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Abstract
A class of implicit mwmodel reference adaptive
controllers is described designed via feedback
Kalman-Yakubovich lemma. Stability conditions of
adaptive system are formulated. An example of
application to the adaptive stabilization of

distillation column is given. A new simple solution of
adaptive stabilization problem for minimum phase plants
with arbitrary relative degree is also suggested based
on implicit reference model and a parallel feedforward
compensator (filter) of order k-1 making plant hyper
minimum phase.

1. Introduction

As it is well known, model reference adaptive control
(MRAC) offers the potential for high performance
control in the presence of uncertain and time-varying
parameters. However the most of existing schemes [1-4)
require so called matching ({adaptability) condition:
the main loop controller should be able to provide the
equivalence of closed-loop system equation to that of
the reference model. This condition imposes a strong
restriction on the control problem, especially for
multivariable and large-scale systems. Matching
condition leads to complicated controller structure and
increased amount of tunable parameters. As a
consequence the performance of the closed-loop system
decreases, especially in presence of disturbances.

The papers proposing alternative, so called simple
adaptive controllers can be partitioned into two large
groups. The first group of parers study simple adaptive
stabilizers using as small a priori information as
possible [5-8]. A lot of efforts was put to deal with
the case when the sign of high frequency gain of the
plant is unknown, in this case the adaptive stabilizers
with "switching functions" were proposed and analyzed.
Another group treats problems with command signals and
reference models [9-13]. Different simple adaptive
control laws were proposed. Stability of the basic
scheme [9] was justified under so called ASPR (almost
strict positive realness) condition which is not both
easy to check and applicable to many plants in
practice. Some attempts were made to overcome these
disabilities using parallel feedforward compensator
110-12). However the performance of simple adaptive
controllers is not well investigated yet.

Meanwhile some related adaptive control schemes were
studied in Russian literature since 70s [13-18] based

‘on so called "feedback Kalman-Yakubovich Jlemma"
[13-14]. These schemes form a basis for adaptive
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controllers of rather simple structure providing given
performance of the system. The controller of such kind,
so called implicit model reference adaptive controller
(IMRAC), will be described below. #

2. Adaptive controller with implicit reference model
for plants with relative degree one

Consider the Iinear  time invariant plant described by
equation :

Alp)y(t)=B(plult)+p(t), t>0, (1
where ul(t) is scalar control action, y(t) is scalar
controlled variable, 9(t) is | bounded disturbance:
hp(t)ISA‘p; Alp)=p '+ a__, po 4+ + a,p + oa, ,

B(p)=bmpm+...+b1p + bo ~ are polynomials, p=d/dt is

time derivative, n-m=k>0 is relative degree of the
plant. Coefficients a, , i=0,...,n-1, bj , J0,..,m

are unknown plant parameters. The control goal is to
provide output signal y(t) tracking the command signal
rit):

ly(t)—r(t:)ISAy when tzt.. (2)

For the disturbance free case the control goal can be
qualified: ‘
lim [y(t)-r(t)]=0. (2a)

t->x

To solve the posed problem introduce the secondary goal
(adaptation goal), prescribing the desired tracking
error behavior;

156(t)1s8 when tzt,, (3)

where 8(t)=G(p)y(t)-D(p)r(t) is the adaptation error

signal; G(p)=p’+---+g,p+g° , D(p)=d p°+
are given polynomials specifying the desired properties
of the closed-loop system. G{p) is assumed to be stable
(Hurwitz) polynomial. Note that the signal &(t) may be
interpreted as equation error for the equation

G(p)y (t)=D(p)r(t), (&)

+ -I-d’p+d0

because 8(t)=G(p)e(t), where e(t)=yv(t)-y Jt). Hence the
equation (4) may be interpreted as reference equation
representing reference model implicitly.
Take the main control law in the form
1 .
u(t)=K[D(p)r(t) I+ Tk, (Op y(t)] (5)
isQ
where K(t), ki(t) , i=0,...,] - are tunable parameters,

and the adaptation algorithm take as follows:



dk,/dt=-y8(0ip ¥ (t)-ak (t), i=0,1,...1,

(6)
dK(t)/dt=v8(t)D{p)r(t)-aK(t),

where ¥ > 0 - is the adaptation gain and
parametric feedback gain. The adaptive
(5),(6) applicability conditions are as follows:

C1. B(p) is Hurwitz polynomial,

C2. 1=k-1, where k=n-m is the relative degree of
plant equation.
It follows from the results of [13-15, 17 ], that all
the trajectories of the system (1),(5),(6) are bounded
and the goals (2) and (3) are achieved under
conditions C1, C2, if >0 and the command signal r(t)
is bounded together with its (s+1) derivatives.
Additionally, for the disturbance free case (@(t)=0)
the goal (2a) is achieved, if x=0 in (6) and r(t) has
vanishing derivatives:

«20 is the
controller

[+ +)
Tie () Pdteo , =5+,
0

It can be also shown, that for G(0)=1 the upper bound
for Ayin (2) has a form AYSB(A ¢7). where B(.) is a

smooth function, tending to zero when Aw->0, -,

Suppose &(t)=0; then adaptation process (6) stops,
while the controlled variable y(t) satisfies the
reference equation (4). So the plant output will have
the desired behavior without explicit employing
reference model output in the controller. Therefore the
reference model may be called implicit.

Note that neither degree s of polynomial D(p) nor its
coefficients appear in above conditions. The degree of
D(p) is determined by the amount of the available
derivatives of r(t).

Note also that matching condition in the form used for
the model reference systems is not necessary for
proposed implicit model reference systems. The order of
reference equation ( 4 ) is equal to 1 and can be
significantly less then the plant order n. Moreover,
the true plant order need not be known for system
design.

This approach can be extended to the case of MIMO plant
using the results of [14]. Consider the plant equation
of form

dx/dt=Ax{t)+Bu(t), yl{t)=Cx(t), (7)
where x is n-dimensional plant state vector, u(t) is
m-dimensional control action, y{(t) is l-dimensional
plant output vector! In this case we can choose the

following adaptive control law

u{t)=K(t)y(t),
(8)

dk /dt=-[g]y(t)] T y(t)=ak (t) , j = 1,....n
where kj(t) are the columns of tunable gain {(® X% n)-
matrix K(t), g, are Fdimensional vectors, T =I"> 0 are

(I x 1 adaptive gain wmatrices, «20 is parametric
feedback gain. N

3. Feedback Ralman-Yakubovich lemma

The conditions €1, C2 mean that the transfer function
W(p)=B(p)G(p)/A(p) is minimum-phase and has the lowest
possible relative degree, equal to one. Transfer
functions with these properties were called
hyper-minimum-phase (HHP) in [13].

It was proved in [13] that the HMP property of transfer

function W(p)=C(pI—A)-1B. where A,B,C are matrices of
size nxn, nxl, lxn, correspondingly, is necessary and

sufficient for existence of nxn symmetric
positive-definite matrix P and l-vector € such that the
following relations are valid: ’

PA(6)+A(8) P<0, PB=C, A(6)=A+BOC . (9)
This statement called ‘"feedback Kalman-Yakubovich
lemma" was extended to MIMO plants in [14]). It allows
to prove that the conditions C1, C2 are necessary and
sufficient for existence gquadratic Lyapunov function
for system of plant (7) and dynamic controller

u=6"y, é=9(y.9). (10)

having the form:

V(X,9)=xTPx+(9-9)Tpl(e_e’)' (11)

that

such, .
V(x,8)>0 as x#0, 6#6_, V(x,0)<0 as x0. (1)

Hence, adaptation algorithm (6) encompasses all the
algorithms which can be designed using Lyapunov
function (11) with property (12).

Another consequence of the feedback Kalman-Yakubovich
lemma is that the HMP property is necessary and
sufficient for ASPR condition.

4. Adaptive controller with implicit reference
model for arbitrary relative degree

The solution for plants with arbitrary relative degree
proposed below is based on augmenting the plant (1) by
auxiliary parallel filter to make the augmented system

HMP. The following result shows the possibility of such
augmentation.

. T ..
Theorem 1. Let the transfer function g W(p) be minimum

phase with relative degree k>1 and gTW(O)>0. Then there
exist x°>0 and function Eo(x)>0 such that function

T .
g W(p)wxc(p) is HMP for x>x , O<e<e (), where

W (p)=xeQ(ep)/R(p), {13)

Q(p), R(p) are Hurwitz polynomials of degrees k-2, k-1,
respectively.

Theorem 2. Let the transfer function gTW(p) be minimum
phase with relative degree k.
Then there exist X°>O and function EO(X)>0 such that

the algorithm -
u=@ Y, (14)

0=-T(g"y )y, (15)

is the output of the auxiliary

where y:.=y+yxc v Yxe

system
Riply,, = %€ Q{eplu, (16)

solves the problem of adaptive stabilization of the
plant (1) for all x > X 0<e < co(x).

The proof of the theorems follows from some more
general statement proved in {20]. The Lyapunov function
of system (1), (14)-(16) has, in accordance with {131,
the form

v(xa' e)=x:pxa+( 6+ xg)TI"i( 6+ xg) (17)

where P=PT>0 is positive definite matrix and x>0.
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5. Adaptive PI-controller with implicit reference
model

The above approach can be used for tuning of standard

controllers. For instance, consider PI-law in the main
loop .
ult)=k (tle(t)+k (t)] e(T)dr, {18)
o
where e(t)=r(t)-v(t) is tracking

error, kp(t). kl(t)

are tunable parameters. Take implicit reference model
{4) in the form of the second order equation

T?p %y (1)+2ETpy (t)+y (t)=r(t), (19)
where T, £ are the model parameters, p=d/dt. T and §
describe desirable closed~loop system behavior.After

integration and filtration the error signal can be
obtained as follows:

t
B(6)=T Y (t)/T+(26-T/T)Ty (t)-fe (T)dT,  (20)
o]

where yf(t). er(t) are outputs of -first order f{ilters

with time constant T and inputs v(t), e(t)
correspondingly. Adaptation algorithm (6) in this case
takes the form

dk_/dt=y5(t)e(t) - a(k - k),

x

kP(O)=kP ,

t . . (20
dkl/dt=76(t)fe(t)dr - alk,= k), k (0O)=k
(o]

x

where coefficients « > 0, v > 0, kP. k: are  prior

estimates of the desired values of tunable parameters.

-6. Example: the distillation column control

Consider the multivariable distillaticn column control
problem {19]. Let yi(t) be the heavy component

concentrations of the output distillate product, ui(t)

be the distillate flow rates, 1i=1,2,3. Using the
input-output form for plant equation we obtain
y(t)=W{plu(t), where (3x3) transfer matrix W(p) has the
following nominal value [19]

0.7
Tope1 0 0
2.0 0.4
Wip) = | AT TER T 0
2.3 2.3 3.1
10p+1 8p+1 7p;_1_

(all the time constants are given in minutes). Note,
that the mutual influence of the different control
loops is significant for this plant.

The results of numerical simulation for both
non-adaptive and proposed adaptive systems are showed
below. Fig. 1 shows the transient processes of the
outputs y,(th y,t) when initial conditions are equal

ri(t)=1, rz(t)=r3(t)=0
Pl-controller is used with the parameters kP=2.0.
k =1.0 min~’

with the nominal mode. The true values of the plant

to zero, and time-invariant

. These values were found out accordingly
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model were taken with the coefficient of wvariation
equal to 0.3. The simulation results for the adaptive
control algorithm (18),{(20),(21) under the similar
conditions are shown at the Fig.2. The desired
closed-loop time constant T= 5 min, &=0.7, k:=2,

k;=1.0 min~’. One can see that the usage of IMRAC for
this problem not only ensures the desired closed-loop

system behavior, but also reduces the mutual channels
influence.

This example demonstrates also the important property
of IMRAC algorithm to provide the adaptation time less
than the closed-loop system transient time.

<
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6. Conclusions

The adaptive controller described in this paper
incorporates the reference model not as dynamic element
of the system, but implicitly, as some ’'reference
equation”. It provides the desired performance of
adaptive system without complication of its structure.
It allows also to weaken the matching conditions.

The idea of relative degree reducing is known in
adaptive control [21, 10-12]. The proposed in this
paper "small" augmenting transforms any minimum phase
system into system with relative degree one. It can be
extended onto MIMO plant [20].
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