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pESIGN OF AN ADAPTIVE SYSTEM FOR STABILIZING

p LINEAR OBJECT WITH DISTRIBUTED PARAMETERS :
V. A. Bondarko, A. L. Likhtarnikov, UDC 62-501.45

and A. L. Fradkov

We consider the design of an adaptive stabilization system in the case of a linear dynamic ob-
ject with distributed parameters. The dynamics of the class of objects under discussion is de~
scribed in the language of semigroups. For the stated problem we give a solution based on
frequency conditions for the solvability of certain operator inequalities (an infinite-dimension-
al analogue of the Yakubovich—Kalman lemma). The results obtained are illustrated by an ex-
ample,

1. INTRODUCTION

Problems of controlling complicated objects with distributed parameters are encountered more and more
frequently in engineering practice [1]. Such objects include chemical and nuclear reactors, industrial plants
in which heat, diffusion, or wave processes occur, elastic moving objects, and so on. The design of a system
for controlling distributed objects is frequently complicated by the fact that it must operate under conditions
ofuncertainty, when the values of the object parameters and of the external effects are not known precisely or
can change in an unforeseeable way. As is well known, adaptation methods provide an effective means for solv—
ing control problems under conditions of uncertainty [2, 3]. Most of the work on adaptive control of objects
with distributed parameters (see, e.g., [4-6]) is based on finite-dimensional approximation of the infinite-di-
mensional phase space of the object (i.e., replacement of the distributed object by a concentrated one) and sub-
sequent use of standard "finite-dimensional™ .methods (2, 3, 7). However, to check the effectiveness of the de-
signed system in this approach it is necessary to solve the problem of the stability and accuracy of the finite-
dimensional approximation. As simple examples show [8], even in the "nonadaptive" case the solution to this
problem is far from trivial. Therefore, a justification for the correctness of the indicated approach requires
additional investigation.

On the other hand, in recent years there has been a development of techniques for finding frequency con-
ditions for the existence of solutions of linear and quadratic operator inequalities [9, 10]: infinite-dimensional
rriants of the Yakubovich— Kalman lemma. The use of these conditions enables us to carry the Lyapunov
zethods for designing adaptive control systems directly over to objects with distributed parameters [3, 11-13].
Yoreover, the infinite dimensionality of the state space of the object leads to a number of analytical difficulties
*hich cannot be correctly overcome without changing both the definitions and statements of the problems and
e methods for proving the effectiveness of the systems.

This paper deals with an extension to objects with distributed parameters of the method for designing
Waptive stabilization systems that was proposed in {13]. To describe the dynamics of a linear controlled ob-
lect we choose the language of semigroups (14, 15], which enables us to include a broad class of objects that
@n be described by partial differential equations with lagging argument, etc. The number of measurable out-
ts of the object is assumed to be finite, and the controlling signal is assumed (for simplicity) to be a scalar,
The specific character of the infinite~dimensional state space made it necessary to impose on the operator of
e object a number of requirements of a general character that are listed below. The statement of the prob-
#m considered in this paper relates to the case of unmeasurable but damped perturbations and reflects the
Pecific character of problems of "rough" stabilization when there is little a priori information about the ob-
ket and the perturbations, and when there is no driving signal and the goal of the adaptation is essentially to
nsure stability of the system. We remark that, as in the case of a concentrated object [16], the proposedalgo-
ithm can be made effective even in the case of undamped perturbations by regularization: the introduction of
!regative feedbackinthe adaptation circuit.
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2. DEFINITIONS AND NOTATION. STATEMENT OF THE PROBLEM
It is assumed that the dynamics of the controlled object is described by the linear differential equation
dx/dt=Az+bu+f, y=L'z, (1)

in the Hilbert space X; x(t)€X is the state vector of the object, y is the /-dimensional output vector of the oh.
ject, u is a scalar control, and (t) is a perturbation vector. The operator A is a linear unbounded (generauy
speaking) operator with dense domain D(A) in X and generating a semigroup of the class C, (14, 10]). We cop.
sider the operators A whose resolvents, the operators Ry (A)= AI-A}! (A€C, I the identity operator), satisfy
additional conditions. Namely, we suppose that R)y(A) is a compact operator and IR (Ask/ |, IR (A —¢
(12| ==, ReX > §), respectively, for sufficiently large w€R! and some k>0, 8>0.

The last conditions mean, in essence, that some neighborhood of the right half-plane contains at most
finitely many points of the spectrum of the operator A. Let s denote the class of operators satis fying these
conditions.

We remark that in the finite-dimensional c'ase, when (1) is a system of ordinary differential equationsang
the operator A is a matrix, the class & includes all matrices. In the case X = L,(32), where QC RN js a bounded
domain,* n = 1, 2, 3, the class & contains the strongly elliptic differential operators and thereby embraces a
large collection of practically important boundary value problems. Examples (and formulas enabling us to
check the conditions of the class $£) can be found in (8, 17].

The perturbation f(t) is assumed to be damped and smooth, more precisely,

f(-)€L:(0, +o0; X)NC*(0, +o0; X), f(0)eD(A).

In (1) the operators b: R'—X, L:Rl— X are assumed to be bounded and such that b€ND(AD), R(L)SND(A*n),
n n

where R(L) denotes the range of the operator L.

Let Z(X,Y) be the set of bounded linear operators acting from X into Y (X, Y are normed spaces), A
vector a€X obviously generates a linear operator in Z(R',X), and we denote it also by a. For any vectors a,
b in the Hilbert space X we let a*b denote their scalar product. Let o(A) denote the spectrum of the operator
A; A is said to be Hurwitz if o(A)c {r€C: Rex<—-8; 6> 0}. The symbol A* denotes the operator adjoint to A.

Let BeZ (R~ X), LeZ (R, X). The pair {A, B} is said to be controllable if R(B)cND(AD) and the set
n
UADR(B) is dense in X. The pair {A, L} is observable if {A*,L}" is controllable. The triple {A,B, L} is said
n

to be nondegenerate if {A, B} is controllable and {A, L} is observable.

The transfer function of the object (1) is defined to be the vector function W(A) = L*(A\I— A)~'b = L*R)(A)b,
A€C. If A=, then the elements W(}) are meromorphic, and it can be represented inthe form WQ) =[8(A)]" ¥ (),
where the entire function 6(A) and the vector of entire functions ¥(2) do not have common zeros [14].

We proceed to the statement of the problem. Suppose that the object is to be stabilized by a linear regu-
lator of the form

u=c'y, (2)
where c€R! is a vector of adjustable coefficients.
An algorithm for adjusting the coefficients will be found in the class of algorithms of the form
de/dt=F (y). 3

As usual [7], we assume that the "coefficients" A, b, L of the object and the perturbation f(t) depend on a
vector £ of unknown parameters with E=E, where E is a known set.

Definition 1. We say that the system (1)-(3) is adaptive in the class Z, if for any t=ZX and on any tra-
jectory of the system the goal of the control is attained: the satisfaction of the relations

*Here and in what follows we use the standard notation for the function spaces: L,(R) is the Hilbert space of
square-integrable functions in the domain 2; Ly(0, +; X) is the Hilbert space of vector functions x(t) with
values in the Hilbert space X and such-that Ix(t)l is square-integrable on the half-line; W,%(2) is the Sobolev
space (see, e.g., [14]).
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The problem of designing an adaptive stabilization system consists in determining a function F in (3) that
does not depend on §=E and is such that the system has the adaptivity property in the given class 5.

We solve the stated problem below.

3. STATEMENT OF THE RESULTS

To state the adaptivity conditions we need the following definition, which coincides with the common one
(18] in the finite-dimensional case.

Definition 2. Let x (A)bedefined bythe equality XQA)=L*(AI—-A) -Ip, where Aest, b, LeX, This y(A)is
called 2 minimal phase functionif there exist operators B,=% (R, X), L,=Z (R', X), suchthat thetriple {A, By,
11} isnondegenerate and ¢ (A) =0 for ReA = 0, where ?A)=38;A) X A), 6;(A) is the denominator of the matrix func-
tion xy(A) = Ly* (AI—A)-B, = [6;(A)]1 ¥y (7). -

We remark that the triple {A, B, L} can be degenerate (see § 2). But if {A, b, L} is nondegenerate, then
instead of @A) #0 we can require that x (\) #0 for Re A = 0.

We construct the adaptation algorithm (3) similarly to [13] in the form

de/dt=—(g"y) Py, (6)

shere g is some [-dimensional vector, and P = P* is the positive-definite  x] matrix of amplification coeffi-

cients of the adaptation circuit. The following theorem gives conditions for the effectiveness of a system with
 the algorithm (6).

Theorem 1. Suppose that for any £SE the parameters A, b, L of the object and the perturbation f(t)
satisfy the conditions of § 2. Then the system (1), (2), (6) is adaptive in the class E, if g¥*W*(}) is a minimal t==
phase function and g*L*b >0 for any

A proof of the theorem is given in the Appendix. For the finite—-dimensional case Theorem 1 was proved
in [13].

The design of an adaptive stabilization system on the basis of Theorem 1 can be carried out as follows.

1. The operator A of the object is written out (taking into account the differential equation and the bound-
; ary conditions) and the inclusion desf is verified.
{
: 2. On the basis of the solution to the boundary value problem (see, for example, the tables in {8, 17]) the
i transfer function W(A) of the object is written out.

3. The class of functions W¢ () corresponding to the given class of uncertainty £ is determined.

; 4. A vector g€RI is found which ensures that for any Et=Z the function g*Wg(*) is a minimal phase func-
Lion and that the coefficient g*L*b is positive.

5. The adaptation algorithm is taken to be (6) with the vector g found.

The central point in the proof of Theorem 1 is the use of the so-called degenerate frequency theorem,
*hich has independent significance and a broad circle of applications {10, 12, 13]. Below, we state Theorem 2,
%hich is a needed variant* of the frequency theorem in [10] that uses the "limiting frequency inequality."

Let A:D(A)c X—X be an infinitesimal generator of a semigroup of the class C;, BeZ(R™X), F(z,u)=
YFix+2Re xFyu a Hermitian form on X xR™M degenerate with respect to u€R™; F,=F'eZX(X, X), F.eZ(R™X).

By I(w) we denote the m xm matrix of the Hermitian form #[R..(A)Bu,u], and by g(w) the greater of the two

Umbers: NR;,(A)BIZ, IRjw(A)F,ll2. Obviously, if A is a Hurwitz operator, then g(w) is a bounded positive
linction.

Theorem 2. Suppose that the following three conditions hold:

Theorem 2, in a formulation close to ours, was obtained by L. O. Barsuk. For the case of bounded operators
% g(w) = |w}? this theorem was published in [19].
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I. the operator A is Hurwitz;

II. I{w)>0 VwER! (the frequency inequality);

HI. lim (w)/g(w) >0 (the limiting frequency inequality).
W00

Then:
1) there exist an operator H=H'e 2 (X,X) and a number 6> 0 such that

HB=F, Re 'HAz+z'Fiz<—6|z|*VzeD(A); N
2) if F;=0, then H>0,

Below (see the Appendix) we derive Theorem 2 from results in {10, 20]. We remark that if Fi=0, F,=1,
and IRjw (A = K|wl!, then g(w) = Kw?, K >0, and, consequently, the conditions of the theorem can be written ag
follows:

Ila) ReW(w)>0 Ywe€R! (the frequency inequality);
I1a) Ji_r.nmszeW (iw) >0 (the limiting frequency inequality).

Under these conditions there exists an operator H> 0 such that (7) holds.

4. EXAMPLE

We consider a linear controlled heat transfer process in a rod of finite length. It is assumed that the
heat source adds or absorbs heat at the point z in proportion to the local temperature T(z, t), while the source
of the controlled output u(t) adds or absorbs heat uniformly along the length of the rod. The mathematical
model of the process has the form

ar 0T -
W= & Ez—'*‘ ET+Equ, (8)

where &y, £,, £, are constant numerical parameters. It is assumed that the heat flow through the ends of the
rod is equal to zero.

Of the possible variants for observation we choose an observation with constant effectiveness function:
1
y()=& [Tz 0)ds, ®
0

where £; is a constant numerical parameter.

Thus, in this case the set of unknown parameters of an object £€ R* consists of the numbers Egs £1s Egs b
moreover, from physical considerations the parameter £, must be positive. We take the class E of possible
parameter values to be the set E={§: £,>0, ££>0, E,<a’(,}. Obviously, the class E contains also unstable ob-

jects (for positive values of £), therefore, the necessity of stabilization arises in the solution of the problem.

To use the results presented above, we take X = L?[0, 1],

0z e _0.7:(0)=0a:(1)_
de=bitbe D=0 20— =T =0},

b—_'—gz, L=E;EX.

Then Eqgs. (8_), (9) take the form (1) for I = 1. It follows from the general theory of differential operators
(14] that for any E<E the operator A is in the class &,

We show that the system (8), (9), complemented according to (2), (6) for g= 1 by the adaptive regulator
u=cy, dc/dt=—y,

is adaptive in the given class E in the sense of Definition 1. To do this we verify the conditions in TheoreH: 1.
Suppose first that £,=0, {;=£,=£3=1. Then, using the tables given in [8], we have W) = L*(A\I- A)~h=2"".

To verify the minimal phase property we take L, =Bx=22"‘ cosknz. Using the controllability criteria in [10]s

R
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ye can show that the triple {A, B, L;}is not degenerate, and the denominator of its transfer function is equal

w hsh(8). Thus, @) =sh (A)/ A = [ 1+ (kn)-), Le., 90) = 0 for A =— (km? (k=1,2,...). Since for other

A1

bo) we have that ¢z (A) = 0 for (A—£)/¢, =

ol

walues of £ the correspond.ing function <p§ () has the form q)(

~@m)? k=1, 2,...), i.e., 9¢(\) =0 for Re A = 0 if teE,

Accordingly, the minimal phase condition is satisfied for the function g*w(}). It is easy to see that
¢'L*b>0 also holds for our choice of g=1 for any geZ. Theorem 1 now gives us that the system (8)-(10) is
sdaptive in the class E

APPENDIX

We use Theorem 2 to prove Theorem 1. Therefore, we first prove Theorem 2. We precede the proof by -
two lemmas.

Lemma 1. LetI{w), G(w) be two Hermitian m Xm matrices that depend continuously on the parameter
wéR!. If 1) I(w) >0 YwE RY, 2) G(w)= g(w)l, VwER!, 3) lim N(w){g(w)]~!>0, then for some &> 0 we have the
Ww—o .

inequality
N(0) =66 (w), weR ’ (A.1)

Proof. Suppose the opposite: Vk=1, 2,...,Ju€RM, wp €R! : up* I (wi)uy < (1/ k)up* G(wy)uy. If the set
, {(“k’ wk)}cRmH is bounded in R™M*! then there exists a limit point (uc, We ) of this set, (ukj, ‘”kj)“ u,, @ ).
j-——eo

Then the continuity condition implies that u *II{w Ju, = hm uk]*n(wk])uk] < lim —:-”k: G (o) -ux;=0, which contra-

Jroo B

- dicts 1. But if the set {(uk, wk)} is not bounded in RM*L then without loss of generality we may assume that
Yy~ug, Jugl =luyl=1, Jwyl~—w. Consequently,

! 1 £ (o)
j lim uf I (0,) u, 7(op) < llm Icg(m 3 ukG(mk)uk< hm L o =

K=

, “hich contradicts the condition 3.

! Lemma. 2. Suppose that J(h) = h*Rh+2Rer*h+p, a continuous quadratic functional on the Hilbert space
{ ¥ R=R'=2 (%, %), r, hes€, p=R. The functional J(h) is lower semibounded,
i

i : GyeR': J(h)>Y Vhed (A.2)
‘ ifand only if |r*h|= »*h*Rh vkes. The proof of the lemma is elementary.

Proof of Theorem 2. Let us consider the set Uy={u(-)eL?(R; R™): a(t)= O(t< 0)}. Let x(t): x= Ax+ bu,
i M0) = x4, x(t)=0(t<0). Then it is clear that X(®) = Rju(A)BU(w) +Rj,(A)x,, where X(w), i(w) are the Fourier

‘ransforms of the functions x(t), u(t). On the Hilbert space %: we consider the functional 7(u)= js‘[z(t),u(t)]dt-
0
Parseval's equality gives us that

+o +eo

I(u) = .[S?'l;(m). 2(0)ldo = I(:z‘(m)l'l((o)u(m)-(»z Re z,°K (0) 2 (0)}do + p,
there K(w) = R*jy(A)[Fy+ F;RjwB] =2 (R™ X),

p= I Zo°Ria® (A) FyRiu(4) 2o do.

The functional J, thus, has the form indicated in Lemma 2. We verify that the condition in Lemmzi 2 holds.
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. Letting G(w) be the matrix IK(w)ull?, we get from the conditions II, III, and the inequality G(w)=Cg(w), ac.
cording to Lemma 1, that u*l(w)u=§ |[K(w)ul?, 6>0, Yu, Vw. Then

- - < - s
ju~(m)n(m)u(m)dw>oj|K(m)u|=dm >W
0

_fz.'K'(m)Z(m)dm r.

Setting r = K*(-)x,€ L}(R; RM), n= |x,|¥8, we obtain the condition of Lemma 2.
Accordingly, the functional J(u) is lower semibounded on 2/,.

By Theorem 5 in [10] and Lemma 1, we get assertion 1) in Theorem 2. Assertion 2) follows from the
statement of Theorem 2 in [19). Theorem 2 is proved.

The proof of Theorem 1 will be preceded by two lemmas.

Lemma 3. Let 4<s. BeZ(R™ X), LEZ(R; X). Suppose that the triple {A, B, L} is nondegenerate. Then at
each point of the spectrum of the operator A the transfer matrix x(A) = L*R) (A)B has a pole of the same order
- as the resolvent Rj (A).

Proof. It is known (see [14]) that the operators in the class & have a spectrum consisting of isolated
points that are poles of the resolvent. In a neighborhood of a pole A, of it of order r the resolvent can be ex-
panded in a Laurent series

Ri(4)= Z(A-xo)mm An=0  for  n<-r, A_ 0,

(A.3)

where the A, are bounded operators that commutate with A, and [14)
(A=~Al)Au=An_y for a+0. (A.4)
We assume that at the point 2 the matrix x(*) has a pole of order r'= 0, r'<r. Then it follows from (A.3)

that L*ApB = 0 for n<—r'. With the help of (A.4) it is easy to get from this that L*AKA AJB =0 for n<~r', k,
i=0,1,2,... .

Consequently, for any y€RI, ué RMm we have y*L*AkA_rAjBnu =0 fork,j=0,1,2,... . Since the triple
A, B, L;is nondegenerate, we get A_r = 0, a contradiction. The lemma is proved
g g

Lemma 4.* We consider Aes, benD(4"), denD(4*"), L,e Z (R, X}, B,e @ (R', X) and write Ay = A—nbd*, X ()=

/ d*Rx (Ay )b, w€R!. Suppose that the triple {A, By, L,} is nondegenerate, d*b > 0, and ¢{A) # 0 for Re A = 0, where
N AR = 6)x( ), xA) = d*Rx(A)b, X1 (A) = Ly*RaA(A)By = ¥, (M) [§(A)]71.

e

Then A.=s¢ and for sufficiently large n there exist an operator <% (X, X), H—= 1* >0, and a number £>0
L © such that

Hb=d, Rez'HA.ux<-e|z|* for zeD(A). (A.5)
: e Proof. We use Thearem 2. For this we show that for sufficiently large n we have that {
Ax=st, A, — a Hurwitz operator. (A.6)
Re xa{i®)>0 for weR!, (A7)
lim w2y, (io) > 0. (A.8)
[ree

Let us first see that A=« Indeed, by a perturbation theorem in {14], Ay generates a semigroup of the
class Cy, because A— Ay = nbd*€ Z(X, X).

We consider the set Q5={}: Re =~ 3§, 6>0}. Since IRy (A)I~0 (A€ Qg), all points of 6 sufficiently large
in modulus are regular for the operator A and (as is not hard to see) for the operator Ay. This follows from
the fact that a regular point A of A is a regular point of Ay if Inbd*Ry (A)l =q<1. Since, moreover, IRy (A)—

¥ emma 4 i< tl ' . o
Lemma 4 is the basis for the proof of Theorem 1. It gives sufficient conditions for the existence of solutions

of the operator inequalities (A.5), which signify that the derivative of the Lyapunov function of the system (1)- o

(3) is negative. We remark thatinthe finite-dimensional case these conditions are necessaryand sufficient [13]-
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. Rexy (iw)>0 and lim 02 Re (. (i) = lim Re

R (Ax)I=a/(1—qliR; (A)l, we have that Ry, (Ayx)—=0as |A |-~ if A€ 25 and IRju(A)I=c/|w] for sufficiently large

l“’l‘ Finally, by the second resolvent ldentity,"‘ the resolvent of Ay is compact, and, consequently, d.esxt. We

gow show that for large w the operator Ay, is Hurwitz. To do this we consider the functions x(\) and x, () and
convince ourselves that for large % the function X» () does not have singuliarities in the right half-plane. In-

deed, it follows from the second resolvent identity .

Ri(A) =Ry (A,) =By (A)xbd*R, (A.) (A.9)

that
X" HA) =g () =x. (A.10)

We recall that x(0) = go(k)[é,()\)]", where 6;(A), ¢(A), by Lemma 1, are entire functions, and ¢{A) # 0 for
ReA= 0. From this it follows that x~!(A) is a function holomorphic in the right half-plane. If we show that
Rex-'() is bounded below on the right half-plane, then it follows at once from the equality (A.10) that for large
x the function X! does not have zeros in the right half-plane, and, hence x4(}) does not have singularities. To
prove that Re 1) is bounded, we write two equalities which are easily verified with the help of the second
resolvent identity:

Ax (M) =d'b+d*R, (4)Ab, (A.11)
A%y (M) =Ad*b+d Ab+d R, (A) A%. (A.12)
It follows from (A.12) that
1 % (1) d'bRer  |d'Ab+d R, (A)A%,
Re = Re > -
x (1) xR [ [Ax ()2

The first term on the right-hand side of this inequality is nonnegative, and the second term has a limit
as |[A[—~w, ReAZ 0, by (A.11). It follows from this that x-!(%) is bounded below on the right half-plane, and,
hence, for sufficiently large » the function xy (*) does not have singularities in the right half-plane.

Since the triple {A,, b, d} is not, generally speaking, nondegenerate, the continuity of x,(A) for Rex= 0
does not now imply directly the Hurwitz property of A,, and to prove this fact we need some additional construc-
tions which we omit because of their awkwardness.

It remains to verify the conditions (A.7) and (A.8), and we do this. By (A.11), (A.12) we have that

Re[x (iw) 7' =Re x (iw) |x (i0) |2=— (d"Ab+d" R, (A) A%8) -} ioy (iv) |'—Ii~— Therefore, it follows from (A.10) that

= e

Re [xy (iw)]~'>0 and | lrm Re [x (iw)]~!>0,if » is sufficiently large. For such » we obviously have that
|00

toyx(in)|? . Lo .
I—M———lim Reliwy«(iw)] lim Re[x.(iw)]-', since both limits exist and are

v v o Ax i) oo oo
positive,
The existence of the desired operator H now follows from Theorem 2. Lemma 4 is proved.

Proof of Theorem 1. First of all, we remark that the operator A, the operators By, L, (from the defini-
tion of the minimal phase property of the function g*W()), and the vectors b, d = Lg satisfy the conditions of
Lemma 4. By this lemma, there exist a number % and an operator He (X, X), such that H = {*> 0, Hb= Lg,
Rex*H Ay x=—e|x|? for xED(A), where Ay =A—nbg*L*. We consider the following function on the phase space
of the system (1), (2), (6):

V(z, cy=x"Hz+ (c—xg)*P~'(c—xg). (A.13)

This function is a Lyapunov function for the system (1), (2), (6), since for its derivative we have, by the
System, that ¥

V{z(t), c(t)]=2Re z*HAx+2 Hf (t) <—e|z(t) |2+|z (¢) | -I1HY- | ].

e

L.—.--—-—\- - e

By the second resolvent identity we mean the following fact [14]: if A is a common regular point for the two
tlosed linear operators A and B and D(B)> D(A), then Ry (A)-Ra(B) = Ra(B) (A— B)RA(A).
tFor smooth perturbations f(t) the solution x(t)€D(A) (t>0). We can avoid such restrictions as was done in [20].
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Integrating this inequality from zero to t >0 and writing p2 = |2(s) |2 ds, y —j I1(){* dt, we obtain
o

epld—lHlinp—~V[z(0), c(0) ) <-V[x(1), c(t)]<O.

From this it follows, by obvious estimates [13], that the quantity p* -J' lz(){*dr is finite. Since the right.
L]

hand side of (6) is a quadratic form in x(t), the limit lim c{t) exists and is finite.
t——o0

(S

10.

11.

12.

13.

14.
15.

16.

17.
18.

19.

20.
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The theorem is proved.
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