
Automation and Remote Control, Vol. 64, No. 4, 2003, pp. 517–530. Translated from Avtomatika i Telemekhanika, No. 4, 2003, pp. 3–17.
Original Russian Text Copyright c© 2003 by Bondarko, Fradkov.

DETERMINATE SYSTEMS

Necessary and Sufficient Conditions for the Passivicability

of Linear Distributed Systems1

V. A. Bondarko∗ and A. L. Fradkov∗∗

∗St. Petersburg State University, St. Petersburg, Russia
∗∗Institute of Mechanical Engineering Problems, Russian Academy of Sciences, St. Petersburg, Russia

Received October 15, 2002

Abstract—For a wide class of systems, as is known, hyper-minimal phase is necessary and
sufficient for the strict passivicability of a system. This class contains both concentrated- and
distributed-parameter systems, including parabolic equations that describe heat-exchange and
diffusion processes. Our results are applicable to finite-dimensional input and output spaces,
which are important for application and cover systems with different numbers of inputs and
outputs for which passivity is superseded by the G-passivity of some rectangular matrix G.
An example of a diffusion-type one-dimensional partial differential equation directly containing
control is given. Proofs are based on the infinite-dimensional variant of the Yakubovich–Kalman
lemma and Nefedov–Sholokhovich exponential stabilization theorem.

1. INTRODUCTION

Passivity-based methods of system analysis were developed in the sixties of the last century by
V.M. Popov [1], G. Zames [2], and others. Conditions for the applicability of these methods for lin-
ear systems are formulated in the classical Yakubovich–Kalman–Popov (frequency) theorem [3, 4],
which asserts conditions for the existence of a quadratic storage function (analog of the Lyapunov
function) in the form of frequency inequalities (the SPR-property). The existence of a feedback
that transforms a linear system into a strictly positive real system, i.e., passivication in modern
terminology, is studied in [5, 6]. As has been found, a necessary and sufficient condition for the
strict passivicability of a system is its strongly minimal phase—the so-called hyper-minimal phase.

The simplicity of the conditions for the solvability of the problem opens a way for designing
effective methods of synthesizing systems. The passivity- and passivication-based methods of de-
signing linear and nonlinear control systems have subsequently found wide application [7–12] and
the passivicability conditions were discovered by many authors [5, 6] (see [13, 14] and the list of
references in [15]). The passivication method is advantageous, because there is no need to compute
the Lyapunov function explicitly for synthesizing and studying a system. It is worthwhile to extend
this method to a wider class of control systems.

In [16], sufficient conditions for the solvability of operator inequalities defining the existence
of a quadratic Lyapunov functional for a linear distributed system are formulated. The system
is described by differential equations in a Banach space of unbounded operators that generate a
continuous semigroup. The solvability conditions [16] are similar to the hyper-minimal phase con-
ditions for the finite-dimensional case. However, unlike in the finite-dimensional case, the necessity
of these conditions is still an open question.

In this paper, for a slightly more general case than that of [16], we prove that strictly minimal
phase is necessary and sufficient for the existence of solutions to operator inequalities defining the
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existence of a quadratic Lyapunov functional. The results are formulated in terms of passivity and
passivication in a convenient form for application to designing distributed control systems. Our
results pertain to finite-dimensional input and output spaces, which are important in application.
The final solution to the problem of strict passivicability is obtained for a wide class of systems.

An example on a diffusion-type one-dimensional partial differential equation containing control
is given to illustrate our results.

All proofs are based on the infinite-dimensional variant of the Yakubovich–Kalman lemma and
Nefedov–Sholokhovich exponential stabilization theorem and are given in the Appendix.

2. FORMULATION OF THE PROBLEM

Let us consider a class of objects described by the differential equations

ẋ = Ax+Bu, y = Cx (1)

in the Hilbert state space X = {x}. Although the results are formulated for a Hilbert state space,
many of our results also hold for more general objects described by differential equations in a
Banach space. Therefore, we state the formulations for Banach spaces wherever possible. We
assume that control and output take finite-dimensional values, i.e., u(t) ∈ Rm and y(t) ∈ Rl, where
Rn is an n-dimensional Euclidean space. The linear operators B and C are assumed to be bounded:
B ∈ L(Rm → X) and C∗ ∈ L(X → Rm), where L(X → Y ) denotes the set of linear bounded
operators acting from the Banach space X to the Banach space Y . The linear operator A, in
general, is unbounded. We assume that the operator A generates a semigroup U(t) of the class C0.
Therefore, for every t ∈ (0,∞), the operator U(t) ∈ L(X → X) is defined such that

U(t + s) = U(t)U(s) ∀ t ∈ (0,∞) ∀ s ∈ (0,∞), lim
t→0

U(t)x = x ∀ x ∈ X,

and lim
ε→0

ε−1(U(ε)x − x) = Ax for all x for which the limit exists (this set, denoted by D(A), is

dense in the Banach space X).
The solution of Eq. (1) is interpreted in the sense of the semigroup U(t): a function y(·) is taken

to be the solution if the equalities

x(t) = U(t)x(0) +
t∫

0

U(t− s)Bu(s) ds and y(t) = Cx(t)

hold for all t for some function x(·) with values in the Banach space X.

Definition 1. A system (1) is said to be G-passive if there exists a self-adjoint positive operator
H ∈ L(X → X) such that

V (x(t)) ≤ V (x(0)) +
t∫

0

[
u(s)∗Gy(s)− ρ|x(s)|2

]
ds (2)

for ρ = 0 for the quadratic form V (x) = x∗Hx on the solutions of Eq. (1).
If inequality (2) holds for a positive ρ, then system (1) is said to be strictly G-passive.

Inequality (2), which contains the solution of Eq. (1) with an arbitrary locally summable function
u(·) in the right side, is equivalent to the inequality for quadratic forms

2x∗H(Ax+Bu) ≤ u∗GCx− ρ|x|2 ∀x ∈ D(A) ∀u ∈ Cm (3)
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or, which is the same thing, two operator relations

HA+A∗H < 0 and HB = (GC)∗. (4)

(Operator inequalities are interpreted in the sense of quadratic forms.) Let us add the feedback

u = Ky + v (5)

to system (1), where v ∈ Cm is a new input and K is an m× l matrix.

Definition 2. A system (1) is said to be G-passivicable (strictly G-passivicable) if there exists
an m× l matrix K such that system (1), (5) is G-passive (strictly G-passive).

This paper is primarily concerned with necessary and sufficient conditions for the strict G-
passivicability for some class of systems (1). The main condition for a system to belong to this
class is the stabilizability, which is necessary for the passivicability of a system. In this sense, the
class of infinite-dimensional system is almost not extendable. The class is almost not extendable,
because additional conditions are imposed on the rate of decrement of the frequency characteristic
of the system when the frequency tends to infinity. For a finite-dimensional state space of the
system, these conditions automatically hold. For an infinite-dimensional space X, these conditions
are satisfied, for example, by parabolic-type equations describing heat-exchange processes as well
as chemical and nuclear reactions.

The passivicability problem is solved with the use of the degenerate frequency theorem, which
states conditions for the solvability of the operator relations (4) in terms of frequency characteristics
of system (1). For infinite-dimensional systems, this theorem was first demonstrated only as a
sufficient condition. In this paper, we shall show that the frequency conditions for solvability are
also necessary (4). Since the degenerate frequency theorem holds only for stable systems (1), we
must also investigate the stabilizability of system (1) using dynamic output-to-control feedback.
We shall formulate the solution of this problem in the form of necessary and sufficient conditions.

We now describe the class of systems (1). Let system (1), (5) be strictly G-passive for rela-
tions (4) of the form

H(A+KC) + (A+KC)∗H < 0, HB = (GC)∗, (6)

where H = H∗ > 0. By the first relation, system (1), (5) is exponentially stable for v(t) ≡ 0.
Consequently, the strict G-passivicable system (1) is exponentially stabilizable by the feedback
u = KCx from the state x to the finite-dimensional input u. Hence, without loss of generality, we
can require that the system be exponentially stabilizable by the feedback

u = Dx, (7)

where D ∈ L(X → Rm).
An effective criterion for the exponential stabilizability of system (1) by feedback (7) from the

state x to the finite-dimensional control u is given in [17]. To formulate this criterion, we require
the following notation: σ(A) is the spectrum of the operator A, sp(Q) is the linear span of the
set Q, and Cγ = {λ : Reλ ≥ γ} is the extended right half-plane (for γ < 0).

Theorem (Nefedov–Sholokhovich [17]). Let an operator A generate a semigroup of the class C0

in a Banach space X and let B ∈ L(Cm → X). Then the following two assertions are equivalent:
I. There exists an operator D ∈ L(X→ Cm) such that σ(A+BD) ⊂ C\Cγ, γ < 0.
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II. The spectrum of the operator A in the closed right half-plane C0 consists of a finite number
of eigenvalues of total multiplicity n < ∞. The spectral projector P defined by the integral of the
resolvent (λI −A)−1 along the contour containing the whole spectrum of A in the closed right half-
plane decomposes system (1) into an exponentially stable subsystem and a finite-dimensional (not
exponentially stable) completely controllable subsystem:

dx′

dt
= A′x′ +B′u, x′ = Px ∈ X ′, y′ = C ′x′, (8)

dx′′

dt
= A′′x′′ +B′′u, (9)

x′′ = (I − P)x ∈ X ′′, y′′ = C ′′x′′,

y = y′ + y′′,

where X is the direct sum of the subspaces X ′ = PX = Cn and X ′′ = (I − P)X, A′ = AP,
A′′ = A(I − P), B′ = PB ∈ L(Cm → Cn), B′′ = (I − P)B, C ′ = CP, and C ′′ = C(I − P),

σ(A) = σ(A′) ∪ σ(A′′), σ(A′) ⊂ C0, σ(A′′) ∩ Cγ = ∅, (10)

sp {B′Cm, A′B′Cm, . . . , (A′)n−1B′Cm} = X ′. (11)

By the Nefedov–Sholokhovich theorem, every stabilizable system (1) has a finite-dimensional
subsystem (8), which is uniquely defined if its “antistability” condition (10) holds. Hence we can
assume that the operator A′ ∈ L(Cn → Cn) is defined by a matrix in some base of an n-dimensional
space X ′. Hence the polynomial

δ(λ) = det(λIn −A′) (12)

is also uniquely defined and is called the characteristic polynomial of system (1).
Let us consider the class Ξ of systems (1) satisfying the following conditions.
1. System (1) is exponentially stabilizable by some feedback u = Dx.
2. The resolvent (λI −A)−1 tends to zero as |λ| → ∞ and λ ∈ Cγ for some γ < 0.
3. The operators CA : X→ Cl and AB : Cm → X are bounded.
The first condition, as has been stated, is necessary for system (1) to be strictly passivica-

ble. The other two conditions are imposed for technological reasons, since the criterion of strict
G-passivicability formulated in the next section thus far does not yield to proof without them. For
a finite-dimensional phase space of a system, these conditions automatically hold. For an infinite-
dimensional state space, condition 2 holds, for example, for parabolic-type systems. Condition 3 in
this case obviously implies that the weight functions corresponding to the operators B and C are
sufficiently smooth. The example given in Section 4 pertains precisely to this class.

3. FORMULATION OF THE RESULTS

Let us take an m× l matrix G and the functions

χ′(λ) = C ′(λI −A′)−1B′, χ′′(λ) = C ′′(λI −A′′)−1B′′,

χ(λ) = χ′(λ) + χ′′(λ) = C(λI −A)−1B, ϕ(λ) = δ(λ) det[Gχ(λ)].

Definition 3. A system of the class Ξ is said to be of minimal phase if the function ϕ(λ) has
no zeros in Cγ for some γ < 0. A minimal phase system is said to be of hyper-minimal phase if
GCB = (GCB)∗ > 0.
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By analogy with the finite-dimensional case, an operator B∈L(Cm→ X) is said to be of complete
rank if Bu = 0 only for a zero vector u.

Theorem 1. A system of the class Ξ is strongly G-passivicable if and only if it is of hyper-minimal
phase.

To prove this theorem, we require two assertions, which are of independent interest and known
to hold for the finite-dimensional case. The first assertion is the degenerate frequency theorem (the
Yakubovich–Kalman lemma).

Theorem 2. Let A be an exponentially stable operator generating a semigroup in the Hilbert
space X, B ∈ L(Cm → X), and C ∈ L(X → Cm). Then for the existence of a self-adjoint positive
operator H : X→ X and a positive number δ obeying the relations

Rex∗HAx ≤ −δ|x|2 ∀x ∈ D(A), HB = C∗, (13)

it is sufficient that

Reχ(λ) > 0 ∀λ = iω, ω ∈ (−∞,∞), (14)

lim
ω→∞

g(ω)−2Reχ(iω) > 0, (15)

where

g(ω) = max
{
‖(iωI −A)−1B‖, ‖C(iωI −A)−1‖

}
.

But if system (1) with operator coefficients A, B, and C belongs to the class Ξ and the operator B
is of complete rank, then it is necessary that inequalities (14) and (15) also hold for relations (13)
to hold. Furthermore, relations (13) imply that inequality (14) holds not only on the imaginary
axis, but also for all λ ∈ CΓ, where Γ < 0.

The sufficiency of this theorem is proved in [16], whereas its necessity is demonstrated in the
Appendix of this paper.

To demonstrate Theorem 1, we require one more auxiliary assertion concerning the stabilizability
of system (1) by output-to-control feedback. Let us consider the dynamic feedback defined by the
following differential equations in the Banach space Z = {z} (Hilbert space for our case):

ż = Az + By, u = Cz +Dy, (16)

where A is the generating operator of a semigroup of the class C0, B ∈ L(Cl → Z), C ∈ L(Z→ Cm),
and D ∈ L(Cl → Cm).

Definition 4. A system (1) (of the class Ξ) is dynamically output-stabilizable if there exist
operators A, B, C, and D such that system (1), (16) is exponentially stable.

Definition 5. A system (1) (of the class Ξ) is nondegenerate in the closed right half-plane if there
exists a minor µ(λ) of the transfer function χ(λ) such that

lim
λ→λ0

δ(λ)µ(λ) 6= 0 (17)

for every root λ0 ∈ C0 of polynomial (12).
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Theorem 3. A system (1) (of the class Ξ) is dynamically output-stabilizable if and only if it is
nondegenerate in the closed right half-plane.

Corollary. A dynamically output-stabilizable system is exponentially stable if its transfer function
has no poles in the extended right half-plane.

A particular case of Theorem 3 for a system with scalar input and output is given in [18]. If
l = m = 1, then (17) takes the form

δ(λ) = 0 ⇒ β(λ) 6= 0, (18)

where χ(λ) = β(λ)/δ(λ). For a finite-dimensional system, we can take δ(λ) = det(λI − A). If,
additionally, condition (18) is satisfied for any λ ∈ C, then the polynomials δ(λ) and β(λ) are
coprime. If (18) holds for C0, the greatest common divisor of the polynomials δ(λ) and β(λ) is a
Hurwitz polynomial. In either case, system (1) is output-stabilizable. Thus, Theorem 3 extends
the well-known result for a finite-dimensional system to an infinite-dimensional system.

4. AN EXAMPLE

Let us examine the temperature-control problem for a homogeneous rod of unit length described
by the parabolic partial differential equation

∂T

∂t
= α

∂2T

∂s2
+ βT + b(s)u(t), y(t) =

1∫
0

c(s)T (s, t) ds, (19)

∂

∂s
T (0, t) =

∂

∂s
T (1, t) = 0, (20)

where α > 0, the state T (s, t) for every t ≥ 0 is a function in the space X = L2(0, 1), and
the distributed parameters b(·) and c(·) are also functions in the space X. Let us determine the
conditions for the system to be passivicable. To apply Theorem 1 in determining the passivicability,
we must verify whether system (19), (20) belongs to the class Ξ. The operator A for our case is a
second-order differential operator α∂2/∂s2 +βI with domain of definition defined by the boundary
conditions (20). To find the resolvent (λI −A)−1, we must solve the equation λz = Az+w for the
function z(·) for an arbitrary function w(·) ∈ L2(0, 1). For our operator A, the resolvent is defined
by an ordinary differential equation

λz(s) = αd2z(s)/ds2 + βz(s) + w(s), dz(0)/ds = dz(1)/ds = 0.

Solving this equation, we find that the relation z(·) = (λI−A)−1w(·) is equivalent to the equalities

z(s) =
[e−sµ + esµ]

2α[µ2][(eµ − e−µ)/µ]

1∫
0

[e−pµ + epµ]w(1 − p) dp+
s∫

0

[
e−pµ − epµ

2αµ

]
w(s − p) dp,

µ2 =
λ− β
α

.

Here all functions within square brackets are analytical functions of µ, whose expansions contain
only even powers. Therefore, the resolvent degenerates only at the zeros of the function

α[µ2][(eµ − e−µ)/µ] = 2(λ − β)
sin(i

√
(λ− β)/α)

i
√

(λ− β)/α
,

i.e., at the points λk = β − α(πk)2, k = 0, 1, 2, . . . , which form the spectrum of the operator A.
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Let us find the conditions under which system (19), (20) belongs to the class Ξ. For this, we
must verify three conditions. First, the operators CA and AB must be bounded. For our example,
this implies that the functions b(·) and c(·) are twice differentiable and their first derivatives at
the boundary points s = 0 and s = 1 are zero. Second, the resolvent (λI − A)−1 must tend to
zero as λ tends to infinity inside the right half-plane. This is always true of parabolic equations.
This is also implied by the expression for the resolvent. What now remains is to verify the last
condition, namely, the stabilizability of the system by a finite-dimensional feedback. Let us apply
the Nefedov–Sholokhovich theorem for this purpose.

First let us take β < 0. Then the spectral expansion (8), (9) for our system is trivial: P = 0,
A = A′′, δ(λ) = 1, and we obtain, instead of stabilizability, stability. This completes the proof.

Now let 0 ≤ β < απ2. Then the spectrum of the operator A contains only one point λ0 in the
right half-plane Reλ ≥ 0. The operator P is the residue of the resolvent at the point λ0. The
expression for the resolvent implies that P is simply an operator of averaging over the rod length.
The antistable finite-dimensional subsystem (8) is described by the equation

ẋ0 = λ0x0 + bu,

where b =
∫ 1
0 b(s) ds. Its controllability is defined by the inequality b 6= 0 and therefore system (19),

(20), by the Nefedov–Sholokhovich theorem, is finite-dimensionally stabilizable. Similarly, we can
also find the antistable subsystem for large β. But for the time being let us confine ourselves to
the case β < απ2. Therefore, δ(λ) = 1 for β < 0 and δ(λ) = (λ− λ0) for 0 ≤ β < απ2.

Let us compute the transfer function χ(λ) = C(λI −A)−1B. For our case,

w = Bu ⇔ w(s) = b(s)u, y = Cx ⇔ y =
1∫

0

c(s)x(s) ds.

Let, for instance, c(s) = b(s) ≡ c. Then the expression for the resolvent implies that

CB =
1∫

0

c(s)b(s) ds = c2, χ(λ) = c2/(λ − λ0).

Therefore, for β < απ2 and b(s) = c(s) ≡ c 6= 0, system (19), (20) not only belongs to the
class Ξ, but is also of hyper-minimal phase. By Theorem 1, this is necessary and sufficient for its
passivicability.

If the conditions for the passivicability of the system are satisfied, we can design a controller,
using the passivication method. For example, Theorem 1 implies that the linear controller u = Ky
stabilizes the system for a sufficiently large negative K. But applying the results of [16], we find
that the adaptive controller

u = Ky, dK/dt = −y2

guarantees that ‖T (s, ·)‖ ∈ L2[0,∞) in time under any initial conditions, where

‖T (s, t)‖2 =
1∫

0

|T (s, t)|2ds.
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5. CONCLUSIONS

A class Ξ of infinite-dimensional, in general, control systems with finite-dimensional input and
output is determined. These systems satisfy the well-known result for finite-dimensional systems,
namely, hyper-minimal phase is necessary and sufficient for the passivicability of a system. This
class includes all finite-dimensional linear stationary systems. The class of infinite-dimensional sys-
tems also includes parabolic-type systems describing heat-exchange and diffusion processes. The
main conditions for a system to belong to the class Ξ are close to the necessary and sufficient
conditions for the stabilizability of a system by linear feedback. An example is given to illustrate
the verification of hyper-minimal phase conditions for a diffusion-type one-dimensional partial dif-
ferential equation directly containing control.

APPENDIX

Theorem 1 is demonstrated with the use of Theorems 2 and 3, which, in turn, are demonstrated
with the use of certain auxiliary assertions. First, let us write an obvious equality

λ(λI −A)−1 − I = A(λI −A)−1 = (λI −A)−1A, (A.1)

from which we obtain

λχ(λ)− CB = C(λI −A)−1AB = CA(λI −A)−1B, (A.2)

λC(λI −A)−1AB −CAB = CA(λI −A)−1AB, (A.3)

λ2χ(λ)− λCB − CAB = CA(λI −A)−1AB, (A.4)

if λ 6∈ σ(A) and CA and AB are bounded operators.
Proof of Theorem 2. The sufficiency of the frequency inequalities (14) and (15) for the existence

of a self-adjoint positive operator H satisfying relations (13) is proved in [16]. We now show the
converse is also true of systems (1) belonging to the class Ξ, i.e., relations (13) imply inequalities (14)
and (15).

Let the continuous operator S be the square root of H−1. Then H−1 = SS, S = S∗ > 0. Let
z = Sx, A = S−1AS, B = S−1B, and C = CS. If the triple {u(·), x(·), y(·)} defines the process of
system (1), then the triple {u(·), z(·), y(·)} defines the process of an equivalent system

ż = Az + Bu, y = Cz, (A.5)

which has the same transfer function

χ(λ) = C(λI −A)−1B = CSS−1(λI − SS−1ASS−1)−1SS−1B = C(λI −A)−1B.

Expressing relations (13) in terms of system (A.5), we obtain

A + A∗ ≤ −εI, B = C∗, (A.6)

where ε = δ/‖H‖ > 0. Let u be a nonzero m-dimensional vector and let λ = ν+ iω, ν > −ε. Then

Re [u∗χ(λ)u] = Re [u∗B∗(λI −A)−1Bu]

=
1
2

[u∗B∗(iωI + νI −A)−1Bu+ u∗B∗(−iωI + νI −A∗)−1Bu]

=
1
2
u∗B∗[(iωI + νI −A)−1 − (iωI − νI + A∗)−1]Bu

=
1
2
u∗B∗[(iωI − νI + A∗)−1(A + A∗ − 2νI)(iωI + νI −A)−1]Bu

= −w∗(A + A∗ − 2νI)w ≥ (ν + ε)|w|2 ≥ 0,
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where w = (λI − A)−1Bu. The equality holds only for a zero |w|. But if w = 0, then Bu =
(λI −A)w = 0. Hence u = 0, contrary to our assertion. Thus, inequality (14) has been demon-
strated for all λ of real part greater than −ε.

For inequality (15), let us note that the function g(ω) in it can be replaced by |ω|−1. Indeed,
(iω −A)−1 → 0 as ω →∞ for systems of the class Ξ. Therefore, relation (A.1) implies that

‖B‖
2|ω| < ‖(iωI −A)−1B‖ < 2‖B‖

|ω| ,
‖C‖
2|ω| < C‖(iωI −A)−1‖ < 2‖C‖

|ω|

for all sufficiently large |ω|. Therefore, inequality (15) is equivalent to the inequality

lim
ω→∞

ω2Reχ(iω) > 0, (A.7)

which we shall verify with the help of equality (A.4). Applying it to the triple A,B,C = B∗ for
λ = iω, for any nonzero m-dimensional vector u we obtain

ω2Re [u∗χ(iω)u] = −Re [(iω2)u∗χ(iω)u]

= −Re [iωu∗B∗Bu+ u∗B∗ABu∗ − u∗B∗A(iωI −A)−1ABu]

= −1
2
u∗B∗(A + A∗)Bu+ Re [u∗B∗A(iωI −A)−1ABu].

The first term in the right side of this chain of equalities does not depend on ω and is positive due
the complete rank of B and inequalities (A.6). The second term tends to zero, because

‖B∗A(iωI −A)−1AB‖ ≤ ‖B∗A‖ ‖(iωI −A)−1‖ ‖AB‖ −−−−→
|ω|→∞

0

since system (A.5) belongs to the class Ξ. Hence we obtain inequality (A.7) (and even with total
limit, instead of partial limit). This completes the proof the theorem.

Lemma 1. Let Ω be a neighborhood of the point λ0 ∈ C, let δ(λ) be a scalar analytical function
on Ω, let A(λ) = (aij(λ))Ni,j=1 be a matrix analytical function on Ω, let b(λ) = (bij(λ)) be an N ×N
rational matrix, and let µ(λ) be a minor of the matrix B(λ). If

lim
λ→λ0

δ(λ)µ(λ) = 0 (A.8)

for all minors of B(λ), then (A.8) also holds for all minors of the matrix B(λ) +A(λ).

Proof. Without loss of generality, let us consider a matrix A(λ) with only one nonzero element
ai0j0(λ). Let µB(λ) be a minor of B(λ) and let µA+B(λ) be a minor of B(λ) +A(λ) defined by the
same set of columns and rows. If µA+B(λ) does not depend on ai0j0(λ), then µA+B(λ) = µB(λ)
and equality (A.8) is trivial. In the contrary case, expanding µA+B(λ) by the elements of the i0th
row, we obtain

µA+B(λ) = µB(λ)± ai0j0µ′B ,

where µ′B is another minor of B(λ). Consequently,

lim
λ→λ0

δ(λ)µA+B(λ) = lim δ(λ)µB(λ)± lim ai0j0 lim δ(λ)µ′B = 0.

This completes the proof of the lemma.
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Lemma 2. A system (1) (of the class Ξ) may be nondegenerate in the closed right half-plane if
and only if its finite-dimensional subsystem (8) is also nondegenerate in the closed right half-plane.

Proof. Let system (1) be degenerate, i.e.,

δ(λ0) = 0, lim
λ→λ0

δ(λ)µ(λ) = 0

at some point λ0 ∈ C0 for every minor µ(λ) of the transfer function χ(λ). Then system (8),
by Lemma 1, is also degenerate, because the difference between χ(λ) and χ′(λ) is an analytical
matrix function χ′′(λ) in C0. For this reason, degeneracy of system (8) implies the degeneracy of
system (1). This completes the proof of the lemma.

Proof of Theorem 3. First we prove that nondegeneracy of system (1) is necessary for the system
to be output-stabilizable. If system (1) degenerates at some point λ0 ∈ C0, then, by Lemma 2,
its finite-dimensional subsystem (8) also degenerates at the same point. The nondegeneracy of
system (8) by a well-known finite-dimensional theorem (see, for example, Theorem 1.2.4 in [19]) is
equivalent its controllability and observability. Consequently, system (8) is nonobservable since it is
controllable by definition and Nefedov–Sholokhovich theorem. Therefore, there exist an eigenvalue
λ0 and an eigenvector x0 such that

Reλ0 ≥ 0, x0 ∈ X ′, Ax0 = A′x0 = λ0x0, Cx0 = 0.

The functions z(t) ≡ 0, u(t) ≡ 0, y(t) ≡ 0, and x(t) = etλ0x0 define the process of the closed-loop
system (1), (16) for any feedback (16). Therefore, system (1) is not stabilizable. This completes
the proof of the necessity of nondegeneracy.

To prove the sufficiency, feedback (16) must be expressed such that the closed-loop system is
exponentially stable. Let system (1) be nondegenerate in the right half-plane. Then, by Lemma 2,
the finite-dimensional subsystem (8) is also nondegenerate, and Theorem 1.2.4 of [19] asserts that
system (8) is controllable and observable. Consequently, there exist matrices Φ and Ψ such that
the operators (matrices) A′ + ΦC ′ and A′ +BΨ are Hurwitz.

Let us consider the feedback

ż′′ = A′′z′′ +B′′u, (A.9)
ż′ = A′z′ +B′u+ Φ(y − C ′′z′′ − C ′z′), (A.10)

u = Ψz′. (A.11)

Subtracting Eq. (A.9) from (9), we obtain ε̇′′ = A′′ε′′, where ε′′(t) = x′′(t)−z′′(t) exponentially tends
to zero as t → ∞, because the operator A′′ is exponentially stable. Subtracting (8) from (A.10),
we find that

ε′(t) = x′(t)− z′(t) (A.12)

exponentially tends to zero, because

ε̇′ = A′x′ −A′z′ + Φ(C ′x′ + C ′′x′′ −C ′′z′ − C ′z′′) = (A′ + ΦC ′∗)ε′ + ΦC ′′ε′′.

Substituting (A.11) and (A.12) into (8), we obtain

dx′

dt
= A′x′ +B′u = A′x′ +B′Ψ(x′ − ε′) = (A′ +B′Ψ)x′ −B′Ψε′. (A.13)

Consequently, dx′(t)/dt and x′(t) exponentially tend to zero and, therefore, u(t) also exponentially
tends to infinity by virtue of (8). Finally, relation (9) guarantees the exponential decay of |x′′|,
because the operator A′′ in Eq. (9) is exponentially stable.
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Hence the feedback (A.9)–(A.11) guarantees the exponential stability of the closed-loop system.
This completes the proof of the theorem.

Proof of Theorem 1. Without loss of generality, we take m = l and G = I. If this cannot be
done, then we take GC, instead of C.

Let us show that the hyper-minimal-phase system (1) is strongly G-passivicable, i.e., there exists
a matrix K such that the system

ẋ = AKx+Bu, y = Cx (A.14)

is strictly G-passive, where AK = A + BKC. We shall determine the matrix K in the form
K = −kI, where k is a real number. Let χK(λ) = C(λI − AK)−1B. Left- and right-multiplying
the obvious identity (λI −A)−1 − (λI −AK)−1 = (λI − A)−1(A−AK)(λI −AK)−1 by C and B,
respectively, we obtain χ(λ)− χK(λ) = −χ(λ)KχK(λ). Hence

χ−1
K (λ)− χ−1(λ) = −K = kI. (A.15)

Using this equality, we shall show that the operator triple (AK , B,C) satisfies all conditions of
Theorem 2 for any sufficiently large k.

Let us begin with the exponential stability of the operator AK . Since system (1) is of hyper-
minimal phase, the inequalities detχ(λ) 6= 0 ∀λ ∈ Cγ and CB > δIm > 0 hold for some δ > 0.
Furthermore, the functions Q(λ) = C(λI −A)−1AB and q(λ) = CA(λI −A)−1AB tend to zero as
|λ| → ∞, λ ∈ Cγ . Indeed, ‖q(λ)‖ ≤ ‖CA‖‖(λI − A)−1‖‖AB‖. Since our system belongs to the
class Ξ, the first and last factors are bounded, and the middle term tends to zero. A similar picture
holds for Q(λ) as well.

The matrix function χ(λ)−1 is continuous inside the domain Cγ , because detχ(λ) is nonzero in
this domain. Taking R > 0, let us partition Cγ into subsets C = {λ ∈ Cγ : ‖Q(λ)‖ < δ/2, |λ| > R}
and C = Cγ\C. Let R be sufficiently large such that C does not contain the spectrum of the
operator A. Then the functions q(λ) and Q(λ) will be continuous on C. The set C is compact,
because Q(λ) → 0 as |λ| → ∞, λ ∈ Cγ . Consequently, Reu∗χ(λ)−1u ≥ −k|u|2 ∀u ∈ Cm and
∀λ ∈ C, where k = max ‖χ(λ)−1‖ for λ ∈ C.

If λ ∈ C, then ‖µ(λ)‖ < 1/2, where µ(λ) = −(CB)−1Q(λ). Since (Im − µ(λ))−1 = Im +
µ(λ) (Im − µ(λ))−1, we have ‖ (Im − µ(λ))−1 ‖ ≤ 2. Therefore

χ−1(λ) =
[
λ−1 (CB +Q(λ))

]−1
= λ(CB)−1 [Im − µ(λ)]−1

= λ(CB)−1
[
Im + µ(λ)[Im − µ(λ)]−1

]
= λ(CB)−1 − (CB)−2[λQ(λ)][Im − µ(λ)]−1

= λ(CB)−1 − (CB)−2[CAB + q(λ)][Im − µ(λ)]−1.

Consequently,

Re u∗χ−1(λ)u = Reu∗λ(CB)−1u− Reu∗(CB)−2[CAB + q(λ)][Im − µ(λ)]−1u

≥ γ

δ
|u|2 − 2

δ2
(‖CAB‖+ ‖q(λ)‖)|u|2.

Hence Re u∗χ(λ)−1u ≥ −k|u|2 ∀λ ∈ C, where k = −γ/δ − 2(‖CAB‖+ kq)/δ2 and kq = sup ‖q(λ)‖
for λ ∈ C.

Let k ≥ 1 + max{k, k}. Then, relation (A.15) implies that Re u∗χ−1
K (λ)u > |u|2 ∀λ ∈ Cγ

and for all u. This inequality does not hold for a nonzero m-vector v for which χ−1
K (λ)v = 0.

Therefore, detχ−1
K (λ) 6= 0 ∀λ ∈ Cγ , i.e., the matrix function [χ−1

K (λ)]−1 = χK(λ) is continuous
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in the domain Cγ . This implies the exponential stability of AK . Indeed, the hyper-minimal-
phase system (1) is nondegenerate in the closed right half-plane: the minor µ(λ) can be taken to be
detχ(λ). Then inequality (17) guarantees the absence of zeros for the function ϕ(λ) = δ(λ) det χ(λ)
in Cγ . By Theorem 3, the nondegeneracy of system (1) implies that some feedback (16) stabilizes
the system. Therefore, a similar feedback

ż = Az + By, u = Cz + (D −K)y

stabilizes system (A.14), because the matrices A = A0 and AK differ precisely by BKC. Applying
Theorem 3 once again, we find that system (A.14) is nondegenerate. By the corollary of Theorem 3,
this implies the exponential stability of the operator AK .

Let w = χK(iω)u. Then u = χ−1
K (iω)w and

Reu∗χK(iω)u = Rew∗
(
χ−1
K (iω)

)∗
χK(iω)χ−1

K (iω)w

= Rew∗
(
χ−1
K (iω)

)∗
w = Rew∗χ−1

K (iω)w > 0,

i.e., the transfer function χK(λ) satisfies the frequency inequality (14).
Finally, relation (A.4) implies that

ω2Re u∗χK(iω)u

= −Reu∗[CAKB + CAK(iωI −AK)−1AKB]u −−−→
ω→∞

−Reu∗C(A− kBC)Bu

= −Re u∗CABu+ ku(CB)2u.

Since CB > 0, for sufficiently large k, we obtain lim
ω
ω2ReχK(iω) > 0, which is similar to (A.7)

and which for systems of the class Ξ is equivalent to the limiting frequency inequality (15).
Thus, for any sufficiently large k, the operator triple (AK , B,C) satisfies all conditions of The-

orem 2: the operator AK is exponentially stable and the transfer function satisfies the frequency
inequalities (14) and (15). Applying Theorem 2, we find that system (A.14) is strictly passive, i.e.,
system (1) is strictly passivicable.

We now show that the converse is also true: if system (1) is strictly passivicable, then it is
of hyper-minimal phase. The strict passivicability of system (1), by definition, implies the strict
passivity of system (A.14) with some matrix K, which now need not necessarily be of the form kI.
Hence the operator triple (AK = A+BKC,B,C) satisfies the relations HB = C∗ and ReHAK < 0
with some bounded operator H = H∗ > 0. Hence it immediately follows that the triple AK is
exponentially stable and the operator CB = B∗HB is positive. What now remains is to verify that
the function ϕ(λ) = δ(λ) detχ(λ) has no zeros in the closed right half-plane C0.

Let us apply Theorem 2. For the strictly passive system (A.14), it guarantees the inequality
Re u∗χK(λ)u > 0 for every nonzero m-vector u and every λ in the extended right half-plane
CΓ, Γ < 0. Consequently, detχK(λ) 6= 0 ∀λ ∈ CΓ and χ−1

K (λ) is a continuous matrix function in
the interior of CΓ. Applying the Schur lemma and the first equality in (A.15), we obtain

det

(
λI −A′ −B′K
−C ′ I − χ′′(λ)K

)
= det(λI −A′) det

[
I − χ′′(λ)K − C ′(λI −A′)−1B′K

]
= det(λI −A′) det [I − χ(λ)K]

= det(λI −A′) detχ(λ) det
[
χ−1(λ)−K

]
= ϕ(λ) detχ−1

K (λ). (A.16)

Let ϕ(λ0) = 0, Reλ0 ≥ 0. Then, by the continuity of χ−1
K (λ), relation (A.16) implies that

(λ0I −A′)x′0 −B′Ky0 = 0, −C ′x′0 + [I − χ′′(λ)K]y0 = 0 (A.17)
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for some nonzero vectors x′ and y0. The finite-dimensional subsystem (8), by Lemma 2, is non-
degenerate. By Theorem 1.2.4 of [19], nondegeneracy is equivalent to simultaneous controllability
and observability. Consequently, the vector y0 cannot vanish, because equalities (A.17) take the
form λ0x

′
0 = A′x′0, C ′x′0 = 0, which contradicts the observability assumption.

Let v(t) = C ′′G′′(t)(λ0I − A′′)−1BKy0, where G′′(t) is an exponentially decreasing semigroup
(in norm) generated by the exponentially stable operator A′′ in Eq. (9). Let us consider the system
of equations

ẋ′(t) = A′x′(t) +B′Ky(t), x′(0) = x′0,

ẋ′′(t) = A′′x′′(t) +B′′K[y(t) + v(t)], x′′(0) = 0, y(t) = C ′x′(t) + C ′′x′′(t).
(A.18)

By virtue of (A.17), its solutions are the functions

x′(t) = etλ0x′0, x′′(t) = (λ0I −A′′)−1B′′Ketλ0y0, y = etλ0y0.

This contradicts the stability of the operator AK = A + BKC, i.e., the stability implied by the
passivity of system (A.14).

Thus, the assumption that ϕ(λ0) = 0, Reλ0 ≥ 0, leads to a contradiction. Hence a strictly
passivicable system is always of hyper-minimal phase. This completes the proof of the theorem.
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