 19 January 2013
Available online 19 March 2013

ARTICLE INFO

Article history:
Received 7 May 2012
Received in revised form 27 August 2012
Accepted 19 January 2013
Available online 19 March 2013

ABSTRACT

The mechanism of entrainment to natural oscillations in a class of (bio)mechanical systems described by linear models is investigated. Two new nonlinear control strategies are proposed to achieve global convergence to a prescribed resonance mode of oscillation within a finite time. The effectiveness of the proposed methods for resonance entrainment is demonstrated by examples of computer simulation for linear and nonlinear systems.

1. Introduction

Robotic or animal locomotion is a periodical movement synchronized with the influence of the environment. To minimize energy consumption during movement, body oscillations have to be performed in a resonance mode. For example, the period of walking can be related to the natural frequency of a leg as a pendulum (Holt, Hamill, & Anders, 1991). This fact is of great importance for analysis of the locomotion phenomenon in animals and for robotic system design as well. In this way a fundamental question arises: how does one design a feedback controller ensuring reliable oscillations in (or near) a resonance mode?

An answer to this question is based on the fact that rhythmic animal motions are controlled by neural circuits called the Central Pattern Generator (CPG) (Delcomyn, 1980; Grillner, Buchanan, Walker, & Brodin, 1988; Orlovsky, Deliagina, & Grillner, 1999). CPGs are composed by neural networks generating sustained oscillations and defining the locomotion rhythm. Such a control mechanism of oscillations can be related to the entrainment phenomenon, when one oscillator (CPG) entrains to the frequency and phase of rhythmic movement in another oscillator (in a series or feedback connection). This feedback mechanism is now used in robotics and mechanical systems to regulate locomotion (Futakata & Iwasaki, 2008, 2011). The conditions of resonance regime appearance are analyzed using (multivariable) Harmonic Balance (HB), and hence are approximate in nature.

The goal of this work is to make the next step and develop control methods that achieve resonance entrainment exactly and in a finite time (the system has to oscillate in a resonance mode after a finite time for any initial conditions). Our underlying idea is that not only is the resonance motion energy optimal, but its control mechanism may also be a result of a natural optimization. We use the speed gradient principle (Fradkov, 2007) to arrange the type of behavior that was called feedback resonance in Andrievsky and Fradkov (1999); Fradkov (1999). It is shown that the neural network implementation of the proposed algorithm can have a structure similar to that of Futakata and Iwasaki (2008, 2011), though its functioning can be completely different.

The main results present two dynamical output controls for a class of multiple degree-of-freedom (DOF) mechanical systems: a finite-time control (with an energy-optimal excitation mechanism) and an energy/phase regulator. The former achieves a prescribed mode of natural oscillations in a finite time, while the latter allows for regulation of the energy and phase for every mode. The
properties of these control laws are precisely characterized with rigorous proofs. It is assumed that only the position of the mechanical system is available for measurements.

Preliminary results are presented in Section 2, where the resonance controls based on the speed gradient approach (Andrievsky & Fradkov, 1999; Efimov & Fradkov, 2007b, 2012; Fradkov, 1999) are introduced and applied to a single-DOF linear pendulum. Optimality of a form of the speed gradient algorithm for energy excitation in a linear pendulum has been shown in Andrievsky (2005). The problem statement of natural oscillation entrainment in linear mechanical multi-DOF systems is presented in Section 3: the relation between the entrainment of a single-DOF system and a multi-DOF one is shown. Two control algorithms based on the results from Efimov and Fradkov (2007b, 2012) are developed. The efficiency of the obtained control algorithms is demonstrated by examples of numerical simulation in Section 4. By computer simulation, it is shown that the proposed control strategy can also be applied to resonance control of nonlinear systems.

2. Preliminary results

In this section, we will develop basic control strategies by applying the results from Andrievsky (2005), Andrievsky and Fradkov (1999), Efimov and Fradkov (2007b, 2012), and Fradkov (1999) to the linear model of a pendulum:

$$\ddot{x} + \kappa \dot{x} + \omega^2 x = bu,$$

where $x \in \mathbb{R}$ is the angle of pendulum rotation, $\dot{x} \in \mathbb{R}$ is the angular velocity, $u \in [-U, U]$ is the control, $U \in \mathbb{R}_+$ is the maximal control amplitude, $\kappa \in \mathbb{R}_+$ is the friction coefficient, $\omega \in \mathbb{R}_+$ is the frequency of oscillations without friction, and $b \in \mathbb{R}, b \neq 0$, is the control gain. It is assumed that $\omega > 0.5\kappa$; in this case, the transfer function of system (1) has poles $\lambda_{1,2} = -0.5\kappa \pm \omega 0_1 i$ with nonzero imaginary part $\omega 0_1 = \sqrt{\omega^2 - \kappa^2/4}$, where $\omega 0_1$ is the natural frequency of oscillations for (1). Typically, oscillations with frequency $\omega 0_1$ are called resonant for (1). It is worth noting that the Bode magnitude plot of system (1) reaches its maximum at the frequency $\omega 1 = \sqrt{\omega^2 - \kappa^2/2}$ if $\omega > \kappa/\sqrt{2}$, and at zero frequency otherwise (for the variable x, the resonant frequency is ω). The difference between the frequencies $\omega, \omega 0_1, \omega 1$ is minor if the value of κ is sufficiently small, as it is usually in practice, and that is the case under consideration, i.e., $\omega \gg \kappa/\sqrt{2}$.

Due to constraint on the control amplitude, the problem of excitation of the resonance oscillations becomes meaningful from a practical point of view. If it is required to ensure oscillations with the maximal amplitude for a given amplitude of the control, then the resonance mode is a solution. The question is how to design such a control $u = u(x, \dot{x}), |u| \leq U$ providing system oscillations with frequency $\omega 0_1$ or $\omega 1$. An additional goal consists in the oscillation phase resetting.

2.1. Controls for stabilization/excitation of the linear pendulum

Let us first recall a simple control law that achieves convergence to the resonant oscillation in finite time. In the paper Andrievsky (2005), it is shown that the control

$$u = U \text{ sign}(\dot{x})$$

(2)
is the optimal solution of the terminal energy maximization problem. The solutions of system (1) with control (2) are understood in the Filippov sense (Filippov, 1988) (see also Yakubovich, Leonov, & Gelig, 2004, for a more general definition); roughly speaking, it is an absolutely continuous function of time passed through the given initial conditions and satisfying the differential inclusion (1), (2) with

$$\text{sign}(s) = \begin{cases} s/|s| & \text{if } s \neq 0; \\ [-1, 1] & \text{if } s = 0; \end{cases}$$

the value sign(0) = 0 is used for simulations/experiments. Since control (2) is piecewise constant, solutions of system (1), (2) can be presented as follows:

$$x(t) = e^{-\kappa t/2} [\omega 0_1^{-1} (\dot{x}(0) + \kappa [x(0) - s_0]/2)] \sin(\omega 0_1 t) + [x(0) - s_0] \cos(\omega 0_1 t) + s_0;$$

$$\dot{x}(t) = e^{-\kappa t/2} [\dot{x}(0) \cos(\omega 0_1 t) - \omega 0_1^{-1} (\omega^2 [x(0) - s_0] + \kappa x(0)/2)] \sin(\omega 0_1 t)].$$

$s_0 = bu/2U \text{ sign}(\dot{x}(0))$

for $t \in [0, t_1)$, where

$$t_1 = \frac{1}{\omega 0_1 \text{ atan} \left(\frac{\omega 0_1 \dot{x}(0)}{\omega^2 [x(0) - s_0] + \kappa x(0)/2} \right)}$$

is the instant of time when $\dot{x}(t_1) = 0$ (for the first time). Introduce $t_i, i \geq 1$, as the sequence of instants satisfying constraints $\dot{x}(t_i) = 0$ and $\dot{x}(t) \neq 0$ for $t \neq t_i, i \geq 1$. For $t \in [t_i, t_{i+1}), i \geq 1$, we have

$$x(t) = e^{-\kappa (t-t_i)/2} [x(t_i) - s_i] \omega 0_1^{-1} \omega \sin(\omega 0_1 (t - t_i)) + \cos(\omega 0_1 (t - t_i)) + s_i,$$

$$\dot{x}(t) = -e^{-\kappa (t-t_i)/2} [x(t_i) - s_i] \omega 0_1^{-1} \omega \sin(\omega 0_1 (t - t_i)),$$

$s_i = -s_{i-1}$.

From the expression above we have that $t_{i+1} - t_i = \pi/\omega 0_1, i \geq 1$. Therefore, control (2) ensures that the trajectory of system (1) converges to oscillations with frequency $\omega 0_1$ (Efimov & Fradkov, 2007b) (the resonance oscillations in finite time t_i). The analysis reviewed above previously led to the following result.

Lemma 1 (Andrievsky, 2005; Efimov & Fradkov, 2007b). For system (1) with control (2), the following statements are true:

1. there is convergence in finite time t_i to oscillations with frequency $\omega 0_1$;
2. the asymptotic amplitude of oscillations for the variable x is $\gamma_0 = -bu/2U (1 + e^{-\kappa t_i/2} + 2e^{-\kappa t_i/2} \omega 0_1/\omega 0) (1 - e^{-\kappa t_i/\omega 0_1})$.

Note that control (2) is independent of values ω and κ of the system parameters.

In the paper (Efimov & Fradkov, 2007b), an adaptive algorithm for amplitude adjustment in control (2) is proposed ensuring a required amplitude of oscillations on the limit cycle γ_0 for the case of unknown values of the parameters of pendulum (1). In the paper (Efimov & Fradkov, 2007a), the same problem (excitation to the resonance mode of pendulum (1) for unknown values of parameters) is solved using the adaptive observer technique. Control (2) is related to the mechanism of positive rate feedback with saturation discussed in Futakata and Iwasaki (2008).

Control law (2) does not regulate the phase of oscillations. In addition, the resulting oscillations in the resonance mode have non-constant energy E:

$$E(x, \dot{x}) = 0.5[\dot{x}^2 + \omega 0_1^2 x^2], \quad \dot{E} = -\kappa \dot{x}^2 + bu\dot{x}.$$

For $\kappa = 0$, each fixed value of the energy E corresponds to an oscillation with the angle amplitude $\sqrt{2E}/\omega 0_1$; the presence of friction leads to energy dissipation. The control presented in Efimov and Fradkov (2012) makes the regulation of both the energy E and the phase $\psi \in [-\pi, \pi)$, for 1D and 2D lattices of linear oscillators without friction. Below, we will generalize the previous control law to deal with damped systems. The idea is based on the “action–angle” transformation of coordinates (E, ψ):

$$E = 0.5[\dot{x}^2 + \omega 0_1^2 x^2], \quad \psi = \text{ atan} \left(\frac{\dot{x}}{\omega 0_1 x} \right).$$
which has a well-defined inverse:
\[x = \omega^{-1}\sqrt{2E} \cos(\phi), \quad \kappa = \sqrt{2E} \sin(\phi). \]

In the new coordinates, the pendulum equations (1) can be rewritten as follows:
\[
\dot{E} = \sqrt{2E} \sin(\phi) \left[bu - \kappa \sqrt{2E} \sin(\phi) \right],
\]
\[
\dot{\psi} = \cos(\phi)bu / \sqrt{2E} - \kappa \cos(\phi) \sin(\phi) - \omega,
\]

which are well defined for any \(E > 0 \) (if \(E = 0 \), then the system is at the origin). Let \(E_0 > 0 \) and \(\psi_0(t) = \phi_0 - \omega t, \phi_0 \in [-\pi, \pi] \), be the desired energy and phase values, respectively; then the control \(u \) can be chosen in the form
\[
u = \begin{cases}
 b^{-1}\kappa \sqrt{2E} \sin(\phi) - \rho_1(\psi_1) & \text{if } V \leq 0.5E_0^2, \\
 b^{-1}\kappa \sqrt{2E} \sin(\phi) - \rho_2(\psi_2) & \text{if } (V(E), E) \in \Omega_{V,E},
\end{cases}
\]
(3)

\[\Omega_{V,E} = \{(V, E) \in \mathbb{R}_+^2 : V > 0.5E_0^2, E \leq E_0, \} \]

\[V = 0.5(E - E_0)^2 + E_0^2 \pi^{-2} (\psi - \psi_0(t))^2, \]

\[\psi_1 = \psi_2 + bE_0^2 \pi^{-2} (\psi - \psi_0(t)) \cos(\phi) / \sqrt{2E}, \]

\[\psi_2 = b(E - E_0) \sqrt{2E} \sin(\phi), \]

where \(\psi_1, \rho_1(\psi) > 0, i = 1, 2 \) for any \(\psi_t \neq 0 \) and \(|\rho_1(\psi_1)| \leq U - 2b^{-1}\kappa \sqrt{2E_0} \left(\text{it is assumed that } U > 2b^{-1}\kappa \sqrt{E_0} \right). \]

Lemma 2. For system (1), control (3) ensures the boundedness of solutions with the limit relations
\[\lim_{t \to +\infty} E(t) = E_0, \quad \lim_{t \to +\infty} |\psi(t) - \psi_0(t)| = 0 \]
(4)

for any \(E(0) \in \mathbb{R}_+ \) and \(\psi(0) \in [-\pi, \pi] \); in addition, \(|u| \leq U \).

Proof. First, assume that \(V(t') \leq 0.5E_0^2 \) for some \(t' \geq 0 \), and consider the Lyapunov function \(V \) behavior for system (1) and control (3) for \(t \geq t' \); we obtain
\[\dot{V} = -\psi_1 \rho_1(\psi_1) \leq 0. \]

Therefore, \(V(t) \leq V(t') \leq 0.5E_0^2 \) for all \(t \geq t' \). Since |\(\psi - \psi_0(t) | \leq \pi \) by the phase definition, the relation \(V(t) \leq 0.5E_0^2 \) implies that \(E(t) \leq 2E_0 \) for all \(t \geq t' \). From the definition of control (3), for \(V \leq 0.5E_0^2 \), we get that \(|u| \leq U \) in this case. Next, the errors \(E - E_0 \) and \(\psi - \psi_0(t) \) stay bounded for all \(t \geq 0 \). This fact, for any finite value \(E_0 \), implies boundedness of the state variables \(x(t) \) and \(\dot{x}(t) \). According to the properties of function \(\rho_1, V = 0 \) if and only if \(\psi = 0 \). Since all trajectories of the system are bounded, asymptotically they converge to an invariant set where \(\psi = 0 \). The desired asymptotic convergences \(E(t) \to E_0 \) and \(\psi(t) \to \psi_0(t) \) follow the observability property: \(\psi_1(t) = 0 \) for \(\forall t \geq 0 \) implies that \(V(t) = 0 \). Indeed, assume that \(\psi_1(t) = 0 \), \(V(t) \leq 0.5E_0^2 \) for \(\forall t \geq 0 \); then \(u = b^{-1}\kappa \sqrt{2E} \sin(\phi) \) and system (1) with this control can be simplified as follows:
\[\dot{E} = 0, \quad \dot{\psi} = -\omega. \]

Therefore, \(E(t) = E_0 \) and \(\psi(t) = \phi_0 - \omega t \) for all \(t \geq 0 \) for some \(E_0 \geq 0 \) and \(\phi_0 \in [-\pi, \pi] \); then
\[
\psi_1(t) = b \left[(E_0 - E_0) \sqrt{2E_0} \sin(\phi_0 - \omega t) + E_0^2 \pi^{-2} (\phi_0 - \phi_0) \cos(\phi_0 - \omega t) / \sqrt{2E_0} \right] = 0
\]
for all \(t \geq 0 \) by the assumption. However, the last quantity can be true only for \(E_0 = E_0 \) and \(\phi_0 = \phi_0 \), that is necessary to prove (the relations (4) are satisfied).

Second, consider the general case when \(V(t) > 0.5E_0^2 \) for \(t \geq 0 \). Consider an auxiliary Lyapunov function \(W = 0.5(E - E_0)^2 \), whose derivative has the form
\[\dot{W} = (E - E_0) \sqrt{2E} \sin(\phi) \left[b[u - \rho_2(\psi_2)] - \kappa \sqrt{2E} \sin(\phi) \right], \]

where \(u = 0 \) for \(E > E_0 \) and \(u = b^{-1}\kappa \sqrt{2E} \sin(\phi) \) for \(E \leq E_0 \). If \(E \leq E_0 \), then \(\dot{W} = -\psi_2 \rho_2(\psi_2) \); if \(E > E_0 \), then
\[\dot{W} = -\psi_2 \rho_2(\psi_2) - 2x(E - E_0) \sin(\phi) \leq -\psi_2 \rho_2(\psi_2). \]

Therefore, \(\dot{W} = -\psi_2 \rho_2(\psi_2) \leq 0 \) whenever \(V > 0.5E_0^2 \). Due to the form of \(W \) and \(\psi_2 \), the energy \(E(t) \) stays bounded, the error \(|E(t) - E_0|\) is not increasing, and \(|u| \leq U \) in this case also. Using partial detectability arguments (Shiriaev, 2000; Shiriaev & Fradkov, 2001), we can prove that in this case \(\lim_{t \to +\infty} E(t) = E_0 \) if \(|V(t)| > 0.5E_0^2 \) for \(\forall t \geq 0 \). However, if \(E(t) = E_0 \), then \(V(t) \leq 0.5E_0^2 \). Consequently, either \(\lim_{t \to +\infty} |V(t)| = |\psi(t) - \psi_0(t) \) under the condition \(V(t) > 0.5E_0^2 \), which is satisfied for all \(t \geq 0 \) and (the stabilization goals (4) are achieved simultaneously), or \(\psi(t) \neq \psi_0(t) \), and there is a finite time instant \(t' \geq 0 \) such that \(V(t') \leq 0.5E_0^2 \). Next, according to the consideration above, \(V(t) \leq 0.5E_0^2 \) for all \(t \geq t' \), and the required limit relations (4) hold. In both cases, the variables \(x \) and \(\chi \) stay bounded under \(|u| \leq U \).

It is worth stressing that, if \(E(t') = 0 \) for some \(t' \geq 0 \), then it becomes possible to have \(|\psi(t')| = \infty \), but, due to the stated boundedness of \(\rho_1 \), the control input stays finite. In this case, control (3) generates an exciting pulse, which pushes the trajectory away from the origin \((E(t') = 0) \).

Later in this paper, controls (2) and (3) will be used to excite a resonance mode of oscillations in a finite time for multi-DOF systems. When achieving the resonance entrainment to a prescribed mode, it is important to attenuate the other oscillation modes at the same time. For this purpose, we are also interested in the finite-time stabilization of system (1). In applications, an asymptotic achievement of a control goal may not be considered satisfactory when one has to pass from one task to another within a finite time frame. During robotic locomotion for instance, it may be required that switching from walking to running be completed after a finite-time transient. At a conceptual level, such requirement may be formalized as a finite-time transition from one mode of resonance oscillation to another. To this end, we propose the following control to achieve finite-time convergence of every trajectory of (1) to the origin:
\[u = -\beta \sigma(x) - (\beta + \epsilon) \sigma(x) / \alpha(\beta + \epsilon) + \chi, \]
(5)

where \(2\beta + \epsilon = U \) and \(\beta > 0, \epsilon > 0 \) are the design parameters.
\textbf{Proof.} Consider the following coordinate transformation for system (1) and control (5):

\[
\begin{align*}
\hat{\xi}_1 &= \kappa \dot{x} / \omega^2 + x, \\
\hat{\xi}_2 &= \kappa [-\omega^2 \dot{\xi}_1 + bu] / \omega^2 + \dot{\xi}_2, \\
\hat{\xi}_2 &= -\omega^2 \dot{\xi}_1 + bu;
\end{align*}
\]

Consider the Lyapunov function \(V(\hat{\xi}_1, \hat{\xi}_2) \) for this system; then

\[
\dot{V} = 0.5 \omega^2 \xi_1 (\kappa [-\omega^2 \dot{\xi}_1 + bu] / \omega^2 + \xi_2) + 0.5 \omega^2 (\dot{\xi}_1 - \kappa \xi_2 / \omega^2) (\kappa [-\omega^2 \dot{\xi}_1 + bu] / \omega^2)
+ b \beta (\beta + \epsilon) \text{sign}(\xi_1) (\kappa [-\omega^2 \dot{\xi}_1 + bu] / \omega^2)
\]

\[
= -0.5 \kappa \omega^2 \dot{\xi}_1^2 - 0.5 \kappa \dot{\xi}_2^2 - b (\beta + \epsilon) \kappa |\xi_1| + 0.5 \kappa b \dot{\xi}_1 u + b \dot{\xi}_2 u + \kappa b (\beta + \epsilon) \text{sign}(\xi_1) u / \omega^2 + b (\beta + \epsilon) \text{sign}(\xi_1) \dot{\xi}_2
\]

This inequality implies global asymptotic stability of the system. To prove the finite-time stability note that \(\sqrt{a + b} \leq \sqrt{a} + \sqrt{b} \) for any \(a, b \in \mathbb{R}^+ \); then

\[
\begin{align*}
\dot{V} &\leq 0.5 \omega |\xi_1| + \sqrt{0.5} |\xi_2| \\
&\quad + 0.5 \omega |\xi_1 - \kappa \xi_2 / \omega^2| + \sqrt{b (\beta + \epsilon)} \sqrt{|\xi_1|}
\leq \omega |\xi_1| + \left(\sqrt{0.5} + 0.5 \kappa / \omega \right) |\xi_2| + \sqrt{b (\beta + \epsilon)} \sqrt{|\xi_2|}.
\end{align*}
\]

Using the relation \(\sqrt{a} \leq 3 \sqrt{2}/8 \text{sign}(a)^2 + a^2 \), which is valid for any \(a \in \mathbb{R} \), we finally obtain

\[
\dot{V} \leq \omega |\xi_1| + \left(\sqrt{0.5} + 0.5 \kappa / \omega \right) |\xi_2| + \sqrt{b (\beta + \epsilon)} \left[3 \sqrt{2}/8 \text{sign}(\xi_1)^2 + \xi_1^2 \right].
\]

Then, for the defined \(\mu \), we have

\[
\dot{V} \leq -\mu \sqrt{V}.
\]

The corresponding solution in the time domain satisfies the following inequality for all \(t \geq 0 \):

\[
V(t) \leq \left(\sqrt{V(0)} - 0.5 \mu t \right)^2.
\]

Since \(V(t) \geq 0 \), the function \(V(t) \) has to reach zero in a time \(t_0 \) smaller than time \(T_0 \).

\[\square \]

2.2. Differentiation

Frequently, in applications, only the angle position \(x \) is available for measurements, while controls (2), (3) and (5) are based on the velocity \(\dot{x} \). We will use the following nonlinear filter, which has been proposed in Efimov and Fridman (2011) to evaluate \(\dot{x} \) in a finite time.

\[\text{Lemma 4 (Efimov \\& Fridman, 2011). Let } |\dot{x}(t)| \leq L_1 \in \mathbb{R}_+, |\ddot{x}(t)| \leq L_2 \in \mathbb{R}_+, \text{ for all } t \geq 0. \text{ Then the filter} \]

\[
\begin{align*}
\dot{\zeta}_1 &= -\sigma \text{sign}[\zeta_1 - x(t)] - \chi \text{sign}(\zeta_2) - \zeta_2, \\
\dot{\zeta}_2 &= -\sigma \text{sign}[\zeta_1 - x(t)] - \chi \text{sign}(\zeta_2) - \zeta_2,
\end{align*}
\]

where

\[
\begin{align*}
\chi &= 0.25 \sqrt{2} \zeta_1 + \varphi, \\
\sigma &= L_1 + L_2 + 3 \chi,
\end{align*}
\]

\[
\alpha = 4 \left[\sqrt{2(\sigma^2 + L_1^2 + L_2^2 + 2 \chi^2)} \right] + \frac{3 \chi}{\sigma^2 - L_1^2 - L_2^2 - 2 \chi}.
\]

\[\text{for some } \varphi \in \mathbb{R}_+, \text{ has bounded solutions, and } \zeta_2(t) = \ddot{x}(t) \text{ for all } t \geq T_0 \text{ with } T_0 \leq \zeta_1 / \left(0.25 \sqrt{2} \zeta_1 + \varphi \right). \]

3. Main results

This section extends the feedback resonance mechanism of controls (2) and (3) for the single-DOF system to the multi-DOF system:

\[
J \ddot{x} + D \dot{x} + Sx = Bu, \quad y = Cx,
\]

where \(x \in \mathbb{R}^n \) is the vector of generalized coordinates, and \(u \in \mathbb{R}^m \) and \(y \in \mathbb{R}^m \) are the input and the output, respectively.

\[\text{Assumption 5. The inertia, damping, and stiffness matrices satisfy} \]

\[
J = J^T > 0, \quad S = S^T > 0, \quad D = \varrho S, \quad \varrho > 0, \quad \text{rank}(B) = \text{rank}(C) = m, \quad m = n.
\]

Eq. (8) with Assumption 5 captures a fairly general class of standard mechanical systems with mass, stiffness, and damping elements, linearized around an equilibrium point. Two restrictions are imposed by Assumption 5. One is that \(B \) and \(C \) are square invertible, implying that all the degrees of freedom are fully actuated and measured. The other is the Rayleigh damping \(D = \varrho S \), which is commonly used in structural dynamics to capture uncertain dissipation effects. These assumptions make the analysis simple enough to provide insights into the natural entrainment mechanism.

In addition, the conditions in Assumption 5 are frequently met in biological systems (Futakata \\& Iwasaki, 2008, 2011). A musculoskeletal body can be viewed as a set of rigid links connected by rotational joints. At each joint, the muscle and tendon serve as an origin of visco-elastic property, being also a torque actuator. The muscle length is fed back to the motor control system through stretch receptors, and collocation arises naturally in biomechanics. In this case, the stiffness \(S \) and the damping \(D \) matrices share the same structure.

A natural mode of (8) is defined by a pair of the natural frequency \(\omega_0 \in \mathbb{R}_+ \) and the mode shape \(\hat{\xi}_i \in \mathbb{R}^n \) satisfying \(S - \omega_0^2 \hat{\xi}_i = 0 \), \(i = 1, \ldots, n \) (where the symbol \(1, \ldots, n \) is used to denote the sequence of integers 1, 2, \ldots, \(n \)). For brevity of presentation we will assume that all \(\omega_0 \), \(i = 1, \ldots, n \) are different (the approach can be easily extended to the multiple case). We will also assume that the controller is allowed to have centralized information processing.
3.1. Natural oscillation entrainment problem

The problem of natural oscillation entrainment can be formulated now as follows. Design a control u ensuring that the system (8) oscillates at a selected natural frequency ω_k, $k \in \{1, \ldots, n\}$. Our approach is based on the transformation $x = Pz$ of system (8) to the normal mode canonical form:

$$\dot{z} + K\dot{z} + \Omega z = Ru,$$

where

$$\Omega = P^{-1}J^{-1}SP = \text{diag}([\omega_1^2, \ldots, \omega_n^2]),$$

$$K = P^{-1}J^{-1}DP = \text{diag}([\kappa_1, \ldots, \kappa_n]),$$

$$R = P^{-1}J^{-1}B, \quad \kappa_i = \rho \omega_i^2, \quad i = 1, n,$$

and the columns of the matrix P are composed of the vectors ξ_i. Under Assumption 5, we may assume that the vector $x = C^{-1}y$ is available for measurements (matrix C has rank n). By the same arguments, since $\text{rank}(B) = n$, matrix K is non-singular, and, by introducing an auxiliary control $\nu = Ru$, we may rewrite system (9) as a system of independent subsystems (10):

$$\dot{z}_i + \kappa_i \dot{z}_i + \omega_i^2 z_i = \nu_i, \quad i = 1, n.$$

Thus, to choose ν_i, $i = 1, n$, controls (2), (3) and (5) can be used. The ith system in (10) is responsible for the oscillation of system (8) on the frequency ω_i or $\omega_0 = \sqrt{\omega_i^2 - \kappa_i^2}/4$. Stabilization of the ith normal mode at the origin (zero energy level) implies elimination of the frequency ω_i from the frequency spectrum of the oscillation of system (8). Thus to solve the problem of natural oscillation entrainment to frequency ω_i, it is necessary to stabilize at the origin all normal modes with $\omega_i \neq \omega_0$ providing a sufficient level of excitation for the kth mode. For reference purpose, define the set of canceling normal modes $\mathcal{J} = \{1, \ldots, n\} \setminus \{k\}$.

3.2. Finite-time control

We choose control (2) to excite the kth mode, and control (5) to attenuate the other modes. Differentiator (6) is used to calculate velocities.

Theorem 6. Let Assumption 5 be satisfied and a constant $U > 0$ be given. Then the control

$$u = R^{-1}v, \quad v = [v_1, \ldots, v_n]^T,$$

$$\nu_k = U\text{sign}(\hat{z}_k),$$

$$\nu_j = -\beta \text{sign}(\hat{z}_j)(\beta + \epsilon)\text{sign}(\kappa_j \hat{z}_j/\omega_j^2 + z_j), \quad j \notin \mathcal{J},$$

where $2\beta + \epsilon$ and $\beta - \epsilon$ for the 4th mode excitation z_k is identical to (1), and the controls ν_j is used as in (3) for all $j \notin \mathcal{J}$, providing a sufficient level of excitation for the kth mode. For future reference, define the set of canceling normal modes $\mathcal{J} = \{1, \ldots, n\} \setminus \{k\}$.

Proof. The control u and the auxiliary inputs $\nu_i, i = T, n$ are always bounded by construction. Then the solutions of the systems (10) are bounded for all $i = T, n$ (since $\kappa_i > 0$ and $\omega_i^2 > 0$). Moreover, for any initial conditions, the trajectories of the systems (10) have to converge in finite time to the set where $|z_i| \leq L_{i,1}$ and $|z_i| \leq L_{i,2}$, $i = T, n$. Indeed, for the Lyapunov function $S(z, \dot{z}) = 0.5[0.5\omega_i^2(\dot{z}_i + \kappa_i \dot{z}_i)^2 + \dot{z}_i^2 + 0.5\omega_i^2 z_i^2]$, we have

$$\dot{S} \leq -0.25\omega_i^2 \kappa_i (z_i + \kappa_i \dot{z}_i/\omega_i^2)^2 - 0.25\kappa_i \dot{z}_i^2 + \epsilon_i v_i^2 \leq -\nu_i S + \epsilon_i v_i^2,$$

which for $z_i = [z_i, \dot{z}_i]^T$ implies that $S(t) \leq S(0) \leq 0.5\omega_i^2 \kappa_i^2 \leq 0.5\omega_i^2 \kappa_i^2 (t) \leq S(t) \leq 2\epsilon_i v_i^2$ for all $t \geq T$, $t \in \mathcal{R}$. Therefore, $\|z_i(t)\| \leq \sqrt{2\epsilon_i/(\eta_i v_i)} U$ and $|z_i(t)| \leq \sqrt{2\epsilon_i/(\eta_i v_i)} U = L_{i,1}$, $|\dot{z}_i(t)| \leq (\kappa_i + \omega_i^2) L_{i,1} + U = L_{i,2}$ for all $t \geq T$. In this case, according to Lemma 4, there is a finite time $T_0 \geq T$, such that $z_i = \zeta_i, i = T, n$, the control u_k is $U\text{sign}(\hat{z}_k)$ is identical to (1), and the controls ν_j is used as in (3) for all $j \notin \mathcal{J}$ coincide with (5). Thus from Lemmas 1 and 3 there are time instants $t_{k,i} \geq T_0$ and $t_{j,i} \geq T_0$ such that the kth mode oscillates on the frequency ω_k for $t \geq t_{k,i}$, while all other modes are canceled for $t \geq t_{j,i}$.

In this theorem, the upper limit of the control u is introduced for brevity of formulation (it can be recalcuated from an upper bound of the control u). Unlike the algorithms of Futakata and Iwashaki (2008, 2011), the control methods proposed in this paper achieve resonance entrainment exactly and in finite time with an optimal performance. These advantages are based on a special structure of controls (2), (3) and a nonlinear differentiation algorithm used for estimation of the derivatives \dot{z}_j.

This control has a neural network interpretation given in Fig. 1. As in Futakata and Iwashaki (2011), the network has linear input and output layers and a nonlinear CPG hidden layer.

3.3. Energy-phase regulation

Let $E_d > 0$ be the desired value of energy $E_k = 0.5[z_k^2 + \omega_k^2 z_k^2]$ for the kth mode excitation and $\psi_d(t) = \phi_d - \omega_k t_0$, $\phi_d \in [-\pi, \pi]$ be the desired trajectory of the phase for this mode. In this case, control (3) can be applied to the kth mode for its excitation and phase resetting. For the jth modes with $j \notin \mathcal{J}$, to attenuate the oscillations, control (5) can be used as before. Differentiator (6) calculates the estimates of velocities.

Theorem 7. Let Assumption 5 be satisfied and a constant $U > 2\kappa_k/\sqrt{E_d}$ be given. Consider the control

$$u = R^{-1}v, \quad v = [v_1, \ldots, v_n]^T,$$

$$\nu_k = \begin{cases} \kappa_k \dot{z}_k - \rho_1 (\dot{\psi}_1) & \text{if } \dot{V} \leq 0.5E_d^2, \\ \dot{z}_k - \rho_2 (\dot{\psi}_2) & \text{if } \dot{V} > 0.5E_d^2 \text{ and } \hat{E}_k \leq E_d, \\ -\rho_2 (\dot{\psi}_2) & \text{if } \dot{V} > 0.5E_d^2 \text{ and } \hat{E}_k > E_d, \end{cases}$$

$$\dot{\psi}_1 = v_2 + 0.5\epsilon_k E_d^2 \dot{\psi}_1 (\dot{\psi}_1 - \psi_d(t))z_k/\hat{E}_k,$$

$$\dot{\psi}_2 = (\hat{E}_k - E_d) \dot{z}_k,$$

$$\hat{E}_k = 0.5[z_k^2 + \omega_k^2 z_k^2], \quad \dot{\psi}_k = \text{atan} \left(\frac{\dot{z}_k}{\omega_k z_k} \right), \quad j \notin \mathcal{J},$$

where $\epsilon_k = \kappa_k \min \left\{ \frac{1}{3}, \frac{0.5}{1 + \omega_k^2 k_k^2} \right\}$, $\epsilon_i = 0.25\kappa_i \omega_i^2 - k_i^{-1}$, ensures for system (8) boundedness of solutions and natural oscillation entrainment for all initial conditions in a finite time.
where the functions ϕ_i, $i = 1, 2$ are chosen to satisfy $\dot{\psi}_i\psi_i > 0$ for any $\psi_i \neq 0$, $|\rho_1(\psi_1)| \leq U - 2\kappa\sqrt{E_d}$, $|\rho_2(\psi_2)| \leq U - \kappa\sqrt{E_d}$, and the estimates $\dot{\xi}$ are generated by differentiators (12) with parameters α, σ, and χ, calculated in accordance with (7), (13). Control (14) ensures boundedness of solutions of system (8) and natural oscillation entrainment with phase regulation for all initial conditions.

Proof. Again, the control u and the auxiliary inputs u_0, $i = 1, n$ are always bounded by construction ($|u_0| \leq U$). Then the solutions of systems (10) are bounded for all $i = 1, n$ and for any initial conditions the trajectories of (10) have to converge in finite time to the set where $|\xi| \leq L_{1,i}$ and $|\xi| \leq L_{2,i}$, $i = 1, n$ (the constants $L_{1,i}$, $L_{2,i}$ are specified in (13); this can be proven using the Lyapunov function S as before). In this case, according to Lemma 4, there is a finite time $T_0 \geq t_0$ such that $\xi(t) = \xi(t_0)$ for $t \geq T_0$. Then the control ν_k is identical to (3), and the controls $\nu = -\beta \text{sign}(\dot{\xi}) - (\beta + \varepsilon)\text{sign}(\kappa_2\dot{\xi}/\omega_0^2 + \dot{\xi})$ for all $j \in \mathcal{J}$ coincide with (5). Thus from Lemmas 2 and 3 there are auxiliary inputs $\tilde{t}_j \geq T_0$ such that the modes in \mathcal{J} are canceled for all $t \geq T_0$. In addition,

$$\lim_{t \to +\infty} E_k(t) = E_d, \quad \lim_{t \to +\infty} [\psi_k(t) - \psi_d(t)] = 0. \quad \square$$

Control (14) also admits a neural network interpretation skipped for brevity.

4. Application

In this section, we consider a mechanical arm on a horizontal plane from Futakata and Iwasaki (2011), which is formed as a chain of three rigid links connected to each other by two rotational joints. The ith link has mass m_i and length $2\ell_i$ ($i = 1, 2, 3$), and the first link is connected to the inertial frame through a rotational joint. A spring of stiffness k_i is mounted at the ith joint, a dashpot of damping coefficient is ρ_i, and each joint is connected to an actuator that generates the controlling torque u_i. As in Futakata and Iwasaki (2011), we selected

$$m_i = 1, \quad \ell_i = 0.5, \quad k_i = 1, \quad \rho = 0.1.$$

First, let us take the linear part of the example from Futakata and Iwasaki (2011):

$$J = \frac{1}{12} I_3 + Q,$$

$$B = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}, \quad C = B^T, \quad S = BC,$$

$$Q = L^T L, \quad L = \begin{bmatrix} 0.5 & 0 & 0 \\ 1 & 0.5 & 0 \\ 1 & 1 & 0.5 \end{bmatrix}, \quad \phi = 0.1,$$

where I_3 is the identity matrix with dimension 3×3. This system has natural frequencies

$$\omega = \sqrt{[5.146 \ 1.915 \ 0.292]^T}.$$

In Fig. 2, the results of application of control (11) are shown, where

$$\mathcal{J} = \begin{cases} \{1, 3\} & \text{if } t \leq 25; \\ \{2, 3\} & \text{if } t > 25 \end{cases}, \quad U = \begin{cases} 1 & \text{if } t \leq 25; \\ 5 & \text{if } t > 25, \end{cases}$$

$$\varepsilon = U/3 \text{ and } \eta = 10.$$

Thus, for $t \leq 25$, the system oscillates with frequency $\omega_2 = 1.915$; next, for $t > 25$, control (11) activates natural oscillations with $\omega_1 = 5.146$ in finite time. Such a change of oscillation frequency (or a normal mode) corresponds to a transition from the “walking” mode to the “running” one in animals. As we can see from this figure, the canonical form variables z are canceled or excited in a finite time corresponding to the chosen mode (one component of z is oscillating; the rest equal zero). For the state variable x this results in a common frequency of oscillation change. Since the modes in \mathcal{J} are canceled sufficiently quickly (comparing with the system time scales), the frequencies in \mathcal{J} almost do not influence the x behavior.

The results of the application of control (14) for the same time-varying set \mathcal{J} and $U = 1$, $E_d = 1$, $\phi_d = \frac{2\pi}{T}$, $\rho_i(\psi_1) = (U - 2\kappa\sqrt{E_d})\tanh(5\psi)$, $\rho_2(\psi_2) = (U - \kappa\sqrt{E_d})\tanh(5\psi)$ are shown in Fig. 3 (the trajectories $x(t)$ and $z(t)$ are given in Fig. 3(a) and (b), respectively, and the energy variable E is plotted in Fig. 3(c) in a logarithmic scale; the phase variable φ is presented in Fig. 3(d)). As we can conclude, this control demonstrates a similar entrainment performance with additional phase resetting.

The results of the application of controls (11) and (14) confirm their entrainment abilities to the resonance oscillations at natural frequencies for (8). Switching between different frequencies (mode of oscillations) can be carried out by the incoming parameter setup $\langle U, \mathcal{J}, E_d \rangle$.

Now let us verify applicability of the proposed approach on the nonlinear version of the example from Futakata and Iwasaki (2011):

$$J(x)(\dot{x}) + G(x)(x)^2 + D\dot{x} + Sx = Bu,$$

where $J(x) = \frac{1}{12} I_3 + S_1Q_S + C_1Q_C$, and $G_1(x) = S_1Q_S - C_1Q_C$, for $S_1 = \text{diag}(\text{sin}(x_1))$, $C_1 = \text{diag}(\text{cos}(x_1))$; the remaining matrices are the same as before. The results of the application of control (11) with exactly the same parameters as in linear case are shown in Fig. 4. Comparing the curves presented in Figs. 2 and 4, it is possible to see that the canonical form variables z have the same qualitative behavior (one component is oscillating; the others are canceled by the control). The cancellation is not exact for system (15) due to appearance of nonlinear terms not covered by the control algorithm developed for linear system (8). The oscillations are also less frequent due to additional dependence of frequencies of a nonlinear system on amplitude of oscillations. Computing the average frequency of oscillations during the first 25 s numerically, we obtain 1.271 (1.915 in the linear case), and for $t \geq 25$ we
get 3.607 (5.146 in the linear case). Nevertheless, control (11) ensures resonance mode activation and reliable switching among different frequencies even for sufficiently large deviations from the equilibrium point. However, the results of these simulations show that in a nonlinear case some quantitative deflections from the entrainment behavior guaranteed in the linear case can be expected.

5. Conclusions

The entrainment mechanism to a resonance mode based on CPG from Futakata and Iwasaki (2008, 2011) is extended. Two control algorithms for feedback resonance, finite-time control and energy/phase regulation, are used to design entrainment neural networks. The obtained conditions of oscillation at a natural frequency are based on Lyapunov analysis and optimal control theory (the harmonic balance method is avoided). One of the proposed controls provides the resonance oscillations in finite time. The proposed approach can be applied to multi-DOF mechanical systems representable in the normal mode canonical form. The results of computer simulation demonstrate good entrainment ability of the proposed approach, even for nonlinear systems.

References

Alexander Fradkov, born in Saint Petersburg (former Leningrad) in 1948, received his Diploma degree in mathematics from St. Petersburg State University in 1971 under the supervision of V.A. Yakubovich, his Candidate of Sciences (Ph.D.) degree in Engineering Cybernetics from Baltic State Technical University (BSTU) in 1975, and his Doctor of Sciences degree in Control Engineering in 1986 from St. Petersburg Electrotechnical Institute.

In 1971–1990, he occupied different research and teaching positions in BSTU. Since 1990 he has been the Head of the “Control of Complex Systems” Laboratory of the Institute of Problems in Mechanical Engineering of Russian Academy of Sciences. He is also a part-time Professor with the Faculty of Mathematics and Mechanics, Saint Petersburg State University, and with the National Research University of Information Technologies, Mechanics and Optics.

He is the coauthor of about 570 journal and conference papers, 16 books and textbooks, and the holder of ten patents. His research interests include nonlinear and adaptive control, control of oscillatory and chaotic systems, and dynamics and control of physical systems. In his book “Cybernetical Physics” (Springer–Verlag, 2007), research results in the emerging boundary field between physics and control are summarized.

Prof. Fradkov is the Editor-in-Chief of the international journal “Cybernetics and Physics” (CAP), launched in 2012. During 1991–2012, he visited and gave invited lectures in more than 70 universities in 22 countries.

Tetsuya Iwasaki joined the UCLA faculty in the summer of 2009 as Professor of Mechanical and Aerospace Engineering. He received his B.S. and M.S. degrees in Electrical and Electronic Engineering from the Tokyo Institute of Technology (Tokyo Tech) in 1987 and 1990, respectively, and his Ph.D. degree in Aeronautics and Astronautics from Purdue University in 1993. After a postdoctoral year at Purdue, he held faculty positions at Tokyo Tech (1995–2000) and at the University of Virginia (2000–2009). Dr. Iwasaki’s current research interests include neuronal control mechanisms of animal locomotion, nonlinear oscillators, and robust/optimal control theories. He is a Fellow of IEEE, and has served as associate editor of IEEE Transactions on Automatic Control, Systems and Control Letters, IFAC Automatica, International Journal of Robust and Nonlinear Control, and SIAM Journal on Control and Optimization. He has received a CAREER Award from NSF, a Pioneer Prize from SICE, a George S. Axelby Outstanding Paper Award from IEEE, a Rudolf Kalman Best Paper Award from ASME, and a Steve Hsia Biomedical Paper Award at WCICA.