Robust and Adaptive Observer-Based Partial Stabilization for a Class of Nonlinear Systems

Denis V. Efimov, Member, IEEE, and Alexander L. Fradkov, Fellow, IEEE

Abstract—The problem of adaptive stabilization with respect to a set for a class of nonlinear systems in the presence of external disturbances is considered. A novel adaptive observer-based solution for the case of noisy measurements is proposed. The efficiency of proposed solution is demonstrated via example of swinging a pendulum with unknown parameters.

Index Terms—Adaptive control, nonlinearity, observers.

I. INTRODUCTION

The problem of nonlinear adaptive control got a number of solutions during the last decade [2], [11], [14], [15], [17], [20]–[22], [24]. Most of the existing solutions are tailored to achieve such goals as regulation or tracking, where the system trajectory converges to a point or to a curve. In these cases the goal functions possess radial unboundedness with respect to the whole state vector of the controlled system. However, in a number of applications the plant stabilization with respect to a part of variables (i.e. with respect to a set) is needed. For example, such problems arise when stabilizing the desired energy level for physical or mechanical systems, synchronization, etc. [10], [11], [23].

An additional requirement may consist in boundedness of control signal [3], [11]. In the presence of parametric uncertainty, the dependence of controlled bound law on adjusted parameters leads to the problem of adaptation with nonlinear parameterization of the controller. This fact prevents from applying previously mentioned results. The problem is to design an output feedback control for an unknown plant, providing stabilization of the given set or its vicinity in the presence of disturbances and measurement errors (size of the vicinity should be proportional to the level of disturbances). Such a statement of the problem looks natural when the level of disturbances is unknown, though bounded. Among numerous examples of such situations are energy-control problems and synchronization problems.

A number of problems of the above class were solved previously by the speed-gradient method under assumption of passifiability [10], [11], [27], [28]. However, many systems of interest, e.g. those having relative degree greater than one cannot be made passive. Solutions for nonpassifiable systems were suggested in [12] based on a special nonlinear observer structure proposed by Nikiforov [11], [12], [24].

In the previous works of the authors [5]–[9] solutions for such sort of problems were proposed for output synchronization, observation, I-O stabilization. This technical note is devoted to the robust and adaptive partial stabilization. Partial stabilization is considered with respect to a function and the goal set is a surface in the state space. We stress, that consideration of partial stability as the set stability is only one of the possible notions of partial stability; under some circumstances, indeed, more than one measure is requested to formulate the property in a suitable way.

II. PRELIMINARIES

Let us consider dynamical systems

$$\dot{x} = f(x, u), \quad y = h(x),$$

where $x \in \mathbb{R}^n$ is the state vector; $u \in \mathbb{R}^m$ is the input vector; $y \in \mathbb{R}^p$ is the output vector; f and h are locally Lipschitz continuous vector functions, $h(0) = 0$, $f(0, 0) = 0$. Euclidean norm will be denoted as $|x|$, and $||u||_{L_\infty}$ denotes the L_∞ norm of the input $u(t)$ is Lebesgue measurable and locally essentially bounded function $u : R_+ \to \mathbb{R}^m$, $R_+ = \{ t \in R : t \geq 0 \}$

$$||u||_{L_\infty} = \varepsilon \sup_{t \in [0, T]} ||u(t)||, t \in [0, T].$$

If $T = +\infty$ then we will simply write $||u||$. We will denote as \mathcal{M}_{L_∞} the set of all such Lebesgue measurable inputs u with property $||u|| < +\infty$. For initial state x_0 and input $u \in \mathcal{M}_{L_\infty}$, let $x(t, x_0, u)$ be the unique maximal solution of (1) (we will use notation $x(t)$ if all other arguments are clear from the context; $y(t, x_0, u) = h(x(t, x_0, u)))$, which is defined on some finite interval $[0, T]$; if for every initial state $x_0 \in \mathbb{R}^n$ and $u \in \mathcal{M}_{L_\infty}$ the solutions are defined for all $t \geq 0$, then system is called forward complete. It is said that system (1) has unboundedness observability (UO) property, if for each state $x_0 \in \mathbb{R}^n$ and input $u \in \mathcal{M}_{L_\infty}$ such that $T < +\infty$ necessarily

$$\lim_{t \to T} \sup \{ y(t, x_0, u) \} = +\infty.$$

Characterization of forward completeness and UO properties were investigated in [1]. Distance in \mathbb{R}^n from given point x to set A is denoted as $|x - A| = \text{dist}(x, A) = \inf_{y \in A} |x - y|$. As usual, a continuous function $\sigma : R_+ \to R_+$ belongs to class \mathcal{K} if it is strictly increasing and $\sigma(0) = 0$; additionally, it belongs to class \mathcal{K}_C if it is also radially unbounded; a continuous function $\beta : R_+ \times \mathbb{R}_+ \to R_+$ is from class \mathcal{KL}, if $\beta(t, s) \in K$ for any $t \in R_+$, and $\beta(s, \cdot)$ is strictly decreasing to zero for each $s \in R_+$.

System (1) is called bounded-input-bounded-state (BIBS) stable if for all $x_0 \in \mathbb{R}^n$, $u \in \mathcal{M}_{L_\infty}$, $t \geq 0$ the property $|x(t, x_0, u)| \leq \max \{ \rho(|x_0|), \mu(||u||) \}$ holds for $\mu \in K$.

Definition 1 [13], [29]: UO system (1) is input-to-output stable (IOS), if there exist $\beta \in \mathcal{KL}$ and $\gamma \in K$ such, that inequality $|y(t, x_0, u)| \leq \beta(|x(t_0)|, t - t_0) + \gamma(||u||_{L_\infty}), t \geq t_0 \geq 0$ holds for all $x(t_0) \in \mathbb{R}^n$ and $u \in \mathcal{M}_{L_\infty}$.

Definition 2 [9]: Forward complete system (1) is called integral-input-to-state stable (iISS) with respect to close invariant set \mathcal{A} if there exist functions $\alpha \in \mathcal{K}_C$, $\gamma \in K$ and $\beta \in \mathcal{KL}$ such that, for any $x_0 \in \mathbb{R}^n$, $u \in \mathcal{M}_{L_\infty}$

$$\alpha \left(|x(t, x_0, u)|_A \right) \leq \beta \left(|x_0|, t \right) + \int_0^t \gamma \left(||u(\tau)|| \right) d\tau, \quad t \geq 0.$$
A. Robust Stabilization With respect to a Set via Passification Approach

Let us consider a system

$$\dot{x} = f(x) + G(x)[u + v], \quad y = h(x)$$

(2)

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^m$ are state, input, and output vectors correspondingly; $v \in \mathbb{R}^n$ is an external disturbances vector; f, h and columns of matrix G are locally Lipschitz continuous vector functions, $h(0) = 0$, $f(0) = 0$.

Definition 3 [4], [11], [31]: It is said that system (2) is passive with continuously differentiable storage function $V: \mathbb{R}^n \rightarrow \mathbb{R}_+$ if for all $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $v \in \mathbb{R}^m$ it holds that $\dot{V} \leq y^T[u + v]$.

The passification method [11], [27], [28] is based on a feedback design making the closed-loop system passive. It allows one to solve continuously differentiable storage function.

Definition 4: It is said that passive system (2) with storage function $V: \mathbb{R}^n \rightarrow \mathbb{R}_+$ is V-detectable with respect to output y if for all $x_0 \in \mathbb{R}^n$ it holds

$$y(t, x_0, 0) \equiv 0, \quad t \geq 0 \Rightarrow \lim_{t \to +\infty} V(x(t, x_0, 0)) = 0.$$

The following result [7], [9] gives conditions of iISS with respect to set stabilization by passification.

Theorem 1: Let the system (2) be passive with continuously differentiable storage function $V: \mathbb{R}^n \rightarrow \mathbb{R}_+$ and a non decreasing function $\varphi: \mathbb{R}^m \rightarrow \mathbb{R}_+$, $\varphi(0) = 0$ have the property $y^T \varphi(y) > 0$ for $y \in \mathbb{R}^m \setminus \{0\}$. Then $\lim_{|x| \to \infty} |h(x)|/V(x) < \infty$. Additionally, there exist differentiable functions $\alpha_1, \alpha_2 \in K_\infty$ such that for all $x \in \mathbb{R}^n$ inequalities $\alpha_1(|x|_{\mathcal{V}_0}) \leq V(x) \leq \alpha_2(|x|_{\mathcal{V}_0})$ are satisfied, where $\mathcal{V}_0 = \{|x| \in \mathbb{R}^n : V(x) = 0\}$ is a compact set. Then the system (2) with control $u = -\varphi(y)$ has iISS property with respect to set \mathcal{V}_0 if the system is V-detectable with respect to the output y.

B. Positivity in the Average

Identification ability of adaptation algorithms is one of the most attractive problems in the adaptive control theory. The solution of this problem is closely connected with persistent excitation (PE) property. There exist several closely related definitions of PE property [10], [18], [19], [22]. Here we will use the following one.

Definition 5: Function $a: \mathbb{R}_+ \rightarrow \mathbb{R}$ is called positive in the average (PA) if there exists some $\Delta > 0$ and $r > 0$ such that for all $t \geq 0$ and $\delta \geq \Delta > 0$

$$\int_{t}^{t+\delta} a(\tau)d\tau \geq r\delta.$$

The importance of the PA property is explained in the following lemma, for which a slightly modified version was proven in [8].

Lemma 1: Let us consider time-varying linear dynamical system

$$\dot{p} = -a(t)p + h(t), t \geq 0, \quad p \in \mathbb{R}, p(t_0) \in \mathbb{R}$$

and $a: R_+ \rightarrow R_+$, $h: R_+ \rightarrow R$ are Lebesgue measurable, h is locally essentially bounded, function a is PA for some $r > 0$, $\Delta > 0$ and essentially bounded from below, i.e. there exists $\lambda \in \mathbb{R}_+$ such that

$$e^{\lambda t}{\inf_{t \geq t_0}} A(t) \geq -\lambda.$$

Then the solution are defined for all $t \geq t_0$ and

$$|p(t)| \leq \left\{ \begin{array}{ll}
|p(t_0)|e^{-r(t-t_0)} + (A+\lambda)
+ \|h\|_{\infty} \max_{\Delta} \{A^{-1}e^{-\lambda t_0}, r^{-1}e^{-\lambda t_0}\}, & A \neq 0;
|p(t_0)|e^{-r(t-t_0)} + \|h\|_{\infty} \max_{\Delta} \{A, r^{-1}e^{-\lambda t_0}\}, & A = 0.
\end{array} \right.$$

It is possible to show that PA property is equivalent to some versions of PE property. However, PA is more convenient for quantitative analysis. Standard sufficient conditions for PE that can be interpreted for PA can be found, e.g. in [22].

C. Adaptive Observer Design

Let us consider the following uncertain system:

$$\dot{x} = A(x)\varphi(x) + B(y)\theta + d_1, \quad y = Cx, \quad y_d = y + d_2$$

(3)

where $x \in \mathbb{R}^n$ is a state vector; $y \in \mathbb{R}^m$ is an output vector; $\theta \in \Omega_0 \subset \mathbb{R}^p$ is a vector of uncertain parameters, which values belong to compact set Ω_0; $d_1 \in \mathcal{M}_{\Omega_0}$, $d_2 \in \mathcal{M}_{\Omega_0}$ are vector signals of external disturbances and measurement noise, $d = [d_1^T, d_2^T]^T$; y_d is vector of noisy measurements of the system (3) output. Vector function φ and columns of matrix functions A and B are locally Lipschitz continuous, and C is some constant matrix of appropriate dimension.

The problem is to design an adaptive observer, which in the absence of disturbances provides partial estimates of unmeasured components of vector x and estimates of unknown vector θ. For any $d \in \mathcal{M}_{\Omega_0}$ the observer shall ensure boundedness of the system solutions. In works [6], [8], [12] a solution is proposed under the following suppositions.

Assumption 1: For all $x_0 \in \Omega_0, \theta \in \Omega_0, d \in \mathcal{M}_{\Omega_0}$ system (3) is BIBS

$$|x(t, x_0, \theta, d)| \leq \sigma_0 (|x_0|) + \sigma_0 (||d||), \quad \sigma_0 \in K, \quad t \geq 0.$$

The rest suppositions deal with stabilizability by output feedback of the linear part of system (3).

Assumption 2: There exist matrix L, locally Lipschitz continuous matrix function $K: \mathbb{R}^m \rightarrow \mathbb{R}^n$, and continuously differentiable function $V: \mathbb{R}^n \rightarrow \mathbb{R}_+$ satisfying relations

$$\alpha_1 (|x|) \leq V(x) \leq \alpha_2 (|x|), \quad \frac{\partial V(x)}{\partial x}G(y_d, x) \leq -\alpha_3 |Lx|^2, \quad |Cx| \leq |Lx|$$

for all $y_d, x \in \mathbb{R}^n$, where α_1, α_2 are from class K_∞ and $\alpha_3 > 0$, $G(y_d) = A(y_d) - K(y_d)C$.

Assumption 2 ensures existence of uniformly asymptotic stability with respect to variable Lx [11], [25] for the system

$$\dot{s} = G(y_d)s + r$$

(4)

coupled with the system (3) and uniform stability property with respect to variable s for the case $r = 0$.

The next assumption requires bounded input-bound state stability of the auxiliary system (4).

Assumption 3: For all initial conditions $s_0 \in \mathbb{R}^n$ and inputs $r \in \mathcal{M}_{\Omega_0}$, $y_d \in \mathcal{M}_{\Omega_0}$ the system (4) is BIBS uniformly with respect to signal y_d

$$|s(t, s_0, r, y_d)| \leq \sigma_1 (|s_0|) + \sigma_1 (||r||), \quad \sigma_1 \in K\quad t \geq 0.$$

}\end{document}
Consider the following equations of adaptive observer:
\[
\dot{z} = A(x_d)z + \varphi(y_d) + B(y_d)\hat{\theta} + K(y_d)(y_d - \hat{y})
\]
\[
\dot{\eta} = G(y_d)\eta - \Omega \hat{\theta}
\]
\[
\Omega = G(y_d)\Omega + B(y_d)
\]
\[
\hat{\theta} = \gamma \Omega^T C^T (y_d - \hat{y} + C\eta), \quad \hat{y} = Cz, \quad \gamma > 0
\]
where \(z \in \mathbb{R}^n \) is the vector of variable \(x \) estimates; vector \(\eta \in \mathbb{R}^n \) and matrix \(\Omega \in \mathbb{R}^{n \times p} \) are auxiliary variables, which help to overcome high relative degree obstruction for system (3); \(\hat{\theta} \in \mathbb{R}^n \) is vector of \(\theta \) estimates.

Theorem 2 [6]: Let assumptions 1–3 hold and minimum singular value \(a(t) \) of matrix function \(C^T \Omega(t) \) be PA. Then solutions of system (3) and (5)–(8) are bounded for any initial conditions and \(d \in \mathcal{M}_{\text{req}} \), and any \(\gamma > 0 \), in the absence of disturbance \(d \) the following relations hold:
\[
\lim_{t \to +\infty} \hat{\theta}(t) = \theta, \quad \lim_{t \to +\infty} Lx(t) - Lz(t) = 0.
\]

III. MAIN RESULT

Let us consider uncertain nonlinear system
\[
x = A(x)x + \varphi(y) + B(y)\hat{\theta} + R(y)[u + d_3] + d_1
\]
\[
y = Cx, \quad y_d = y + d_2
\]
where (as for the system (3) previously) \(x \in \mathbb{R}^n \) is the state vector; \(y \in \mathbb{R}^n \) is the output vector; \(\hat{\theta} \in \mathbb{R}^n \) is the vector of unknown parameters with values from \(\Omega(t) \); \(u \in \mathbb{R}^n \) is the control; \(d_1 \in \mathcal{M}_{\text{req}} \), \(d_2 \in \mathcal{M}_{\text{meas}} \), \(d_3 \in \mathcal{M}_{\text{thr}} \) are vector signals of external disturbances and measurement noise, \(d = [d_1^T, d_2^T, d_3^T]^T \); \(\varphi \) is noisy output vector of the system (9). Vector function \(\varphi \) and matrix functions \(A, B, R \) are continuous and locally Lipschitz.

Assumption 4: There exist locally Lipschitz continuous functions \(u : \mathbb{R}^{m+k+n+p} \to \mathbb{R}^n \), \(\psi : \mathbb{R}^n \to \mathbb{R}^n \) and matrix \(L \) with dimension \((k \times n) \) such, that control
\[
u = u(y, Lx, \hat{\theta})
\]
guarantees for system (9) forward completeness and one of the following properties:

A. **IOS** from input \(d \) to output \(\psi \).
B. **iISS** with respect to set \(\mathcal{Z} = \{ x : \psi(x) = 0 \} \) for input \(d \).

Starting from control (10), depending on unmeasured variables \(Lx \) and vector of uncertain parameters of the system \(\theta \), it is necessary to design a new control using only measured signal \(y_d \). The control should provide boundedness of the closed-loop system solutions for \(d \in \mathcal{M}_{\text{meas+m+q}} \) and for the case \(d = 0 \) it should ensure asymptotic convergence to zero of output \(\psi \) or attractiveness of the set \(\mathcal{Z} \).

It is worth to stress, that two outputs have been introduced, \(y \) defines the measured variables of the system (9), \(\psi \) characterizes the distance to the goal set. Although the vector of unknown parameters \(\theta \) appears in a linear fashion in the right-hand side of system (9), the right-hand side of the closed-loop system (9), (10) may nonlinearly depend on \(\theta \) since Assumption 4 does not specify the form of function \(u \) dependence on its arguments.

The form of the system (9) is similar to the system (3) (observer canonical form) for which it is possible to design adaptive observer (5)–(8). Substituting in control (10) the estimates of vectors \(Lx \) and \(\hat{\theta} \) provided by the observer, it is possible to solve the posed problem (we assume that matrices \(L \) in assumptions 2 and 4 are identical). The principal difference of the solved problem from the problem of adaptive observer design as in Theorem 2 consists in appearance of control \(u \) in the right-hand side of system (9). Generally speaking in the absence of control (10) system can possess unbounded solutions (Assumption 1 fails). Fortunately, this obstacle does not prevent from the design of the observer similarly to (5)–(8)
\[
\dot{z} = A(y_d)z + \varphi(y_d) + B(y_d)\hat{\theta} + K(y_d)(y_d - \hat{y}) \quad \text{for all } t \geq 0
\]
\[
\dot{\eta} = G(y_d)\eta - \Omega \hat{\theta}
\]
\[
\Omega = G(y_d)\Omega + B(y_d)
\]
\[
\hat{\theta} = \gamma \Omega^T C^T (y_d - \hat{y} + C\eta), \quad \hat{y} = Cz, \quad \gamma > 0
\]
where all symbols have the same meaning, and \(\gamma > 0 \) is adaptation gain. Since matrix function \(R \) depends on the output vector only and control \(u \) is produced by the controller, their appearance does not change dynamics of state estimation error \(e = x - z \) and auxiliary error \(\delta = \varepsilon - \Omega \hat{\theta} \).

\[
\dot{\varepsilon} = G(y)e + \varphi(y) - \varphi(y_d) + B(y)\hat{\theta} - B(y_d)\hat{\theta}
\]
\[
\dot{\delta} = G(y)\delta + \varepsilon - \varphi(y_d) + [B(y) - B(y_d)]\theta
\]

Theorem 3: For system (9), let Assumption 2 hold and Assumption 3 be satisfied for any Lebesgue measurable signal \(y \); minimum singular value \(a(t) \) of matrix function \(C^T \Omega(t) \) be PA; \(|B(y_d(t))| \leq B, |R(y_d(t))| \leq R \) for all \(t \geq 0 \), \(B, R \in \mathbb{R}_+ \). Then the control law \(u = u(y_d, L\hat{\theta}, \hat{y}) \) ensures forward completeness of system (9), boundedness of the system (11)–(14) solutions, and boundedness of variable \(\psi(x(t)) \) for all initial conditions, \(d \in \mathcal{M}_{\text{meas+m+q}} \) and any \(\gamma > 0 \) provided that at least one of the following additional suppositions is valid.

1. Assumption 4.A holds, control \(u = u(y_d, L\hat{\theta}, \hat{y}) \) is globally Lipschitz function with respect to the last two arguments and \(d_3(t) \equiv 0 \) for all \(t \geq 0 \);
2. Assumption 4.A holds control \(u = u(y_d, L\hat{\theta}, \hat{y}) \) is globally Lipschitz function, function \(\varphi \) is globally Lipschitz, \(A(y) = A, B(y) = B, R(y) = R \);
3. Assumption 4.B holds and \(d(t) \equiv 0 \) for all \(t \geq 0 \).

Additionally, if \(d(t) \equiv 0 \) for all \(t \geq 0 \), then limit relations \(\lim_{t \to +\infty} \psi(x(t)) = 0 \) (Assumption 4.A) or \(\lim_{t \to +\infty} |x(t)| = 0 \) (Assumption 4.B) hold.

Proof: At first let us consider the case \(d_3(t) \equiv 0, t \geq 0 \) under Assumption 4.A. Then (15) and (16) take the form
\[
\dot{e} = G(y)e + B(y)[\theta - \hat{\theta}] + R(y)d_3 + d_1(t)
\]
\[
\dot{\delta} = G(y)\delta + R(y)d_3 + d_1(t)
\]
Equations (20) and (13) have form (4) with bounded inputs, thus, according to Assumption 3 variables \(\delta \) and \(\Omega \) are bounded. Let us consider the time derivative of Lyapunov function \(W(\hat{\theta}) = \gamma^{-1}(\theta - \hat{\theta})' \Omega^T C \begin{bmatrix} \delta + \Omega(\theta - \hat{\theta}) \end{bmatrix} + d_2 \) as follows:

\[
W = -2(\theta - \hat{\theta})' \Omega^T C \begin{bmatrix} \delta + \Omega(\theta - \hat{\theta}) \end{bmatrix} + d_2 \leq -\gamma(\theta) W + |C \delta + d_2|^{2}.
\]

(21)

For bounded input \(C \delta + d_2 \), the boundedness of error \(\theta - \hat{\theta} \) follows from Lemma 1 and PA property of signal \(a \). Having in mind this conclusion, transform equation (19) to the form (4) with bounded inputs. Applying again Assumption 3 one can substantiate boundedness of \(\varphi \). Variable \(\eta \) is a part of error \(\delta \), where all other parts and \(\theta \) are bounded. Hence \(\eta \) is also bounded. Let us substitute the control into (9), as

\[
x = A(\gamma)x + \varphi(\gamma) + B(\gamma)\theta + R(\gamma)[u(\gamma, Lx, \theta)] + d_3 + R(\gamma)u + d_3,
\]

where \(e_u = u(\gamma, Lx, \hat{\theta}) - u(\gamma, Lx, \hat{\theta}) \) is the error of control (10) realization. By conditions control \(u \equiv u(\gamma, Lx, \hat{\theta}) \) globally Lipschitz continuous and errors \(\varphi \) and \(\theta \) are bounded. Therefore, there exists a constant \(L_\gamma > 0 \) such that for all \(t \geq 0 \) inequality \(|e_u(t)| \leq L_\gamma |[Le(t)] + ||\theta - \hat{\theta}(t)|| | \) holds and error \(e_u \) is bounded. According to Assumption 4, control (10) ensures boundedness of function \(\psi \).

Assume now the presence of noise \(d_2 \) under structure restrictions \(A(\gamma) = A, B(\gamma) = B \) and \(R(\gamma) = R \) (in this case \(K(\gamma) = K \)). Equations (15) and (16) can be rewritten as follows:

\[
e = G(\gamma)e + \varphi(\gamma) - \varphi(x) + B(\theta - \hat{\theta}) - Kd_2(t)
\]

\[
\delta = G(\gamma)e + \varphi(y) - \varphi(y) - Kd_2(t) + Rd_3 + d_1(t).
\]

Since \(\varphi \) is globally Lipschitz continuous, applying Assumption 3 we justify the boundedness of variables \(\delta, e, \) and \(\Omega \). Analyzing properties of function \(W \) we obtain boundedness of variable \(\theta - \hat{\theta} \). Boundedness of all other variables of the system can be proven in the same way as in the previous case.

In the absence of disturbances \(d = 0 \), system (15) and (16) take the form of (17) and (18). It follows from Assumption 2 that the variable \(\delta \) is bounded and system is asymptotically stable with respect to the part of variables \(L \delta \) [25]. Assumption 3 gives boundedness of variable \(\Omega \). In this case for time derivative of function \(W \) Lemma 1 provides asymptotic convergence to zero of variable \(\theta - \hat{\theta}(t) \). According to assumptions 2 and 3, the system (17) is asymptotically stable with respect to variable \(Le \) and has bounded solutions. Since signals \(\theta - \hat{\theta}(t) \) and \(Le(t) \) converge to zero, the error \(e_u(t) \) also converges to zero. Having in mind the properties of control (10) from Assumption 4.A, we obtain convergence to zero of variable \(\psi(\gamma) \). In such case error \(e_u(t) \) is integrally bounded and we can apply Assumption 4.B. Proof is completed.

Remark: Globally Lipschitz property requirement for control (9) naturally holds for bounded controls.

For Assumption 4.A, the theorem provides convergence conditions in the presence of external disturbances and noise. The noisy case needs additional structural restrictions.

For Assumption 4.B, Theorem 3 does not propose constructive conditions for the case of disturbances \(d \) presence. Robust properties of control (10) in this case are oriented on parametric uncertainty and partial state measurements compensation. It is possible to weaken requirements of Theorem 3 for the case of Assumption 4.B, supposing boundedness and asymptotic convergence to zero of disturbance \(d \).

Theorem 1 presents results for iSS stabilization of passive systems with respect to a set. Dependence of Hamiltonian on vector of uncertain parameters \(\theta \) in nonlinear fashion prevents application of conventional convex adaptation techniques. Combining results of theorems 1 and 3, it is possible to propose a solution of this problem.

Corollary 1: Assume that:

1) System (9) for \(d = 0 \) is passive with respect to output \(\psi = L_{R(\gamma)}W(\gamma)^T \) and input \(u \) with smooth storage function \(W : R^n \rightarrow R_+ \), \(\alpha_1 \leq W(x) \leq \alpha_2 \|x\|_2 \), \(\alpha_2 \in K_c \), where \(V_0 = \{ x : W(\gamma) = 0 \} \) is a compact set; system (9) is \(W \)-detectable for output \(\psi \), \(\lim_{t \to \infty}|\psi(x(t))/W(x) / \leq \infty \).

2) For system (9), Assumption 2 holds and Assumption 3 is satisfied for any Lebesgue measurable signal \(\gamma \); minimum singular value \(a(t) \) of matrix function \(\Omega^T(\gamma)^T \) is PA; \(|B(\gamma,y(t))| \leq B, |R(\gamma,y(t))| \leq R \) for all \(t \geq 0 \), \(B, R \in R_+ \).

3) Smooth function \(\varphi : R^n \rightarrow R^n \) for all \(\psi \in R^n / \{0\} \) possesses inequality \(\varphi^T(\varphi) > 0 \) and \(u = -\varphi(\varphi(x)) \). Then control law \(u = u(\gamma, Lx, \theta) \) provides for system (9) (11)-(14) global boundedness of solutions for the case \(d = 0 \) and any \(\gamma > 0 \), additionally \(\lim_{t \to \infty}|x(t)|/W_0 | W_0 | = 0 \).

Proof: The first and the third parts of conditions provide implementeation of Theorem 1 in this case. In such situation control \(u = -\varphi(\varphi(x)) = u(\gamma, Lx, \theta) \) ensures iSS property with respect to compact set \(V_0 \) and input \(d_2 \) for system (9). Due to compactness property of the set, the system is also forward complete. Therefore, all conditions of Assumption 4.B are satisfied and taking in mind other conditions of the corollary, the result of Theorem 3 holds.

IV. ADAPTIVE SWINGING A PENDULUM

Consider the problem of energy stabilization for a pendulum with partial observations and parametric uncertainty

\[\dot{x} = x, \quad y = x, \quad \dot{x} = -\omega^2 \sin(x) + u \]

where \(x = [x_1, x_2]^T \) is a state vector; \(\omega \) is unknown frequency, \(\theta = \omega^2 \). It is required to stabilize the desired value \(H^* \) of energy \(H(x_1, x_2) = 0.5x_2^2 + \omega^2(1 - \cos(x_1)) \). The system is passive with respect to output \(\psi = x_2[H(x_1, x_2) - H^*] \) with smooth storage function \(W(x_1, x_2) = 0.5[H(x_1, x_2) - H^*]^2 \). The system is \(W \)-detectable with respect to the output [26]. If \(H^* \leq \omega^2 \), then the zero level set of the storage function is compact. The value \(H^* = \omega^2 \) corresponds to stabilization of the upper equilibrium of the pendulum.

In [11], the energy control law \(u = -\varphi(\psi) \) was proposed, and successfully tested by simulation for \(\varphi(\psi) = \tan(\psi) \). Let us show that such control law and storage function satisfy conditions of Corollary 1. The equations (11)-(14) take the form

\[
\dot{z}_1 = z_2 + K(x_1 - z_1); \quad \dot{K} > 0;
\]

\[
\dot{z}_2 = K(x_1 - z_1) - \theta \sin(x_1)
\]

\[
\dot{\varphi} = \dot{\varphi}(z_2, 0.5z_2^2 + \theta(1 - \cos(x_1)) - 2\theta^2)
\]

\[
\dot{\Omega}_1 = -K\Omega_1 + \Omega_2; \quad \dot{\eta}_1 = -K\eta_1 + \eta_2 - \Omega_2 \theta
\]

\[
\dot{\Omega}_2 = -K\Omega_1 - \sin(x_1); \quad \dot{\eta}_2 = -K\eta_1 - \Omega_2 \theta
\]

\[
\dot{\theta} = \gamma(x_1 - z_1 + 1) + \eta.
\]

To test the PA property of signal \(C^T(\theta^T(t) = \dot{\Omega} \dot{\eta}) \), it is enough to establish PE property of signal \(v(t) = \sin(x_1(t)) \) or PA property of \(v(t) = \sin^2(x_1(t)) \) or PA. Indeed, \(v(t) \) is the single input of stable linear filter (13). Clearly, that forced part of solution (proportional to
variables error is presented in Fig. 1(b) separately. In Fig. 1(c) and 1(d), plots of the pendulum dynamics closed by the proposed control is unstable to zero asymptotically). The PA property of signal below show, that even for the case not the desired final positions of the system. Moreover, the simulation results are shown in Fig. 1 for external disturbances and partial observations with measurement noise.

The proposed observer with control \(u = -\varphi \left(z_2 + 0.5z_2 + \hat{\theta}(1 - \cos(x_1)) - 2\theta \right) \)

provides stabilization of the upper equilibrium of the pendulum (in this case \(H^* = 2\omega^2 = 2\theta \)). The simulation results are shown in Fig. 1 for \(\omega = K = \gamma = 1 \) and zero initial conditions (except \(x(0) = 0.1 \)). Trajectories in the state space of the pendulum (solid line) and the adaptive observer \(z_1, z_2 \) (dotted line) are shown in Fig. 1(a). The observation error is presented in Fig. 1(b) separately. In Fig. 1(c) and 1(d), plots of variables \(\hat{\theta}(t) \) and \(H(t) \) are shown.

Note that solutions from papers, [10], [16], [23], and [30] cannot be applied in this example due to boundedness of control or since output stabilization is required here.

V. CONCLUSION

In this technical note, the previous results of the authors [5]–[9] obtained for output synchronization, observation, I-O stabilization are extended to the robust and adaptive partial stabilization problems for a class of nonlinear systems affine in control and disturbances. Applicability conditions of the algorithms are established in the presence of external disturbances and partial observations with measurement noise.

REFERENCES