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1. INTRODUCTION

In recent years an interest raised to the development
of adaptive schemes for plants with unknown relative
degree by using output measurements only. The most
interesting approach is in introduction the parallel feed-
forward compensator. The main idea of the method is
to ensure the hyper minimum phase property (HMP)
of the augmented plant (plant and compensator), see
(Kaufman, et al, 1994; Fradkov, 1994 ). This pro-
cedure simplifies the design of the adaptive controller.
In (Bartolini and Ferrara, 1992a; 1992b; Bartolini et
al., 1995) a simplified adaptive control scheme has been
presented, which performs the regulation of uncertain
plants via pole assignment without requiring the perfect
knowledge of the relative degree of the controlled plant
and independently of the magnitude of the unmodelled
dynamics. However, the problem of choosing compen-
sator for unstable plants and nonminimum phase plants
remains still open in the field.

In this paper the method for designing parallel compen-
sator for unstable or nonminimum phase time-invariant
linear SISO plants is considered.

2. PROBLEM STATEMENT

Consider linear time-invariant SISO plant presented in
the following form

Zy(t) = Apz, (1) + Byu(t), yp(t) = Cpay(t), (1)
where z,(t) € R*, u(t) € R , y,(t) € R. The plant
transfer function is
B(s)
A(s)
where s € C denotes Laplas transform variable,
deg A(s) = n , degB(s) =m ; k =n —mis plant
relative degree. It is assumed that W,(0) >0, k> 1.

Wy(s) = Cyp(sly - Ap)-1 By = (2)

Let plant be time-invariant with uncertain parameters
and measurable output signal y(t). The control aim is
to achieve desired closed-loop system performance de-
scribed by following reference-model equation (see also
Bartolini and Ferrara, 1992a)

Anm(p)ys(t) = K - B(p)r(t), (3)

where r(t) is reference input signal, p denotes the time
derivative operator (p = d/dt) , A (p) is arbitrary cho-
sen Hurwitz polynomial degree n , K = A,,(0)/B(0).



This equation corresponds to so-called ”implicit refer-
ence model” (Fradkov, 1974; Andrievsky and Fradkov,
1994) and imposes less restrictions on system perfor-
mance than for explicit reference model. Gain K is
introduced to achieve astatism of system.

To achieve the aim (3) let us provide an accurate track-
ing of transformed reference signal y;(t) which is gen-
erated by adjustable prefilter described below. This
tracking problem can be solved by means of organiz-
ing sliding-mode (Utkin, 1981). As it can be shown, so
called hyper minimum phase (HMP) condition (Frad-
kov, 1974; Fomin, et al., 1981) is sufficient for existence
of the stable sliding-modes as well as for direct adaptive
control problem solutien. For SISO plants the HMP
condition means that plant transfer function has all ze-
ros in the left half-plane and k == 1. These conditions
are not assumed to be valid in the considered problem.
One of the possible way is to use parallel feedforward
compensator ( or "shunt ”), see (Mareels, 1984; Bar-
Kana, 1987; Kaufman, et al., 1994; ). It makes possible
to ensure requirement mentioned above for augmented
plant (AP), consisting of controlled plant and shunt and
allows to design adaptive control schemes that do not
require plant output derivatives.

Denote the shunt transfer function as W.(s)
B'(s)/A'(s), deg A’(s) = n' . AP output is y(t)
v, (t) + yc(t) and transfer function

"o

F(s)
Loa@:' O

where F(s) = A,(s)B'(s) + A'(s)B,(s) . For track-
ing for r(¢) with desirable dynamics one has to notice
that AP output y(t) does not coincides with plant out-
put y,(t) and the ideal tracking of y(t) to y;(t) does
not involve those one for y,(t). Hence prefilter equa-
tions must be chosen properly. For this purpose let us
find transfer function W,(s) from r(t) to y,(¢) under
assumption that y(¢) = y;(¢t). Taking into account (4)
and shunt equation one can obtain that
B(s)A'(s

w,(s) = wy(o) 22D )
where Wy(s) is prefilter transfer function. From (3) ,
(5) follows that control aim will be achieved if y(t) =
y; (t) and Wy(s) is taken as

K - F(s)
An(s)A'(s)’

W(s) = Wy(s) + We(s) =

W;(s) = (6)

where K = A,,.(0)/B(0) .

Notice that (6) describes time-invariant filter for non-
adaptive case. In the presence of plant parameters un-
certainty instead of (6) should be used following tuned
prefilter

Sr{(t) = Apzp(8) + Byr(t), ys(t) = 0T ()a4(1), (7)
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where z;(t) € RY ; ©(t) € RY is vector of adjustable
parameters, e(t) = l"l(t)ﬁ "2(t)) .. ‘y"N(t)|T ’ N
n + n', matrices A; , By have regular canonical form.
Nominal value of 8(t) = ©, depends on plant param-
eters and should be chosen to ensure (6) for transfer
function W;(s) = ©T(sI — A;)~*B; . In the chosen
canonical form F(s) = Zﬁ__l v! sV~ is valid. Therefore
one gets following linear equations for nominal values
9, i=1,...,N

N
Yo0is T = K(4,(5)B'(s) + A'(5)By(s)) . (8)

1=1

These values depend on unknown plant parameters.
The latter ones will be estimated by means of on-line
identification algorithm described in section 3.

To find shunt consider the following transfer function

xe(es +1)7°

W.(s)= (st AP

S, A>0.

(9)

The following Theorems 1,2 give the necessary property
of AP {4) with shunt (9).

Theorem 1. Let W,(s) (2) be minimum-phase (B(s) be
a Hurwitz polynomial) with the relative degree £ > 1
and W,(0) > 0. Then there exist xo > 0 and function
€g(x) > 0 such that transfer function W(s) = W,(s) +
W,.(s) is HMP for all k > ko and 0 < € < €o(%0).

Theorem 2. Let W,(s) be stable (A(s) be a Hurwitz
polynomial) with the relative degree k > 1 and W,(0) >

0. Then for every ¢ > D there exists sufficiently large ¢ ,
such that W(s) = W,(s)+W,(s)is HMP for all & > .

Proofs of the Theorems are given in Appendix. Note
that Theorem 1 follows also from more general state-
ment for MIMO plants in (Fradkov, 1994). However
more simple than in (Fradkov, 1994) proof for SISO
case is given here.

Corollary. Theorem 1 shows, that one can introduce
shunt (9) with order deg{A,(s))=k—-1=n-m -1
providing for sufficiently large x and small ¢ augmented
plant (4) satisfying HMP condition for arbitrary given
minimum-phase plant parameters domain. As it is fol-
lows from the Theorem 2, another way of shunt (9)
parameters choosing provides HMP condition for sta-
ble (and, possible, nonminimum-phase) plants. For
this case, the shunt equation can be simplified; namely
W.(8) = /(s + A) may be taken instead of (9).

Assume that shunt (9) is chosen properly and AP (4)
is HMP. Rewrite its equations in the following regular
form (Utkin, 1981; Sannuti, 1933)

#1(t) Apaq(t) + Arza(t),



A 21(t) + Azazo(t) + bu(t),
y(t) ¢ z(t),

where z,(t) € RN, z,(t) € R and y(¥)

c121(t) + ¢322(t) is a measurable output, c3b > 0;

Aqq, Anz, Az, Az , b are unknown parameters,

c=ey, €] .

(10)

7o(t)

Now formal problem statement can be presented . One
have to find a control action u(t) and adjustment law
©(t) in (7) such that for any given value of the plant rel-
ative degree k the plant output asymptotically satisfies

).

The problem can be solved in two steps. The first step is
to design the adjustment law for parameter estimates
and to ensure their convergence to true values. The
second step is to choose the control u(t) to ensure the
convergence of s(t) = y(t) — y;(t) to zero in a finite
time.

3. THE ADJUSTMENT LAW DESIGN

In this section the least-squares-like estimator for plant
parameters by using input/output measurement only is
considered. The first step is designing filters to avoid
the measurements of the derivatives of the plant output.

Plant equations (2) can be written as
Y + a0 4 L+ any(t) =
= bou™(t) + b u™ (&) + ...+ byu(t), (11)

where a4,...a4,589,...,b,, are unknown plant param-
eters (index n means the nth time derivative of the
signal). Rewrite plant equations as follows

¥ (1) = T (1)8”, (12)
where
e(t) =y (B), .., 5(D),y(1),u™(2), ..., u(t) |7,
8* = | - a1, —az,.-., ~Gn, boyby,y-iybm [T,
p(t),8* € Rt Introducing filtered signals

#(t) , @(t) satisfying equations

DE) () =y (1) , D(p)p(t) = ¢(t),

where D(p) = p"*+dp" '+...+d, is arbitrary Hurwitz
polynomial of p = d/dt one obtains from (12)

™ =T (1)e"

(13)

Signals §(t) , ¢(t) could be obtained by means of fol-
lowing filters
£(t)
¥(t)

At (1) + bay(1)
Aay (1) + bau(?)

I

195

where £(t),%(t) € R* ; 4; , b; has regular canonical
form, det(sl — A;) = D(s). Notice, that both ¢ and
¥ can be implemented by using input/output measure-
ments only. It is straightforward to see that

F(t) = l6a (1), .., £2(8), E2(8), ¥ (B), ..., 1 (I,
§O = (1)~ Y du_inabi(D) .

=1

Let us present now the adjustment law in the form
0() = -TOHOF (E7() -0 () =
—T()3(1)g" (£)87 (1) + T(1)B(1)E(t) ,(14)
T(t) = -T()@(ET (1) +(T(8)-T(t)/ko) , (15)
where koI > I'(0) = T'(0)T > 0, £(t) denotes (™ (¢).

I

To prove the parameter convergence assume that $(t)
is persistently exciting that is guaranteed by the exci-
tation of control action u{t) . Conventional conditions
of persistent excitation can be found e.g. in (Narendra
and Annaswamy, 1989).

Choosing the following Lyapunov function candidate
1, -
V= §|]0||§. T

and evaluating its derivative along the solutions of (14),
(15) one gets

V() = ~0T(@)p(t)g" (1)6(r) +
+ 9T(t)¢(t)¢r(t) 0(‘) - ||9(t)“zr-‘(1)-1/h) .
As was shown by Bartolini, et al., (1995), under the
condition of persistent excitation there exists A such

that (') — I/ko) > AT™1(t) and V(1) < —2AV(¢).
This in turn implies that

LI < BOfq e 19)

Hence the adjustable parameters converge exponen-
tially to their true values provided control u(t) is per-
sistently exciting. By using estimates #(t) determined
by (8), (14) one can easily calculate ©(t) in (7) in order
that aim (3) be achieved. One next step is controller
design.

4. THE CONTROLLER DESIGN
Design control law the sliding mode on the surface
5= y—y; = 0 is organized.
At first present the error model by using (10)

8(t) = 121 (t) + c23(t) — s (t) =
Az (t) + ¢y Araza(t) + (17)
-+ CgAg]I](t) -+ CgAgg.’lJ;(t) + Czbﬂ(t) had gf (t) .



Taking into account that

z5(t) = ! (S(t) +ys(t) - 12 (t)) (18)
after substituting it in (17) follows
(c2b)7'8(t) = Lay(t)+ars(t) +arys(t) -
(c28) s (8) +u(t) (19)

where L is 1 X {N — 1) vector,

c1 Ay + €2 An

2).

a; = g(i_?Ej(CIAIZ + ¢3A5,;) . Now present the error
model for z;(¢). Substituting (18) in (10) yields

= (c2b) 7! (CxAu + Az —

AlZ

A
‘—-—S(t) + 12

() = Azi(t) - ’E;‘yf(t) ,  (20)
where A, = A;; — Aj;¢/cz . Equations (7), (19),
(20) describe the error model. Its description is com-
pleted by using HMP property of the system. This
implies that A, is a Hurwitz matrix and ¢c;b > 0. It is
important to remark that y;(t) is bounded (|ly;(t)| <
¥;) since Ay is a Hurwitz matrix and r(t), #(t) are
bounded.

Choose now the control action as
u(t) = —k,s(t) — vy - sign(s(?)) ,
where positive parameters k, and ¥ are specified below.

The stability of system can be studied by means of the
consecutive application ( Stotsky, 1994 ) of two Lya-
punov functions

= %(cb)'ls2

—.'1.'1 P.'l.'1

and 1
= 5(cb)'] s? .

Evaluating V1(t) one has

o = AP (An@)+ 2260 +y0) +
1 s(t)(L.rl(t)+als(t)+aly;(t)——
— (e2) Mig(8) — kus(t) — v -signa(?) )
where

PA, +ATP=-Q, 9=QT>0.
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It gives
B < el (0@ +
@#—‘Eﬂuz (Ol 1s()]+
AL el oy ) +
HIZH - iz (1] - 150} + s9)* (= - &,) +
+He®l(@F(®) +(es0) " (B} - )
< @y @ie + (5 + 1) Jlml +

+E—+—ls(t)2 +
A L J 2fq _
w3l @I + 55+ (@ - ) +

+ls(t)|(a:u; +(ead) "5 ()] - 7)

where 5 > ||P||-||4x|l/les| , 1 > |IL]], @ > |la:]| and A is
sufficiently small number. Notice, that for any A, (Q)
there always exists A > 0 such that 2=i2(@) > (}7+i) A
Then

() < ~222@) . 14 oo (4 2

S) +
+1s<t)|(a-m, +2lgy (1)) - 7) + ﬁm)z ,

where ¢ > (cpb) "', Choose &, and v . Let

. A

k. > a 22

K_
—-C
5¢>

Y2 @y + ey () + v,
where &« > 0, ¥ > 0 to be specified below. Then

B < TP *"““‘("P’)
- byt + 23,
and
Vi(t) < "-1V1(t)+ y]:
! Amin(Q)
vmmin( 25k )
where

Vi(0) = ;—(cb)'ls(ﬂ)z + 52f (O)P2(0) .



Hence the following bound is true ||z (t)||* < T, , where

1
Amin(P)

z)

()7 5(0) + =T (@) P21 (0)) +

(21)

72

+ Yy -

I S
2Amin(P) Ak,
It remains to prove the convergence of s(t) in a finite
time.

Taking
Val) = 5(cb) st

and evaluating V,(t) along (19) one obtains

Va®) < ()] (LI o ||+ 38, () +
4 s (] - @Fy - 2is (O] - %) -

Choosing 7, > €z +¢8/2 , where z, is upper bound of
Ty presented by (21) (T4 < 2 ), 8 > 0, one gets

Vi(t) < -8/ V(1) .

This, in turn, implies that for all ¢t > ¢* sliding mode
appears on the surface s = 0, t* = 2,/V5(0)}/8 .

Now let us prove the achievement of the control aim.
Since s(t) = 0 one has y(t) = y;(t) and one can
use plant parameter estimates 6{¢t) for prefilter (7) ad-
justment. Define ©(t) in (7) in accordance with (8),
where are used estimates instead of true plant pa-
rameters. Finally one obtains following equation for

(1) = |91(2),..., In (1)}

N
ZoisN*' = I?(t)(zp(s,t)B'(s) + A'(s)ﬁ,(s,t)) , (22)

1=1

where B(t) = An(0)/BO,) = An(0)/8asmus () ,
A(s,t) = s® — 8,(8)s* "1 — .. — 8,(t) , B(s,t) =
Ony1(t)s™+. . 40, ime1(t), A'(8), B'(8) are given in
(7). Collecting similar terms in (22) one gets ©(¢) in the
explicit form. From parameter estimations convergence
to their true values 8* follows that prefilter adjustable
parameters error O(t) = ©(t) — ©* — 0 when t — 0.
Hence one can represent y; (t) as y; () = y}(t) + §5(2),
where y3(t) = ©’z4(t) is an ideal prefilter output
(taken from (6)) and the bounded vanishing error signal
5 (t) may be considered as addition to y; disturbance.
Since the sliding-mode system was proved be stable,
yp(t) will coincide with its ideal trajectory. There-
fore finite-time sliding mode realization and exponential
convergence of parameter estimates provide the control
aim (3) achievement.
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5. CONCLUSION

In this paper a simplified adaptive control scheme is
presented for regulation of unstable and nonminimum-
phase uncertain plants by means of parallel feedforward
compensator (shunt) which ensures hyper-minimum
phase property of augmented plant.

The proposed controller ensures finite time convergence
of augmented error omitting to relay term in control
law and exponential convergence of the parameter error
under the condition of persistent excitation. This, in
turn allows to achieve the desired dynamics to the true
plant cutput.
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APPENDIX

Proof of the Theorem 1. To prove this theorem the
following lemma is needed

Lemma. Let a(s), 8(s),v(s), 6(s) be polynomials with
positive leading coefficients aq, §9, 7o, b0, respectively,
Qe(s) = P(s)r(s) + e(s)a(s)é(es). Suppose 5(s),v(s)
and asé(s)+ Poyo are stable polynomials. Then there
exists ¢y > 0 such that Q.(s) is stable for all positive
€< €.

Proof. Note that deg(8y) = n — 1, deg(Q.(s)) =
deg(aB) = n + k — 2. Hence n — 1 zeros of Q.(s)
tend to zeros of B(s)y(s) and the rest & — 1 zeros
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si(¢) , ¢ = 1,...k — 1 tend to infinity as ¢ — 0 .
To analyze the behavior of s;(¢) make a change ¢s to
p and denote R.(p) = "~ 1Q.(u/¢) . Then R.(u) =
e 1B(pn/e)y(p/€) + (aop™ +earp™ +. .+ e ay)b(u)
and R.(p) — Bovop™ ' + aop™8(u) = " (oo +
aopé(p)). So, n — 1 zeros of R,(p) tend to zero while
the rest £ — 1 ones tend to zeros of Fovo + aoub(p).
Lemma is proved.

Proof of the Theorem 1. Express W(s) as

By(s)(s+ M)~ + A,(s)ne(es+ 1)E-2 ’

W)= FROICESY =

To apply lemma one needs the polynomial b, + xu{1 +
#)¥~2 to be stable, where b, denotes the leading co-
efficient of B,(s). Obviously,it will be so at least for
sufficiently large x . Theorem is proved.

Proof of the Theorem 2. Rearrange transfer function
W(s) as follows

W(s) = Wy(s) + We(s) =
By(8)(s+ M) "+ ke(es + 1) -2 A,(s)
Ap(s)(s+ A)*-1 B
B'(s) + ke(es + 1) " %(s" +a15" '+ ...+ aa) _
A,(s)(s + A)F-1 -
pops™ 1 + p(bis™ 2+ + b)) + A(s)
b Ao+ VF3 ’

where g = 1/x, A(s) is a Hurwitz polynomial,
A(s) = @os" + a8 1+ ...8p ,

B'(s) = [bos™* + B(s)] (s + /\)k—l ,

B(s) = bys® %14 4 by i, b =b, b = b +
Abg, ... b1 = by_zA¥~1. Thus

F(s)

W) = e+ T

where F(s) = @os"** =2 + .. + Gx_38™ + H(@-1 +
#b,_)8" "1+ ...+ @pyk—2 + pb,_; . Therefore the nu-
merator F'(s) of W(s) will be Hurwitz for sufficiently
small 4 > 0. Theorem is proved.



