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Abstract

This paper is devoted to the evaluation of sampling interval provid-
ing robust exponential stability of nonlinear system with sector bounded
nonlinearities. It extends our previous results (R.E. Seifullaev, A.L. Frad-
kov. Sampled-Data Control of Nonlinear Oscillations Based on LMIs and
Fridmans Method. In 5th IFAC International Workshop on Periodic Con-
trol Systems, 95-100. Caen, France. 2013). The proposed approach ex-
ploats E.Fridmans method for linear systems based on a general time-
dependent Lyapunov-Krasovskii functional. With classical results of V.A.
Yakubovich about S-procedure the problem is reduced to feasibility anal-
ysis of linear matrix inequalities. The results are illustrated by example:
the pendulum system with friction and sector bounded multiple nonlin-
earities.

1 Introduction

A long standing problem in computer controlled systems analysis and design
is evaluation of admissible sampling period. Since the 1950s a number of ap-
proaches to this problem were proposed [1, 2, 3]. However conservativeness
reduction of the sampling period estimates is still of interest even for linear sys-
tems. The problem has become still more important after broad propagation of
networked control. E.g. in [18] a solution to the approximate tracking problem
of sampled-data systems with uncertain, time-varying sampling intervals and
delays is presented and sufficient conditions for the input-to-state stability of
the tracking error dynamics with respect to this perturbation are given.

An efficient approach to estimation of the admissible sampling period is being
developed for more than two decades by Emilia Fridman with coauthors. It is
based on the interpretation of a networked control system as a continuous-time
delayed system with time-varying (sawtooth) delay (”Input-delay method”) [4,
5, 6, 7, 8, 9, 10]. Early results [4, 5] were significantly extended and powered with
the so called descriptor method [6], proposed by E.Fridman. In [7] the input
delay approach was extended to robust stabilization. It was further refined in
[8] with the novel time-dependent Lyapunov-Krasovskii functional and efficient
LMI solvers this method has become significantly less conservative. In this paper
we will use the version of the input delay approach formulated and justified in
[8]. This version will be called ”Fridman’s method” throughout this paper.

Until recent the existing results on Fridman’s method and its extensions
(e.g. [19]) were applied only to sampled-data linear systems and switched lin-
ear systems([13, 14, 15, 16, 10]), up to authors’ knowledge. Some results were
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extended to nonlinear Lurie systems in [12]. This paper is devoted to further
extension of this method to include both robust and nonlinear settings. Namely
the structured uncertainty in plant parameters and sector bounded nonlineari-
ties are considered.

There exist a number of papers related to evaluation of sampling period
for nonlinear systems. For example, in [24] the analytic conditions for the de-
lay size and the maximum sampling interval ensuring stability of affine system
with delay and sampling in feedback are given. In paper [25] the existence of a
nonzero sampling interval for ISS nonlinear systems is shown. In [23] the stabi-
lization of nonlinear system with delayed and sampled-data control is studied,
where it is shown that sampled- data feedback laws with a predictor-based de-
lay compensation can guarantee global asymptotic stability for the closed-loop
system with no restrictions for the magnitude of the delays and arbitrarily long
sampling period. Paper [20] investigates the stabilization problem of the non-
linear networked control systems with drops and variable delays. In [26] the
synchronization algorithm for chaotic Lurie systems using sampled-data control
is proposed.

In this paper we study the simple for implementation zero-order-hold lin-
ear controller for robust stabilization of nonlinear Lurie systems with sector
bounded nonlinearities. The contribution of this paper is the condition for sam-
pling interval size providing exponential stability of sample-data system. To
verify our condition one needs to check feasibility of a number of new linear
matrix inequalities. The key tools to obtain the results is application of Frid-
man’s method and Yakubovich’s S-procedure. In the paper we also examine
an example: the pendulum system with friction and sector bounded multiple
nonlinearities. The system is closed by sampled-time linear state feedback. Our
aim is to evaluate the upper bound of the sampling interval below which the
system is absolutely stable. Evaluation of the maximum sampling period ensur-
ing exponential stability is performed for several cases: with known parameters,
with unknown friction, with unknown mass, with unknown length and with un-
known all those parameters at once. Comparison with Matlab simulation results
demonstrates good quality of the estimates.

2 Problem formulation

Consider the uncertain nonlinear system

ẋ(t) = (A+ ∆A)x(t) +

k1∑
i=1

(q̃i + ∆q̃i) ξ̃i(t) +
(
B + ∆Bξ̃0(t)

)
u(t),

σ̃0(t) = r̃T0 x(t), ξ̃0(t) = ϕ̃0(σ̃0(t), t),

σ̃i(t) = r̃Ti x(t), ξ̃i(t) = ϕ̃i(σ̃i(t), t), i = 1, . . . , k1,

(1)

where x(t) ∈ IRn is the state vector, u(t) ∈ IRm is the control function, A ∈ IRn×n,
B ∈ IRn×m are constant matrices, q̃i ∈ IRn, r̃i ∈ IRn, r̃0 ∈ IRn are constant vec-
tors.
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Assume that ξ̃i(t) = ϕ̃i(σ̃i(t), t) are nonlinear scalar functions (see Fig.1)
satisfying

µ̃−i σ̃
2
i 6 σ̃i ξ̃i 6 µ̃+

i σ̃
2
i , i = 1, . . . , k1, (2)

for all t > 0, where µ̃−i 6 µ̃+
i are real numbers. Let scalar nonlinear function

ξ̃0(t) = ϕ̃0(σ̃0(t), t) be bounded for all t > 0

ϕ̃−0 6 ξ̃0(t) 6 ϕ̃+
0 , (3)

where ϕ̃−0 6 ϕ̃+
0 are real numbers.

Figure 1: Sector bounded nonlinearity

Assume that uncertainties ∆A,∆q̃i,∆B are structured as follows:

∆A =

k2∑
l=1

q̄l al r̄
T
l ,

∆q̃i =

k3∑
j=1

q̄ij aij , i = 1, . . . , k1,

∆B = B0 b,

(4)

where q̄l ∈ IRn, r̄l ∈ IRn(l = 1, . . . , k2), q̄ij ∈ IRn, (i = 1, . . . , k1, j = 1, . . . , k3)
are known constant vectors, B0 ∈ IRn×m is known constant matrix, and al, aij , b
are unknown real numbers satisfying

0 < a−l 6 al 6 a+l ,

0 < a−ij 6 aij 6 a+ij ,

0 < b− 6 b 6 b+,

(5)

where a−l , a
+
l , a

−
ij , a

+
ij , b
−, b+ (l = 1, . . . , k2, i = 1, . . . , k1, j = 1, . . . , k3) are

known positive real numbers.
Given a sequence of sampling times 0 = t0 < t1 < . . . < tk < . . . and a

piecewise constant control function

u(t) = ud(tk), tk 6 t < tk+1, (6)
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where lim
k→∞

tk =∞.

Assume that h ∈ IR (h > 0) and

tk+1 − tk 6 h, ∀k > 0 (7)

and consider a sampled-time control law

u(t) = Kx(tk), tk 6 t < tk+1, (8)

where K ∈ IRm×n. The law (8) can be rewritten as follows:

u(t) = Kx(t− τ(t)), (9)

where τ(t) = t− tk, tk 6 t < tk+1.
It’s required to analyze the influence of the upper bound h of sampling

intervals on the closed-loop system exponential stability:

ẋ(t) = (A+ ∆A)x(t) +
(
B + ∆Bξ̃0(t)

)
Kx(t− τ(t)) +

k1∑
i=1

(q̃i + ∆q̃i) ξ̃i(t),

σ̃0(t) = r̃T0 x(t), ξ̃0(t) = ϕ̃0(σ̃0(t), t),

σ̃i(t) = r̃Ti x(t), ξ̃i(t) = ϕ̃i(σ̃i(t), t), i = 1, . . . , k1

τ(t) = t− tk, t ∈ [tk, tk+1).
(10)

Remark 1 Let us provide some examples of sector bounded nonlinearities, sat-
isfying (2):

• ξ = sin(σ): µ1 ≈ −0.2173, µ2 = 1 (see. Fig. 2),

• ξ = sin(σ2): µ1 ≈ −0.855, µ2 ≈ 0.855 (see. Fig. 3),

• relay with dead zone, saturation, piecewise-linear function etc. (see [11]).

Let us give an example of mechanical system described by equation (1).
Consider the system, corresponding to the computer controlled pendulum with
friction:

ϕ̈(t) =
g

l
sin(ϕ(t))− κ

l
ϕ̇(t) +

1

ml2
u(t),

u(t) = Kx(t− τ(t)),

τ(t) = t− tk, t ∈ [tk, tk+1), tk+1 − tk = h, k = 0, 1 . . . ,

(11)

where l and m are the length and the mass of the pendulum respectively, κ is a
viscous friction constant, ϕ is the deviation angle of the pendulum from vertical
(ϕ = 0 at the upper position), u is the control torque, x(t) = [ϕ(t), ϕ̇(t)]

T
.

Let friction κ be unknown, and

0 < κ1 6 κ 6 κ2.
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Figure 2: ξ = sin(σ)

System (11) can be rewritten as follows:

ẋ(t) = (A+ ∆A)x(t) + q1ξ1(t) +Bu(t),

σ1(t) = rT1 x(t), ξ1(t) = sinσ1(t),

where

A =

[
0 1
0 0

]
, ∆A =

[
0
1

]
κ

[
0 − 1

l

]
, B =

[
0
1

ml2

]
,

q1 =

[
0
g

l

]
, q2 =

[
0

−1

l

]
, r1 =

[
1
0

]
.

ξ1 and a for all t > 0 satisfy

µ1σ
2
1 6 σ1 ξ1 6 µ2σ

2
1 .

3 Preliminaries

Definition 1 The space of absolutely continuous on [−h, 0) functions f : [−h, 0]→
IRn having square integrable first-order derivatives is denoted by W with the

norm ‖f‖W = max
θ∈[−h,0]

|f(θ)|+
[∫ 0

−h |ḟ(s)|2ds
] 1

2

.

Denote xt(θ) : [−h, 0]→ IRn as xt(θ) = x(t+ θ), where x(θ) ≡ 0 if θ ∈ [−h, 0).
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Figure 3: ξ = sin(σ2)

Definition 2 System (10) will be called exponentially stable with the decay rate
α > 0 if there exists β > 0 such that for solution x(t) of (10) with initial
condition xt0 the following estimate holds

|x(t)|2 6 βe−2α(t−t0) ‖xt0‖2W , ∀t > t0.

The proof of our main result is based on the following auxiliary statement that
can be proved along the lines of Lemma 1 in [8].

Lemma 1 Let there exist positive numbers β1, β2 and a functional V : IR ×
W × L2[−h, 0]→ IR such that

β1 |φ(0)|2 6 V (t, φ, φ̇) 6 β2 ‖φ‖2W . (12)

Let the function V̄ (t) = V (t, xt, ẋt) be continuous from the right for x(t) satis-
fying (10), absolutely continuous for t 6= tk and satisfies

lim
t→t−k

V̄ (t) > V̄ (tk). (13)

Given α > 0 if along x(t)

˙̄V (t) + 2αV̄ (t) 6 0 (14)

almost for all t then (10) is exponentially stable with the decay rate α.
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4 Main result

Introduce new variables as follows:

σ0(t) = rT0 x(t), ξ0(t) = ϕ0(σ0(t), t),

σi(t) = rTi x(t), ξi(t) = ϕi(σi(t), t), i = 1, . . . , N,

where

N = k1 + k2 + k1k3, r0 = r̃0, qi = q̃i for i = 1, . . . , k1,

ri = r̄j(i), qi = q̄j(i) for i = k1 + 1, . . . , k1 + k2, j(i) = i− k1,
ri = r̃1, qi = q̄1j(i) for i = k1 + k2 + 1, . . . , k1 + k2 + k3, j(i) = i− k1 − k2,
ri = r̃2, qi = q̄2j(i) for i = k1 + k2 + k3 + 1, . . . , k1 + k2 + 2k3, j(i) = i− k1 − k2 − k3,

...

ri = r̃k1 , qi = q̄k1j(i) for i = k1 + k2 + (k1 − 1) k3 + 1, . . . , N, j(i) = i−N + k3,

ϕ0(σ0(t), t) = b ϕ̃0(σ0(t), t),
ϕ−0 = b− ϕ̃−0 , ϕ+

0 = b+ ϕ̃+
0 , if ϕ̃−0 > 0,

ϕ−0 = b+ ϕ̃−0 , ϕ+
0 = b+ ϕ̃+

0 , if ϕ̃−0 < 0, ϕ̃+
0 > 0,

ϕ−0 = b+ ϕ̃−0 , ϕ+
0 = b− ϕ̃+

0 , if ϕ̃+
0 6 0,

ξi(t) = ξ̃i(t), µ−i = µ̃−i , µ+
i = µ̃+

i for i = 1, . . . , k1;

ξi(t) = aj(i)σi(t), µ−i = a−j(i), µ+
i = a+j(i)

for i = k1 + 1, . . . , k1 + k2, j(i) = i− k1;

ξi(t) = a1j(i)ξ̃1(t),


µ−i = a−1j(i)µ̃

−
1 , µ+

i = a+1j(i)µ̃
+
1 , if µ̃−1 > 0,

µ−i = a+1j(i)µ̃
−
1 , µ+

i = a+1j(i)µ̃
+
1 , if µ̃−1 < 0, µ̃+

1 > 0,

µ−i = a+1j(i)µ̃
−
1 , µ+

i = a−1j(i)µ̃
+
1 , if µ̃+

1 6 0,

for i = k1 + k2 + 1, . . . , k1 + k2 + k3, j(i) = i− k1 − k2;

ξi(t) = a2j(i)ξ̃2(t),


µ−i = a−2j(i)µ̃

−
2 , µ+

i = a+2j(i)µ̃
+
2 , if µ̃−2 > 0,

µ−i = a+2j(i)µ̃
−
2 , µ+

i = a+2j(i)µ̃
+
2 , if µ̃−2 < 0, µ̃+

2 > 0,

µ−i = a+2j(i)µ̃
−
2 , µ+

i = a−2j(i)µ̃
+
2 , if µ̃+

2 6 0,

for i = k1 + k2 + k3 + 1, . . . , k1 + k2 + 2k3, j(i) = i− k1 − k2 − k3;

...

ξi(t) = ak1j(i)ξ̃k1(t),


µ−i = a−k1j(i)µ̃

−
k1
, µ+

i = a+k1j(i)µ̃
+
k1
, if µ̃−k1 > 0,

µ−i = a+k1j(i)µ̃
−
k1
, µ+

i = a+k1j(i)µ̃
+
k1
, if µ̃−k1 < 0, µ̃+

k1
> 0,

µ−i = a+k1j(i)µ̃
−
k1
, µ+

i = a−k1j(i)µ̃
+
k1
, if µ̃+

k1
6 0,

for i = k1 + k2 + (k1 − 1)k3 + 1, . . . , N, j(i) = i−N + k3.

From (2), (3), (4) and (5) it follows that

ϕ−0 6 ξ0(t) 6 ϕ+
0 , (15)
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µ−i σ
2
i 6 σi ξi 6 µ+

i σ
2
i , i = 1, . . . , N. (16)

Therefore, system (10) can be rewritten as follows:

ẋ(t) = Ax(t) + (B +B0ξ0(t))Kx(t− τ(t)) +

N∑
i=1

qiξi(t),

σ0(t) = rT0 x(t), ξ0(t) = ϕ0(σ0(t), t),

σi(t) = rTi x(t), ξi(t) = ϕi(σi(t), t), i = 1, . . . , N,

τ(t) = t− tk, t ∈ [tk, tk+1).

(17)

Let us start with the special case of the constant sampling intervals tk+1 −
tk = h, k = 0, 1, . . . Consider the following functional (introduced in [8]) on
IR×W × L2[−h, 0]:

V (t, xt, ẋt) = xt(0)TPxt(0)+(h−τ(t))

∫ 0

−τ(t)
e2αs ẋTt (s)Q ẋt(s)ds+V1(t, xt),

(18)

where P and Q are symmetric positive definite matrices, and

V1(t, xt) = (h− τ(t)) ζT
[

X+XT

2
−X +X1

∗ −X1 −XT
1 + X+XT

2

]
ζ,

and ζ = col
{
xt(0), xt−τ(t)(0)

}
, X ∈ IRn×n, X1 ∈ IRn×n.

To formulate the main result of the paper let us check the conditions of
Lemma 1.

For fulfillment of (12) it is sufficient that

Θ(h) > 0, (19)

where

Θ(h) =

[
P + hX+XT

2
hX1 − hX

∗ −hX1 − hXT
1 + hX+XT

2

]
.

Indeed,

xt(0)TPxt(0)+V1(t, xt) =
h− τ(t)

h
ζT Θ(h) ζ+

τ(t)

h
ζT Θ(0) ζ > β1 |xt(0)|2,

(20)

where β1 = min(ν1, ν2), ν1 and ν2 are minimum eigenvalues of P and Θ(h)
respectively.

Define function V̄ (t) = V (t, xt, ẋt), i.e.

V̄ (t) = x(t)TPx(t) + VQ(t, ẋ(t)) + V1(t, x(t)), (21)
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where

VQ(t, ẋ(t)) = (h− τ(t))

∫ 0

−τ(t)
e2αs ẋT (t+ s)Q ẋ(t+ s)ds.

Note that

• VQ > 0 and lim
t→t+k

VQ(t, ẋ(t)) = VQ(tk, ẋ(tk)) = 0 because τ(t)|t=tk = 0,

• lim
t→t−k

V1(t, xt) = V1(tk, xtk) = lim
t→t+k

V1(t, xt) = 0 (i. e. τ(t) = h at t → t−k

and τ(t) = 0 at t→ t+k , hence, x(t) = x(t− τ(t))).

Therefore, V̄ (t) is continuous from the right and condition (13) holds.
Evaluate the left hand side of (14). Since d

dtx(t − τ(t)) = (1 − τ̇(t))ẋ(t −
τ(t)) = 0, we obtain

˙̄V (t) + 2αV̄ (t) 6 2xT (t)Pẋ(t) + 2αxT (t)Px(t) + (h− τ(t))ẋT (t)Qẋ(t)

− e−2αh
∫ 0

−τ(t)
ẋT (t+ s)Qẋ(t+ s)ds− ζT (t)

[
X+XT

2
−X +X1

∗ −X1 −XT
1 + X+XT

2

]
ζ(t)

+(h−τ(t))
(
ẋT (t)(X +XT )x(t) + 2ẋT (t)(−X +X1)x(t− τ(t))

)
+2αV1(t, x(t)).

(22)

Denote

v1(t) =
1

τ(t)

∫ 0

−τ(t)
ẋ(t+ s)ds, (23)

where right hand side of (23) for τ(t) = 0 is understood as lim
τ(t)→0

v1 = ẋ(t).

From the Jensen’s inequality [22] we have∫ 0

−τ(t)
ẋT (t+ s)Q ẋ(t+ s)ds > τ(t) vT1 Qv1. (24)

Denote for brevity B(t) = B + B0ξ0(t), B− = B + B0ϕ
−
0 , B+ = B + B0ϕ

+
0 . If

x(t) is the solution of (10), then the following equalities hold

0 = 2 [−x(t) + x(t− τ(t)) + τ(t)v1]×

×

[
xT (t)Y T1 + ẋT (t)Y T2 + xT (t− τ(t))TT +

N∑
i=1

ξiq
T
i Y

(i)
3

T

]
,

0 = 2
[
xT (t)PT2 + ẋT (t)PT3

] [
Ax(t) + B(t)Kx(t− τ(t)) +

N∑
i=1

qiξi(t)− ẋ(t)

]
,

(25)

where P2 ∈ IRn×n, P3 ∈ IRn×n, Y1 ∈ IRn×n, Y2 ∈ IRn×n, Y
(i)
3 ∈ IRn×n (i =

1, . . . , N), T ∈ IRn×n are some matrices.
Denote η1(t) = col {x(t), ẋ(t), x(t− τ(t)), ξ1(t), . . . , ξN (t), v1(t)} , η1 ∈ IR4n+N

.
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Adding (25) to the right-hand side of (22) and using (24) we obtain

˙̄V (t) + 2αV̄ (t) 6 ηT (t)Ψ(t) η(t), (26)

where

Ψ(t) =



Φ11(t) Φ12(t) Φ13(t) Φ
(1)
14 . . . Φ

(N)
14 τ(t)Y T1

∗ Φ22(t) Φ23(t) Φ
(1)
24 . . . Φ

(N)
24 τ(t)Y T2

∗ ∗ Φ33(t) Φ
(1)
34 . . . Φ

(N)
34 τ(t)TT

∗ ∗ ∗ 0 . . . 0 τ(t)qT1 Y
(1)
3

T

∗ ∗ ∗
...

. . .
...

...

∗ ∗ ∗ 0 . . . 0 τ(t)qTNY
(N)
3

T

∗ ∗ ∗ ∗ ∗ ∗ −τ(t)Qe−2αh


. (27)

where ” ∗ ” stands for corresponding block of the symmetric matrix and

Φ11(t) = ATP2 + PT2 A+ 2αP − Y1 − Y T1 − (1− 2α(h− τ(t)))
X +XT

2
,

Φ12(t) = P − PT2 +ATP3 − Y2 + (h− τ(t))
X +XT

2
,

Φ13(t) = Y T1 + PT2 B(t)K − T + (1− 2α(h− τ(t)))(X −X1),

Φ22(t) = −P3 − PT3 + (h− τ(t))Q,

Φ23(t) = Y T2 + PT3 B(t)K − (h− τ(t))(X −X1),

Φ33(t) = T + TT − (1− 2α(h− τ(t)))
X +XT − 2X1 − 2XT

1

2
,

Φ
(i)
14 = PT2 qi − Y (i)

3 qi, Φ
(i)
24 = PT3 qi, Φ

(i)
34 = Y

(i)
3 qi, i = 1, . . . , N.

Thus, to check condition (14) it is sufficient to verify that the matrix Ψ(t) is
nonpositive for all t > 0. Consider the following linear matrix inequalities:

Ψ−0 =



Φ11|τ(t)=0 Φ12|τ(t)=0 Φ−13|τ(t)=0 Φ
(1)
14 . . . Φ

(N)
14

∗ Φ22|τ(t)=0 Φ−23|τ(t)=0 Φ
(1)
24 . . . Φ

(N)
24

∗ ∗ Φ33|τ(t)=0 Φ
(1)
34 . . . Φ

(N)
34

∗ ∗ ∗ 0 . . . 0

∗ ∗ ∗
...

. . .
...

∗ ∗ ∗ 0 . . . 0


< 0, (28)

Ψ+
0 =



Φ11|τ(t)=0 Φ12|τ(t)=0 Φ+
13|τ(t)=0 Φ

(1)
14 . . . Φ

(N)
14

∗ Φ22|τ(t)=0 Φ+
23|τ(t)=0 Φ

(1)
24 . . . Φ

(N)
24

∗ ∗ Φ33|τ(t)=0 Φ
(1)
34 . . . Φ

(N)
34

∗ ∗ ∗ 0 . . . 0

∗ ∗ ∗
...

. . .
...

∗ ∗ ∗ 0 . . . 0


< 0, (29)
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Ψ−1 =



Φ11|τ(t)=h Φ12|τ(t)=h Φ−13|τ(t)=h Φ
(1)
14 . . . Φ

(N)
14 hY T1

∗ Φ22|τ(t)=h Φ−23|τ(t)=h Φ
(1)
24 . . . Φ

(N)
24 hY T2

∗ ∗ Φ33|τ(t)=h Φ
(1)
34 . . . Φ

(N)
34 hTT

∗ ∗ ∗ 0 . . . 0 hqT1 Y
(1)
3

T

∗ ∗ ∗
...

. . .
...

...

∗ ∗ ∗ 0 . . . 0 hqTNY
(N)
3

T

∗ ∗ ∗ ∗ ∗ ∗ −hQe−2αh


< 0,

(30)

Ψ+
1 =



Φ11|τ(t)=h Φ12|τ(t)=h Φ+
13|τ(t)=h Φ

(1)
14 . . . Φ

(N)
14 hY T1

∗ Φ22|τ(t)=h Φ+
23|τ(t)=h Φ

(1)
24 . . . Φ

(N)
24 hY T2

∗ ∗ Φ33|τ(t)=h Φ
(1)
34 . . . Φ

(N)
34 hTT

∗ ∗ ∗ 0 . . . 0 hqT1 Y
(1)
3

T

∗ ∗ ∗
...

. . .
...

...

∗ ∗ ∗ 0 . . . 0 hqTNY
(N)
3

T

∗ ∗ ∗ ∗ ∗ ∗ −hQe−2αh


< 0,

(31)
where

Φ−13(t) = Y T1 + PT2 B−K − T + (1− 2α(h− τ(t)))(X −X1),

Φ+
13(t) = Y T1 + PT2 B+K − T + (1− 2α(h− τ(t)))(X −X1),

Φ−23(t) = Y T2 + PT3 B−K − (h− τ(t))(X −X1),

Φ+
23(t) = Y T2 + PT3 B+K − (h− τ(t))(X −X1).

Denote η0(t) = col {x(t), ẋ(t), x(t− τ(t)), ξ1(t), . . . , ξN (t)}. Then (28), (29),
(30) and (31) imply Ψ(t) < 0 ∀t > 0 because

h− τ(t)

h

ϕ+
0 − ϕ0(t)

ϕ+
0 − ϕ

−
0

ηT0 Ψ−0 η0 +
h− τ(t)

h

ϕ0(t)− ϕ−0
ϕ+
0 − ϕ

−
0

ηT0 Ψ+
0 η0

+
τ(t)

h

ϕ+
0 − ϕ0(t)

ϕ+
0 − ϕ

−
0

ηT1 Ψ−1 η1+
τ(t)

h

ϕ0(t)− ϕ−0
ϕ+
0 − ϕ

−
0

ηT1 Ψ+
1 η1 = ηT1 ΨF (t) η1 < 0, ∀η1 6= 0.

Denote
F−0 (η0) = ηT0 Ψ−0 η0, F+

0 (η0) = ηT0 Ψ+
0 η0,

F−1 (η1) = ηT1 Ψ−1 η1, F+
1 (η1) = ηT1 Ψ+

1 η1.
(32)
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Thus, if
F−0 (η0) < 0, ∀η0 6= 0,

F+
0 (η0) < 0, ∀η0 6= 0,

F−1 (η1) < 0, ∀η1 6= 0,

F+
1 (η1) < 0, ∀η1 6= 0,

(33)

then condition (14) of Lemma 1 holds.
Introduce quadratic forms

G
(i)
0 (η0) = (ξi − µ1ir

T
i x)(µ2ir

T
i x− ξi), i = 1, . . . , N,

G
(i)
1 (η1) = (ξi − µ1ir

T
i x)(µ2ir

T
i x− ξi), i = 1, . . . , N.

Note that the forms G
(i)
0 (η0) and G

(i)
1 (η1) are defined on different spaces. From

(16) the following inequalities holds along trajectories of system (17):

G
(i)
0 (η0) > 0, G

(i)
1 (η1) > 0, i = 1, . . . , N.

Therefore, we can require that the first inequality of (33) holds in the set

G
(i)
0 (η0) > 0 for all i = 1, . . . , N , i. e.

F−0 (η0) < 0 if G
(i)
0 (η0) > 0, ∀i = 1, . . . , N, ∀η0 6= 0. (34)

Similarly,

F+
0 (η0) < 0 if G

(i)
0 (η0) > 0, ∀i = 1, . . . , N, ∀η0 6= 0, (35)

F−1 (η1) < 0 if G
(i)
1 (η1) > 0, ∀i = 1, . . . , N, ∀η1 6= 0, (36)

F+
1 (η1) < 0 if G

(i)
1 (η1) > 0, ∀i = 1, . . . , N, ∀η1 6= 0. (37)

Let us transform (34) - (37) using S-procedure [21]. Consider the following
forms:

S−0 (η0) = F−0 (η0) +

N∑
i=1

κ−0 iG
(i)
0 (η0), S+

0 (η0) = F+
0 (η0) +

N∑
i=1

κ+
0 iG

(i)
0 (η0),

S−1 (η1) = F−1 (η1) +

N∑
i=1

κ−1 iG
(i)
1 (η1), S−1 (η1) = F−1 (η1) +

N∑
i=1

κ−1 iG
(i)
1 (η1),

and require them to be negative for some non-negative
{
κ−0 i

}N
i=1

,
{
κ+
0 i

}N
i=1

,{
κ−1 i

}N
i=1

{
κ+
1 i

}N
i=1

respectively:

∃
{
κ−0 i > 0

}N
i=1

: S−0 (η0) < 0, ∀η0 6= 0, (38)
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∃
{
κ+
0 i > 0

}N
i=1

: S+
0 (η0) < 0, ∀η0 6= 0, (39)

∃
{
κ−1 i > 0

}N
i=1

: S−1 (η1) < 0, ∀η1 6= 0, (40)

∃
{
κ+
1 i > 0

}N
i=1

: S+
1 (η1) < 0, ∀η1 6= 0. (41)

Condition (34) is sufficient for condition (38) (in case N = 1 these conditions are
equivalent by the theorem about a losslessness of S-procedure [21]). Similarly,
(35) is sufficient for (39), (36) is sufficient for (40) and (37) is sufficient for (41).
Therefore, if conditions (38) - (41) hold, then (14) is fulfilled. Using (22), (32)
we obtain the following inequalities:

S−0 (η0) 6 ηT0 Ψ−S0 η0, S+
0 (η0) 6 ηT0 Ψ+

S0 η0,

S−1 (η1) 6 ηT1 Ψ−S1 η1, S+
1 (η1) 6 ηT1 Ψ+

S1 η1,

where

Ψ−S0 =



Φ−S1|τ(t)=0 Φ12|τ(t)=0 Φ−13|τ(t)=0 Φ
− (1)
S2 . . . Φ

− (N)
S2

∗ Φ22|τ(t)=0 Φ−23|τ(t)=0 Φ
(1)
24 . . . Φ

(N)
24

∗ ∗ Φ33|τ(t)=0 Φ
(1)
34 . . . Φ

(N)
34

∗ ∗ ∗ Φ
− (1)
S3 . . . 0

∗ ∗ ∗
...

. . .
...

∗ ∗ ∗ 0 . . . Φ
− (N)
S3


,

Ψ+
S0 =



Φ+
S1|τ(t)=0 Φ12|τ(t)=0 Φ+

13|τ(t)=0 Φ
+(1)
S2 . . . Φ

+(N)
S2

∗ Φ22|τ(t)=0 Φ+
23|τ(t)=0 Φ

(1)
24 . . . Φ

(N)
24

∗ ∗ Φ33|τ(t)=0 Φ
(1)
34 . . . Φ

(N)
34

∗ ∗ ∗ Φ
+(1)
S3 . . . 0

∗ ∗ ∗
...

. . .
...

∗ ∗ ∗ 0 . . . Φ
+(N)
S3


,

Ψ−S1 =



Φ−S4|τ(t)=h Φ12|τ(t)=h Φ−13|τ(t)=h Φ
− (1)
S5 . . . Φ

− (N)
S5 hY T1

∗ Φ22|τ(t)=h Φ−23|τ(t)=h Φ
(1)
24 . . . Φ

(N)
24 hY T2

∗ ∗ Φ33|τ(t)=h Φ
(1)
34 . . . Φ

(N)
34 hTT

∗ ∗ ∗ Φ
− (1)
S6 . . . 0 hqT1 Y

(1)
3

T

∗ ∗ ∗
...

. . .
...

...

∗ ∗ ∗ 0 . . . Φ
− (N)
S6 hqTNY

(N)
3

T

∗ ∗ ∗ ∗ ∗ ∗ −hQe−2αh


,
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Ψ+
S1 =



Φ+
S4|τ(t)=h Φ12|τ(t)=h Φ+

13|τ(t)=h Φ
+(1)
S5 . . . Φ

+(N)
S5 hY T1

∗ Φ22|τ(t)=h Φ+
23|τ(t)=h Φ

(1)
24 . . . Φ

(N)
24 hY T2

∗ ∗ Φ33|τ(t)=h Φ
(1)
34 . . . Φ

(N)
34 hTT

∗ ∗ ∗ Φ
+(1)
S6 . . . 0 hqT1 Y

(1)
3

T

∗ ∗
...

. . .
...

...

∗ ∗ ∗ 0 . . . Φ
+(N)
S6 hqTNY

(N)
3

T

∗ ∗ ∗ ∗ ∗ ∗ −hQe−2αh


,

and

Φ−
S1(t) = Φ11(t) −

N∑
i=1

κ−
0 iµ1iµ2irir

T
i , Φ+

S1(t) = Φ11(t) −
N∑
i=1

κ+
0 iµ1iµ2irir

T
i ,

Φ
− (i)
S2 = Φ

(i)
14 +

1

2
κ−
0 i(µ1i + µ2i)ri, Φ

+ (i)
H2 = Φ

(i)
14 +

1

2
κ+
0 i(µ1i + µ2i)ri,

Φ
− (i)
S3 = −κ−

0 i, Φ
+ (i)
S3 = −κ+

0 i,

Φ−
S4 = Φ11(t) −

N∑
i=1

κ−
0 iµ1iµ2irir

T
i , Φ+

S4 = Φ11(t) −
N∑
i=1

κ+
0 iµ1iµ2irir

T
i ,

Φ
− (i)
S5 = Φ

(i)
14 +

1

2
κ−
1 i(µ1i + µ2i)ri, Φ

+ (i)
S5 = Φ

(i)
14 +

1

2
κ+
1 i(µ1i + µ2i)ri,

Φ
− (i)
S6 = −κ−

1 i, Φ
+ (i)
S6 = −κ+

1 i, i = 1, . . . , N.

Hence, if
Ψ−S0 < 0, (42)

Ψ+
S0 < 0, (43)

Ψ−S1 < 0, (44)

Ψ+
S1 < 0, (45)

then (14) holds.
To formulate our main result we need the following statement that can be

proved along the lines of Lemma 2 in [8].

Lemma 2 LMIs (19), (42) - (45) are convex in h: if they are feasible for h,
then they are feasible for all h̄ ∈ (0, h].

Therefore Lemma 2 is fulfilled in the case of constant sampling: tk+1 −
tk = h̄ 6 h. Next we generalize this result to the case of variable sampling:
tk+1 − tk = h̄k 6 h, k = 0, 1, . . .
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Consider the following Lyapunov-Krasovskii functional:

Vvar(t, xt, ẋt) = V̄var(t) = xT (t)Px(t)+(tk+1−t)
∫ t

tk

e2α(s−t) ẋT (s)Q ẋ(s)ds+

+ (tk+1 − t) ζT (t)

[
X+XT

2 −X +X1

∗ −X1 −XT
1 + X+XT

2

]
ζ(t), t ∈ [tk, tk+1), (46)

where ζ(t) = col{x(t), x(tk)}. Note that in (46) the second and the third terms
are equal to 0 for t → t−k and t → t+k . Hence, V̄var is continuous because
lim
t→tk

V̄var(t) = V̄var(tk). Applying previous arguments to V̄var(t), we arrive at

the main result:

Theorem 1 Given α > 0, let there exist matrices P ∈ IRn×n (P > 0), Q ∈
IRn×n (Q > 0), P2 ∈ IRn×n, P3 ∈ IRn×n, X ∈ IRn×n, X1 ∈ IRn×n, T ∈ IRn×n,

Y1 ∈ IRn×n, Y2 ∈ IRn×n, Y
(i)
3 ∈ IRn×n (i=1,. . . ,N), and positive real numbers{

κ−0 i
}N
i=1

,
{
κ+
0 i

}N
i=1

,
{
κ−1 i

}N
i=1

{
κ+
1 i

}N
i=1

, such that LMIs (19), (42) - (45)
are feasible. Then system (10) is exponentially stable with decay rate α. If LMIs
(19), (42) - (45) are feasible for α = 0, then (10) is exponentially stable with a
small enough decay rate.

5 Numerical Examples.

5.1 Example 1. Pendulum with friction

Let us illustrate the obtained results by examples. Consider the system, pro-
posed in Section 2:

ϕ̈(t) =
g

l
sin(ϕ(t))− κ

l
ϕ̇(t) +

1

ml2
u(t),

u(t) = Kx(t− τ(t)),

τ(t) = t− tk, t ∈ [tk, tk+1), tk+1 − tk = h, k = 0, 1 . . . .

(47)

If friction is known, then for the system with the following parameter values

l = 2 m, m = 1 kg, g = 9.8 m/s2, κ = 8 N/m, K = [−20.6,−3]

with Theorem 1 the maximum upper bound of sampling was found as 0.95 (for
α = 0).

5.1.1 Unknown friction.

Let friction κ be unknown, and

0 < κ1 6 κ 6 κ2.
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System (47) can be rewritten as follows:

ẋ(t) = Ax(t) + q1ξ1(t) + q2ξ2(t) +Bu(t),

σ1(t) = rT1 x(t), ξ1(t) = sinσ1(t),

σ2(t) = rT2 x(t), ξ2(t) = κσ2,

where

A =

[
0 1
0 0

]
, B =

[
0
1

ml2

]
,

q1 =

[
0
g

l

]
, q2 =

[
0

−1

l

]
, r1 =

[
1
0

]
, r2 =

[
0
1

]
.

ξ1 and ξ2 for all t > 0 satisfy

µ1σ
2
1 6 σ1 ξ1 6 µ2σ

2
1 , κ1 σ

2
2 6 σ2 ξ2 6 κ2 σ

2
2 .

The values of maximum upper bound h (for κ1 = 7.5, κ2 = 8.5) when (47)
is exponentially stable with a small enough decay rate are given in Table 1.

5.1.2 Unknown mass.

Let mass m be unknown, and

0 < m1 6 m 6 m2.

System (47) can be rewritten as follows:

ẋ(t) = Ax(t) + q1ξ1(t) + (B +B0ξ0(t))u(t),

σ1(t) = rT1 x(t), ξ1(t) = sinσ1(t),

where

A =

[
0 1

0
−κ
l

]
, B =

[
0
0

]
, B0 =

[
0
1

l2

]
, q1 =

[
0
g

l

]
, r1 =

[
1
0

]
.

ξ1 and ξ0 for all t > 0 satisfy

µ1σ
2
1 6 σ1 ξ1 6 µ2σ

2
1 ,

1

m2
6 ξ0 6

1

m1
.

The values of maximum upper bound h (for m1 = 0.97,m2 = 1.03) when
(47) is exponentially stable with a small enough decay rate are given in Table
1.
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5.1.3 Unknown length.

Let length l be unknown, and

0 < l1 6 l 6 l2.

System (47) can be rewritten as follows:

ẋ(t) = Ax(t) + q1ξ1(t) + q2ξ2(t) + (B +B0ξ0(t))u(t),

σ1(t) = rT1 x(t), ξ1(t) = sinσ1(t),

σ2(t) = rT2 x(t), ξ2(t) =
1

l
σ2,

where

A =

[
0 1
0 0

]
, B =

[
0
0

]
, B0 =

[
0
1

m

]
,

q1 =

[
0
g

]
, q2 =

[
0
−κ

]
, r1 =

[
1
0

]
, r2 =

[
0
1

]
.

ξ1, ξ2 and ξ0 for all t > 0 satisfy

µ1

l1
σ2
1 6 σ1 ξ1 6

µ2

l1
σ2
1 ,

1

l2
σ2
2 6 σ2 ξ2 6

1

l1
σ2
2 ,

1

l22
6 ξ0 6

1

l21
.

The values of maximum upper bound h (for l1 = 1.99, l2 = 2.01) when (47)
is exponentially stable with a small enough decay rate are given in Table 1.

5.1.4 Unknown friction, mass, length.

Let κ,m, l be unknown, and

0 < κ1 6 κ 6 κ2, 0 < m1 6 m 6 m2, 0 < l1 6 l 6 l2.

System (47) can be rewritten as follows:

ẋ(t) = Ax(t) + q1ξ1(t) + q2ξ2(t) + (B +B0ξ0(t))u(t),

σ1(t) = rT1 x(t), ξ1(t) = sinσ1(t),

σ2(t) = rT2 x(t), ξ2(t) =
κ

l
σ2,

where

A =

[
0 1
0 0

]
, B =

[
0
0

]
, B0 =

[
0
1

]
,

q1 =

[
0
g

]
, q2 =

[
0
−1

]
, r1 =

[
1
0

]
, r2 =

[
0
1

]
.

ξ1, ξ2 and ξ0 for all t > 0 satisfy

µ1

l1
σ2
1 6 σ1 ξ1 6

µ2

l1
σ2
1 ,

κ1
l2
σ2
2 6 σ2 ξ2 6

κ2
l1
σ2
2 ,

1

m2l22
6 ξ0 6

1

m1l21
.
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The values of maximum upper bound h (for κ1 = 7.5, κ2 = 8.5,m1 =
0.97,m2 = 1.03, l1 = 1.99, l2 = 2.01) when (47) is exponentially stable with
a small enough decay rate are given in Table 1.

The estimates obtained by Theorem 1 is compared with those of simulation.
LMIs is solved by using Matlab [27] with toolbox Yalmip [28]. The simulation
is carry out with Matlab Simulink [27]. System (47) can be considered as a
system with polytopic uncertainties as proposed in Remark 2 in [8]. The results
obtained with Remark 2 in [8] are also provided in Table 1.

Remark 2
Theorem 1 Simulation

Quality
in [8] of Estimates

Known parameters h = 0.79 h = 0.95 h = h∗, 1.75 < h∗ < 1.77 54%
Unknown friction

h = 0.73 h = 0.86 h = h∗, 1.69 < h∗ < 1.7 51%
7.5 6 κ 6 8.5

Unknown mass
h = 0.65 h = 0.82 h = h∗, 1.7 < h∗ < 1.71 48%

0.97 6 m 6 1.03
Unknown length

h = 0.74 h = 0.88 h = h∗, 1.74 < h∗ < 0.75 51%
1.99 6 l 6 2.01

Unknown friction,

h = 0.31 h = 0.36 h = h∗, 1.62 < h∗ < 1.63 22%
mass, length
7.5 6 κ 6 8.5

0.97 6 m 6 1.03
1.99 6 l 6 2.01

Table 1: Upper bounds for the variable sampling

Note that the estimates obtained with Theorem 1 are more accurate than the
estimates from Remark 2 in [8]. Moreover, using S-procedure we increase the
size of LMIs without increasing their number unlike using polytopic approach
that increases the number of LMIs and, hence, the computational complexity
of LMI solving.

5.2 Example 2

Consider the system

ẋ(t) =

[
1 0.5
g1 −1

]
x(t) +

[
1 + g2
−1

]
u(t),

where x(t) is the state vector, u(t) is the control input, defined with (7), (8),
and |g1| 6 0.1, |g2| 6 0.3. This example coincides exactly with Example 1 in
[7], where it was verified that the maximum sampling interval h 6 0.35. With
Theorem 1 the maximum upper bound was found as 0.65. Hence, the upper
bound for the sampling interval obtained by our approach (with S-procedure)
is about twice more accurately.
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6 Conclusions

With Fridman’s method and Yakubovich’s S-procedure the problem of estima-
tion of the sampling interval providing exponential stability of the closed loop
nonlinear system with parameter uncertainties is reduced to feasibility analysis
of linear matrix inequalities The obtained results are illustrated by examples
of upper stabilization of simple pendulum with friction, where some system
parameters can be uncertain. It is shown that the proposed method provides
estimates for sampling interval not less that 54% (for known pendulum param-
eters) or 22% (for unknown pendulum parameters) of the value evaluated by
simulation.

The key idea of the paper is application of the Yakubovich’s S-procedure
allowing us to extend previous stability criteria and take into account nonlin-
earities. Its application is demonstrated for ”Fridman’s method” , but it also
can be used with other methods of stability analysis.
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