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DETERMINISTIC SYSTEMS

CONTROL OF NONLINEAR VIBRATIONS OF MECHANICAL SYSTEMS VIA THE METHOD
OF VELOCITY GRADIENT!

B. R. Andrievskii, P. Yu. Guzenko, and A. A. Fradkov . UDC 62-501.5:621.3.018.6

A general approach to problems of control of vibrations based on the method of velocity gradient
and energy objective functions is described with applications to control problems of the following
mechanical systems: the physical pendulum and a pendulum on a trolley.

1. INTRODUCTION

Problems of regulating and tracking are typical problems of synthesis of control systems. In both cases, the
control objective can be described by assigning the desired trajectory of the control object x, (t) and by requiring
the approximation of the real trajectory of the object x(t) to the desired one:

x(t) —x.(t)]| < & forsome ¢ > 0.

Also, the objectives of the above-mentioned type can be posed in the problems of damping of vibrations or
of synchronization (see, for example, [1]). But progress in the field of the study of periodic and chaotic motions has
brought about the statement and solution of new classes of problems concerning the stimulation of vibrations with
prescribed properties. We can mention, as an example, the well-known problem of the oscillating of a pendulum [2-5].
As usual, solutions of such problems are based on energy considerations [1-3] or on special methods.

In this article, a general approach to the control of vibrations based on the method of velocity gradient [6-9]
is described with application to control of the following mechanical systems: the physical pendulum and a pendulum
on a trolley.

Section 2 contains a brief description of the method of velocity gradient (VG). In Sec. 3, algorithms of
the velocity gradient for Hamiltonian systems and objective functions based on energy are described. In Sec. 4,
the proposed method is applied to problems of the oscillation of the physical pendulum and of oscillation with
stabilization in the top position of a pendulum on a trolley.

2. ALGORITHMS OF THE VELOCITY GRADIENT

Let us consider in the state space the equation of a controlled object
dx/dt = F(x,u,t), t>0, (2.1)

where x € R" is the state vector, u € R™ is the input vector, F(-) : R"*™+1 _, R {5 a vector-valued function

continuously differentiable with respect to x, u. The input variables can be of different nature: a control action,
parameter estimations, etc.
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Consider the problem of finding of a non-look-ahead control law u(t) = Ulx(s), u(s) : 0 < s < t] which
ensures achievement of the control objective

Qt—0 for t— oo, (2.2)

where Q; is some objective functional Qt = Q[x(s), u(s) : 0< s < t]. We shall assume that Q, has the form
Q: = Q(x(t),t), where Q(x,t) > 0 is a scalar smooth objective function.

For obtaining the VG algorithm, the function w (x,u,t) is defined as the velocity of the change of Q; along
trajectories of (2.1): w(x,u,t) = (VQ)TF(x,u,t). The VG algorithm changes the control action in the direction
of the gradient of w (x, u, t) with respect to u. The general combined form has the form [6-9]

d% [u+¥(x,u,t)) = ~I'Vyw (x, u, ), (2.3)

where 9(-) satisfies the pseudogradient condition TV 4w > 0, and the symmetric m X m-matrix I' = I'T > 0 is the
matrix of amplification coefficients. The basic special cases of (2.3) are the VG algorithm in the differential form

ditu = ~I'Vuw(x,u,t), (2.4)

where I > 0, and the VG algorithm in the finite form

u = —(x,u,t). (2.5)
The linear and relay forms

u=-ToVyw(x,u,t), [y>0, (2.5a)

u = —Tisign {Vuw (x,u,t)}, T, =diag{n}, % >0, (2.5b)

where the components of the vector-row {2z} are signs of the corresponding elements of the vector z, are typical forms
of algorithm (2.5). We shall use the following stability theorems for VG systems (2.1), (2.3).

THEOREM 1 (differential form). Let the right-hand sides of the systems (2.1), (2.3) be smooth with
respect to x, u functions bounded together with their derivatives in any domain, where Q (x(t),t) is bounded. Also,
let w(x,u,t) be convex with respect to u, and let the stabilizability condition

there exists u, € R™ such that w (x,u.,t) < 0 for every x € R® ‘ (2.6)

hold.

Then Q (x,t) is bounded along each trajectory of (2.1), (2.3). If, moreover, the condition of asymptotic
stabilizability

w(x,u.,t) < —p(x,t), (2.7)

where p(x,t) is a uniformly continuous function with p(x,t) > 0 for Q(x,t) > 0, is satisfied, then the objective (2.2)
is achieved for all trajectories of the system (2.1), (2.3). :

The proof (see [8]) is based on the use of the Lyapunov function
V(x, u,t):Q(x,t)—*—%(u——u.)T I '(u-u.). (2.8)

In the case where it is difficult to establish the existence of an “ideal” control u, satisfying (2.6) or (2.7),
the VG algorithm in finite form is applied with the following conditions of applicability.

THEOREM 2 (finite form). Let the function Q (x,t) be smooth, and let the right-hand sides of Sys-
tem (2.1) be smooth with respect to x, u functions which are bounded together with their derivatives in any domain,
where Q (x,t) is bounded. Assume that Eq. (2.5) is solvable with respect to u for every x € R", and there exists
locally a solution (for example, in the sense of Filippov) of the system (2.1), (2.5) for any x(0) € R™. Also, let
w (x,u,t) be convex with respect to u, and assume that the following strong pseudogradient condition is satisfied:

there exist a function B (x) > 0 and a number § 2 1 such that

VIVaw(x,u,t) 2 B(x)[[Vaw (x, u, 8)] . (2.9)
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Finally, let there exist a function u.(x,t) bounded with respect to t for all x € R", and the conditions
w (%, u.(x,1),t) < —p(x), (2.10)
where p(x) > 0 is a continuous function,
B () IVuw (x,u, )" > {|ua (x, 1)) (2.11)

are satisfied.
. " Then Q (x(t),t) is bounded along each trajectory of (2.1), (2.5), and the following relations hold:

Jim p(x(1)) =0, lim Vyw (x(t), u(t),t) = 0. (2.12)

One can show that the objective (2.2) is still achieved under weakened conditions of stabilizability.

THEOREM 3.  Assume that the conditions of Theorem 2 hold, moreover, the conditions (2.6) are
satisfied for some bounded u.(x,t) and with the following stabilizability condition in the integral form:

there exist a sequence of moments of time t; — oo and two sequences of nonnegative numbers {a}$°, {pi}%°
such that

oo
Qr+1 — Qr < —pr Qi + o, Zpk =00, ak/pk —0, (2.13)
k=1

where Qi = Q (x(t1), ts). Note that the Lyapunov function which proves Theorem 2 is exactly the objective function

Q (x,t).

The above-mentioned theorems are modifications of the well-known results on the stability of VG systems
(see [6-9]). Further facts on properties of VG algorithms are contained in [8].

3. ALGORITHMS OF THE VELOCITY GRADIENT FOR HAMILTONIAN SYSTEMS

Let us consider equations of a controlled object in the Hamiltonian form

. dH\T - . (aH\T

where p, q € R™ are generalized coordinates and impulses; H = H(p,q) is the Hamiltonian function (full energy of
the system); u = u(t) is an input (vector of generalized forces), B € R™*" m < n.

The method of velocity gradient can be applied to the control of CO (controlled object) of the form (3.1)if
the attaining of a given energy level is the objective of control:
S={(p,q): H(p,q) = H.}. (3.2)
Indeed, let us reformulate the objective of control (3.2) in the form

H(p(),q()) — H. as t— oo, (3.3)

which corresponds to (2.2) if one introduces x = col (p, q) and the objective function
1
Q(x) = 5[H(p,q) — H.I". (3.4)

For the construction of the VG algorithm, we compute Q, the derivative of (3.4) with respect to (3.1):

Q= (H - H.) <%—§>T3u. (3.5)
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The differential VG algorithm (2.4) takes the form

u=—-vy(H - H,)BT (%—’;—)T, (3.6)

where ¥ > 0 is an amplification coeflicient.
The finite forms (2.5a), (2,5b) are as follows:

u=—y(H - H)BT (%)T, | (3.7)
u = —vsign [(H — H)BT (%)T] . (3.8)

Let us use Theorems 1 and 2 for analyzing of the behavior of systems with algorithms (3.6)~(3.8). Obviously,
the differential algorithm satisfies the conditions of Theorem 1 with stabilizability condition of the form (2.6) for
the constant u. = 0. From Theorem 1 it follows that the function H(p, q) together with @Q (x) is bounded along
the trajectories of the system (3.1), (3.6). But the theorem does not insure the achievement of the initial objective
(3.3). In fact, the objective (3.3), in reality, is not achieved in the system (3.1), (3.6), demonstrating the complicated
behavior of the system (see the results of modeling in Sec. 4).

The algorithms (3.7), (3.8) give better convergence. For example, taking u. = —(H — H.)BTq, from (3.5)
we obtain Q = —2vQ [QTBBTQ]. This means that condition (2.7) is not valid since q can vanish for some t; >
0, k=1,2,.... But from the La Salle invariance principle it follows that each trajectory of the system (3.1), (3.7)
can converge to (3.2) (i.e., the objective (3.3) is achieved) as well as to the point of equilibrium q = 0 (stationary
point of H). One can show (see also [14]) that the dimension of the set of initial conditions for which the trajectory
converges to saddle points of H is less than n. On the other hand, if the value of H at the point of extremum is
different from H., then such a point, also, cannot be a limit point for (3.1), (3.7) since, in this case, the stabilizability
condition in the integral form (2.13) is satisfied. Thus, the objective (3.3) is achieved for almost all (with respect to
the Lebesgue measure) initial conditions.

The approach presented is applicable in the case of more complicated requirements to the desired behavior

of the system. For systems with several degrees of freedom composed of several subsystems, the objective function
takes the form

Q = o1 Qi(x1) + ...+ opQp(xyp), (3.9)

where a; > 0 is a weight coeflicient, while the objective functions Q;(x;) can be given in the form (3.4), as well as
in the other forms.

4. EXAMPLES: CONTROL OF VIBRATIONS OF A PENDULUM

Example 1. Let us consider the equation of the controlled physical pendulum
J-¢g+m-.g-£-sinp = u, (4.1)

where ¢ is the angle of deviation of the pendulum from the vertical line (¢ = 0 in the bottom position), u is the
control torque; J, m, £ is the moment of inertia with respect to the axis of rotation, the mass, and the distance
between the axis of rotation and the center of gravity of the pendulum, respectively; g is the acceleration of free
incidence. The energy of the pendulum is written in the form

1
H:§J~¢2+m-g-£-(1—cos<p). . (4.2)

Let us consider the problem of oscillation of the pendulum up to the amplitude corresponding to the energy
H., i.e., let use the objective (3.3). The achievement of the objective (3.3) for H. = 0 means the stabilization of

the pendulum at the bottom position, i.e., the damping of vibrations, while this corresponds to the uninterrupted
rotation for H. > 2mg¥.
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The VG algorithms in the differential and finite forms are as follows:
i=—7(H-H.)¢, (4.3)
u=—y(H—-H.)e. (4.4)

Obviously, the algorithm (4.3) satisfies the conditions of Theorem 1; the stabilizability condition is valid in
the form (2.6). Theorem 1 gives the boundedness of the energy, i.e., ¢(t) is bounded. The algorithm (4.4) satisfies
Theorem 3 for ((0) # 0 ((2.7) is true, for example, for u.(t) = —(H@) - H)e(t), p(Q,1) = Q7 [¢(t))?; the constants
in (2.9) are =1, 6 =2).

The results of modeling are shown in Figs. 1-6 for the following values of the parameters: m = 1 kg, £ =1
m, J = 10kgm?, ¢(0) = 0, u(0) = 0.

Figures 1 and 2 demonstrate the complicated behavior of the system with algorithm (4.3) for H. = 10
corresponding to the amplitude of vibrations pmax = x/2 for p(0) = w/4. For Fig. 1, the amplification coefficient
71 = 65.2, for Fig. 2 v2 = 65.5; thus, the bifurcation value lying between v, and s separates the systems with
different limit cycles. Moreover, the objective of control is not achieved.

In Fig. 3, it is shown that algorithm (4.4) oscillates the pendulum up to the required amplitude with
small initial conditions and amplification coefficients (¢(0) = 0.5°, ¥ = 0.1). Figure 4 indicates the efficiency of
algorithm (4.4) under the oscillation of the pendulum up to rotation with the minimal velocity 2 m/s and with
the same initial conditions. The relay algorithm (3.8) for ¢max = 7/2 and v = 0.3 also oscillates the pendulum
up to the required amplitude; after this the control becomes high and unexpectedly oscillating (Fig. 5); this 1s
explained by round-off errors under the computation of (H — H,). The efficiency of the modified relay algorithm
u = —y (H — H.)sign¢ is demonstrated in Fig. 6. Finally, in Fig. 7, the behavior of the system is shown when
a differentiable filter of the first order is used for the estimation of ¢ (in this case, vmin = 0.02 m/s, v = 0.2, the
constant of time 7 = 0.005 s).

Example 2. Consider the problem of transforming into the vertical position and of stabilizing an inverted
pendulum situated at a trolley. Let the pendulum of mass m with distance £ between the axis and the center of
gravity, moment of inertia with respect to the center of gravity J, and with angle of deviation ¢ (¢ = 0 at the bottom
pos}tion) rotate on the axis fixed on the trolley. The trolley of mass M can move in the horizontal direction along
the normal to the axis of rotation of the pendulum under the action of a bounded external force u(t), Ju(t)] < um.
The friction under rotation of the pendulum and under moving of the trolley is not taken into account.
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It is required, by changing u(t), to transfer the pendulum from the initial position (¢ = ¢ = 0) to the final

one (¢ = ) and to stabilize it in this position ensuring simultaneously the stabilization of the position of the trolley
at the origin (a similar problem was considered in [2, 11])

The mathematical model of the system “trolley-pendulum” has the form {12]

Jp =~Lvusinp — Lhcos o, :
' Y ¥ (4.5)
Ms=u—h-Fs, .

where A = m§ + még cos p — m€p? sinp, v = mg — mep sin @ —~ mlp? cos ¢ are the horizontal and vertical forces of
reaction of the pendulum to the motion of the trolley; F' is the friction coefficient of the trolley.
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Setting M >» m and neglecting the friction of the trolley, we write the approximate equations of the
system [12]:

¢ = —%sin(p - X;si u(t),
(4.6)
$ L u(t)
= .
J+m- £ . . .
where L = g S the effective length of the pendulum, s(t) is the displacement of the trolley.

In what follows, we use the state vector x [p, ¢, s, 5, ]T. For the solution of the problem posed on the basis of
the VG method, we consider two subproblems: oscillation of the pendulum up to the amplitude close to « rad and
stabilization of it at this position with the simultaneous stabilization of the trolley.
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For each of these subproblems, we introduce their own objective functions Q;(x) and Q2(x), which we
combine in the common objective function Q(x) = u(x) - Qi(x) + (1 — u(x)) - Q2(x), where u(x) € [0,1] varies
according to what domain of the state space the depicting point belongs to (the choice of #(x) will be made more
precise below).

Let us choose the objective functions Q1(x) and Q3(x) in the form

Ql(x)zal-|H—H.|+a2-|ré+s|, (4.7
Qa(x) = [cTAx|, Ax=x-x", x*=[r,0,0,0]T, - (48)
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Here a1 > 0, a3 > 0, 7 > 0, c € R* are parameters determining the level of the control and the character
of the process of stabilization. The function Q1(x) corresponds to the step of oscillation of the pendulum up to the
value H = H, (H.=2-m-g- L) and to stabilization of the zero the state of the trolley (the parameter T is the
chosen constant of time); Q,(x) gives the desired dynamics of the process of stabilization Ax since, for Qy(x) = 0,
the condition ¢TAx = 0 is satisfied. Under the choice of the vector ¢, the expression ¢cTAx = 0 is considered as the
equation of motion in the sliding regime (13]. Let us obtain the finite form (2.5) of the VG algorithm on the basis of
the objective function Q (x).

First, we consider the domain #(x) = 1 in which the pendulum is oscillated up to a position close to the
vertical one. If we take y(x,u) = V,w (x,u), then we obtain the relay VG algorithm (2.5b) in the form

u(t) = umsign [A;sign (15 + s) — Ay cos psign ((H — H)p)]. - (4.9)
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We have another form of the control law under the choice of ¥(x, u) in the form
$(x,u) = sesign (H — H.)sign (cos ¢) sign (@) — (1 — »)sign(rs +s), (4.10)

where 3¢ is a parameter, 0 < 5 < 1. It can be shown that, for s»r < ., the function (4.10) satisfies the pseudogradient
condition ¥ TV,w > 0, and the control algorithm takes the form

u(t) = up,sign (H — H.)sign (cos @) sign (¢) — u,, sign (75 + s), (4.11)

where u! = sun,, v’ = (1 - 3)u,..
m i m m

For p(x) = 0 (stabilization of the pendulum and the trolley), the algorithm (2.5b) takes the form
u(t) = —upmsigno (cz; — cqcos ), (4.12)

where o(t) = cTAx(t) is the signal of the “residual” of the algorithm, ¢ € R* is the vector of coefficients insuring
the desired dynamics of the process of stabilization.
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For the choice of these coefficients, we use the notion of an “implicit model” (7, 8] and consider the equatio
cTAx(t) =0 (4.13

as some “standard” equation describing the desired character of the process of stabilization (an analogous approac!
is used for the synthesis of variable structure systems (13D).

For the choice of ¢, we linearize (4.6) in a neighborhood of x* = [7,0,0,0]T:

1

— uft
¢+ 5 v

6=1
L (4.14
§= —l—u(t)
= - ult).

Setting cTAx = 0 and taking (4.14) into account, we find the “standard” characteristic polynomial G(p) -
cT B(p), where B(p) is the vector of numerators of the transfer function of system (4.14). Equating the polynomis
G(p) to some stable polynomial (for example, to the Batterworth polynomial G(p) = p* + 2wop? + 2w2p + wd, wy i
a parameter), we obtain an expression for determination of the vector c ensuring the desired dynamics.

It is appropriate to take the switching function u(x) for the given prob'em in the form

p(x) = sign (lcTAxl - A),
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where the threshold A > 0 determines the width of the strip in which the algorithm of stabilization is efficient and
is defined in terms of uy,, m, L.

The results of modeling of the system (4.6), (4.11), (4.12) for » = 0.66, m = 0.5 kg, M = 5 kg, um = 15
H, L =03 m, wo =5sec™!, A = 0.1 are presented in Figs 8-10 in the form of graphs of the transfer processes with
respect to ¢(t), s(t), and u(t). The results obtained justify the efficiency of the proposed algorithm.

5. CONCLUSION

The applicability of the concept of velocity gradient was demonstrated in [6-10] for different problems of
stabilization and tracking. In this article, the method of velocity gradient is extended to vibrating systems with the
objective function based on energy. The stability theorems as well as the results of modeling justify the efficiency of
the proposed control algorithms and also the difference between the properties of algorithms in the differential and
finite forms.
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