ADAPTIVE SYSTEMS

‘m:‘ .

‘TWO MODELS FOR ANALYZING THE DYNAMICS
OF ADAPTATION ALGORITHMS

D. P, Derevitskii and A, L. Fradkov ' UDG 62-50

An approach is proposed to the analysis of the dynamics of adaptation algorithms, based on the con-
struction of approximate models of the algorithms, It is shown that, as a model of an adaptation al-
gorithm described by a stochastic difference equation, one can utilize an ordinary differéntial equa-
tion (the detemministic model) or a stochastic differential equation (the stochastic model), The mod-
dels described herein are applied to the investigation of the dynamics of concrete adaptation algori-
§ i thms: a linear algorithm, a sign-dependent algorithm, a perceptron type of algorithm, as well as a

: random search algorithm,

{21, Introduction

In this paper we consider adaptation algorithms described by stochastic difference equatidns of the form
Cr=Cr—1 _'Yhf (Xg, ck—!), (k=1 2 . -)1 ' @

'f where cy is the m-dimensional state vector of the adaptive system on the k-th step of the adaptation process; x, is
k. the random vector of extemal stimuli on the k-th step; yy >0 (k=1, 2,...) are specified numbers determining
- the magnitude of the steps of the algorithm, Vector function f(x, ¢) may be either deterministic or random,

It is of some interest to investigate the dynamics of the adaptation process and, in particular, to determine
the speed of convetgence of each algorithm, Of practical importance here are the estimates of the so-called prac-
.thcal speed of convergence, i.e,, the mean number of steps required t6 achieve functional quality of a specified lev-
¢ el, However, a direct investigation of the behavior of the solution of stochastic difference Eq. (1) leads to difficul-
é ties, while estimates of speed of convergence are far from being known for all algorithms,

In the present paper we propose a general approach to the analysis of the dynamics of algorithms of the form
of (1), this approach consisting in the replacement of Eq, (1) by 2 "model* related to it, This model must be sim-
 pler to investigate and, at the same time, must remain close, in some sense or other, to the original Eq. @).

The Deterministic Model

Consider the ordinary differential equation
’ dc/ dt==—A (c) ' (2

m:y, be close to the solution ¢ (tk) of Eq, (2), where f, = 2 Tie
4 i=1

Let us render the foregoing more specific,
Let A(c) = Myf(x, c), h(x, c) = f(x, c)-A(c),
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B(c)=M.{h(x, ¢)h™(x, )}, b(c)=Sp B(c) =M.lh(x, e}

Here and henceforth, Sp A denotes the trace of matrix A, while AT denotes the transpose of matrix A, and L.
is the m X m unit matrix, The symbol R™ denotes the m-dimensional Euclidean space of vectors ¢ = (¢ (), ...,
¢ (M) with the nom

lell=Y[c®)+,..., +[c™]
Theorem 1, Assume that, for some L;, L, >0, and ¢, c' € R, the following conditions are met
|A () —A (e’) I<Lilie—¢’ll, ®
b(c)<Li(1+lell?) @
while the vectors x (k =1, 2,.,.) are independent,
Then, for any y > 0 and any integer N >0 with 0 = y, =y (k=1,..., N), the following inequality is true

M12t¥~ fex —e(t) < Kuy. ®

k |
Here, ¢, = E Y;, while ¢ (t) is the solution to differential Eq. (2) with the initial condition ¢ (0) = ¢,. The;

1

ial ;

|
quantity K, in (5) depends only on Ly, L,, |ic], tN, m. i
The proof of Theorem 1is provided in Appendix 1,*

Corollary 1, Under the conditions of Theorem 1, we obtain from (5) and the Chebyshev inequality, an esti-
mate of the probability that the solution to Eq, (1) goes beyond an & cylinder about the solution to Eq, (2) ;

2
P{max Je,—c(t)|>e}<<B for 1< %. : (6} 1
1<RSN 1 .

Theorem 1 provides an estimate of the closeness of the vectors ¢ and ¢ (ty) only on a finite interval of time’
(0 st =t <w), IncaseEq, (2) is stable it is possible to obtain estimates which are uniform over 0 st <,

Theorem 2, Let the conditions of Theorem 1 hold and, in addition, for some vector ¢, € R™, matrix H =
HT >0, and number & > 0, let the following conditiont hold

A(e)™—H(c—ec.)=bllc—ec.|l> ('7)1 j
Then, the following inequalities will hold for some y, >0, K, >0, and a >0, when 0 =y, = y<7y,

Mllen—e () IP<Kay® (k=1,2,...), ®
with the quantity K, depending only on Ly, L,, H, §, m, Jc,—c.|. :
The proof of Theorem 2 is provided in Appendix 2, i

Remark 1, If function A (c) is linear, condition (7) is equivalent to asymptotic stability in the large of Eq, (2)
In the general case, asymptotic stability in the large of Eq, (2) follows from (7). :

Remark 2, In many algorithms of the form of (1), the right side is, for each x, a function of the mismatch
Vi =Cx—C,. Then, instead of (2), it is natural to consider the corresponding equation for the mismatch

dv [ dt=—A(v). )
With this, the appropriate obvious changes must be made in the formulation of Theorems 1 and 2, :

Ji
* The proof of Theorem 1 used ideas of S, N, Bernshtein [1] (in [1] it was proven for the scalar case of the assertio
close to Corollary 1), In [2], it was suggested that, as the model of Eq. (1), one take the "averaged" differenceeq
tion ¢ = Ck-3—y, A(Ck.1). An assertion close to Theorem 1 of [2] was obtained as an intermediate result in pro
ing Theorem 1 (cf,, Appendix 1),
1 The notation H > 0 means that matrix H is positive definite, i.e,, that ¢THe >0 whenc = 0,
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> The Stochastic Model

The results of section 2 show that the deterministic model of (2) is a good approximation to Eq, (1) only in the
when the variance of the increment* of vectors ¢, is small, i.e,, when it is possible to neglect the influence of
random contributions ykh(xk, Ck-1). We now construct a stochastic model of process (1) which takes account
LY {g‘he role of the random contributions., This model will be comprised of a stochastic differential equation whose
solution is a Markov diffusion process, We present the original Eq. (1) in the form

1

er=cs1— A (er-1) — V[ V1 'h (X, €s) ] (20

k
Tht we let g — 0, while fixing the quantity by = Z 7; and keeping the quantities y, ' unchanged, equal to the

i=1

p§ of the original algorithm, It is known (3] that the vector ¢y, will, in this case, converge by probability distri-
on to the solution C (t, ) of the stochastic differential equation

- de(t)=—A (c(2))dt+Vy(2) B(c(t) )dW(2), 1)

e y(1) = 2N when t€[t, 4, t) and W (t) is an m-dimensional Wiener process with unknown components, The
ution to Eq, (11) can serve as an approximation to the solution of Eq, (1) in the sense that the conditional first and
nd moments of the vectors ¢y —ck.3 and &(ty) —&(ty_4) coincide to within o(yy). We note that the vectors
—Ck-1 and ¢ (ty) —c(ty.1), where ¢ (t) is the solution to (2), coincide only for their first moments, i.e,, the mathe-
matical expectations, We formulate as a theorem what we have just said,

Theorem 3. Let the functions A (c) and h(x, c) be triply differentiable and also satisfy a Lipschitz condition
; : k :
threspectto ¢, Let 0 = y) = y and the quantity f, = ) 7, be fixed, Then, the solution ¢, to stochastic dif-

i=1
erence Eq, (10), for any distribution Py (c) of initial vector ¢,, converges by probabillity distribution as y - 0 to the
Hgolution ¢ (ty ) of stochastic differential Eq, (11),
Process ¢ (t) satisfies the relationships .
M{c(th) —e(tims) e (tat) } == A (E(8rmi) ) Ho (1), a2
M{[e(t) —e(tr-4) 1 [6(t) —c(tr-1) 17 (ta-1) } =1utB (€{(ta-1) ) —0 (Vo). 9

1 The proof of Theorem 3 is analogous to that given in [3, 4] and, due to its great cumbersomeness, we do not -
v duce it here,

b Remark 1, The probability density p (c, t) of vector &'(t) satisfies the Kolmogorov equation [4] with the initial
gondition p(c, 0) = py(c).

' Remark 2, In [5], stochastic differential Eq, (11) was used in the analysis of the simplest algorithm for ran-
om search of the extremum of a function of one variable,

. It follows from Theorem 2 that, as an approximation to vector ¢y, one could choose &(t), where &'(t) is a dif-
sion process with flux vector —A () and diffusion matrix y; B(c) withty_y st <1,

, 1t i{sof interest to estimate the probabilistic characteristics of process &(t) and, in particular, its first and second
bments, It can be shown [6] that the quantities p(tf) = M&(t) and p () = M [|[&(t) —¢ ||, where ¢ € R™, satisfy the

ot an(e) lde=-MA (), o
dp (t) /dt=—2MTA (c(t)) 1" [e(t) —c]+ 7 () Mb(c(t)). as)

Application of the Models to the Analysis of the Dynamics
‘of Certain Adaptation Algorithms

As an example we shall now consider the problem of the adaptive reconstruction of an unknown function y (x)
=.Co Tox) + 1, where ca and ¢(x) are m-dimensional vectors, 7 is random noise (Mn = 0, Mn? = o2) with respect

* By the variance of the increment of ¢) we understand the quantity My ||y, h(xy, ¢) 17 = y;*b (ey)-
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to its values at the randomly observed points Xy (k =1, 2,...). We shall assume vectors Xy and "noise" 7 to be in-
dependent and identically distributed.

Typical examples of algorithms for solving this problem [7, 8] are the linear algorithm

e = ;1 — Y [y (Xe) — ¢, @ (x2)] @ (xs) ae

and the sign-dependent algorithm |
€ = Cp-1 — Y SiB1 [y (X&) — €L, @ (Xi)] @ (Xe)- an

In constructing adaptive systems one frequently makes use of perceptron-type algorithms . 1

' € = 043 — i [8ign ¥ (xs) — sign eT_, @ (x¢)] @ (xs) ek

for reconsrituting the function sign y(x). .|

We initially consider the linear algorithm of (16). Remark 2 to Theorem 2 applies to it, Obviously, A(V) =
Rv, where R= M¢(x) ¢7T(x), i.e., condition (3) holds for the algorithm of (16). Condition (4) will bold if vector
@(x) has finite fourth moments (for example, if vector ¢{x) is almost certainly bounded, or has a normal distribu-
tion), Thus, we can use Theorem 1, by virtue of which the mismatch vy = ¢y —~ce converges as yy - 0 to the solu-

’ k
tion to Eq, (9), defined by the formula V (t) = exp (—R 2 yi) vo. Llet Lbe the largest, and I the smallest,

f==]
eigenvalues of matrix R, We have the following estimate for the square of the norm of the mismatch

i=1

Iv ) <exp (—2l 2 v()ﬁ Vo I as)

For the application of the stochastic model it is necessary to compute b (v). We shall assume that* ¢(x) €
N (0, R), R >0, It is easy to show that, in this case, the following equation is true
M@ (x) 9" (x) ]*=R Sp R+2R> (20)
By virtue of (20), b (v) = vI (RSpR + R?)v + 0%Sp R, i.e., the conditions of Theorem 3 hold. We estimate
the mean square mismatch p(t) = M [|¥(ty) | by using relationship (15), We have dp(t)/dt= —21p(t) + y(m +1)
L’p(t) + myLo? with 0 < y, = y. Hence

myo®L

CE A ey |

M|v (t) | <exp[(—2l 4 (m 4 1) vL¥) t, )} vo [ + -

In the particular case R = r? L., 7k = 7, we have an exact expression for the model's square mismatch
llv (ta) lI*=exp (—2kyr*) lIvoll?, 22) |

MUV () P=exp[—kyr 2— (m+1)y7) J{IvolP—myo?/ (2 —
— (m+1)yr?) 1+ myo*/ 2— (m+1)yr).

(23)

In this case it is also easy to obtain the exact expression for the mean square of the mismatch, Muvk I, for
the original algorithm of (16) : .

2 3
M{viP = (1 + 2yr* + (m + 2) v’r‘)'(ﬂ"oll“— 2_(:\:32) yr=) +2——(:102) e @9

A comparison of expressions (22)-(24) shows that the following inequality bolds for small values of y

*» The expression z € Ny, 3, R), where a € R™ and R is an m X m matrix, means that the m-dimensional random v
tor z is normally distributed, with Mz = a, M(z—a) z—a)T =R.
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”» V@) P<MImIP<MIvE)L | @9
(e.: the model's errors are upper and lower bounds of the error of the initial algorithm, Expressions analogous to

( 2) and (23) can also be written for another choice of the sequence y,, for example, for y), = y/k. In this case,

&k = ylnk + yC + ny, where C = 0,577, ..., is the Eyler constant, and ny — 0 ask - », Expressions (22) and (23)
assume the forms

v (&) 12~2=217][ % 1%, : (26)

C1k™1 when 2yr? > 1
M]v ()P ~E™"|vo + B whereE, << { Cok™ In &k when 2yr® =1 @0
Cok ™" when 2 qrt < 1.

-‘The result in (27) accords with the known estimate$ of [8], We note that condition (7) holds for the algorithms

"f' (16) with H=1, and 6 =, Therefore, Theorem 2 is applicable, from which follows the closeness (for small val-
,?fthe i) of the trajectories of ¢y and c(ty) forallk =1, 2,....

E "We now tum to the sign-dependent algorithm of (17), limiting ourselves to the case n = 0, ¢(x) € Np,'(0, R),
abg) It is easy to show that, with this,

M (sign [c”'q)(x)]q)(x)}—-l/ 2 V%&‘ @9

It follows, from (28) and from remark 2 to Theorem 2, that, for the algorithm of (17),

—y/ 2_Rv _ 2 [RVE

A l/nvm’ b)=SpR— Tt @9
‘i'f condition (4) holds while condition (3) is violated in the neighborhood of point v = 0, Nonetheless,Theorem 1
Qan also be apphed to this case, Simple computauons show that the solution to Eq, (2) for algonthm (17) with ini-
hpopdxtion v, attains point v = 0 in a finite time t satisfying the inequality [v,| v&/2L =<t = [v,|| V7/27.
'1 , for any t <t the trajectory v (s), for s <t, lies outside some neighborhood of point v =0, i.e,, in a region
A here condition (3) holds, It is not difficult to show that, for small values of y), the vectors vy, for ty st <t with
', rob bility close to unity, will also lie in this region, i.e., the assertion of Theoxem 1is true forty <t, In the case

iWhen R = r’Ly, the time f can be computed exactly: £ = va/Z[|vo] /1.

1 )1' ~ We apply the results we have obtained to the comparison of the several algorithms with respect to their speeds
a Of convergence, We compare, for example, the algorithms of (16) and (17), making use of the deterministic model
Pind assuming, for simplicity, that n =0, R=12Ly, yp =y, let kg be the number of steps required to attain the
'pes_ified accuracy, i.e,, the inequality [v(ty)|| < €holds, We have

N S Y _ /) mlve]—¢
Fun = —xln 22, k.ﬁ-l/i—?r——. (30)

h’b' Thus, ke depends logarithmically on the quantity |v,] while the dependence of kg, is linear, so that, for

' ge initial errors |, [, the linear algorithm converges more rapidly, It follows from (30) that, for sufficiently
arge &, namely, for & > V'2/(t v'r), whatever the initial mismatch it is preferable to use the linear algorithm,

: t'_ erwise, i.e., if & is small, it is preferable to use the linear algorithm only for sufficiently large values of IIvol,
hamely, when the inequality [[vell = p bolds, From (30) we derive the asymptotic expression for the quantity p for
mall values of &: p=rtvw/2 [In(l/€) +1nln 1/&) + In(rvrw 2)] + B,, where Bg — 0 as & — 0, By virtue of
¢Theorem 1, the conclusions we have arrived at can also be extended to the original algorithms of (16) and (17) for

small values of the step y.
¥

. We now consider the perceptron-type algorithm of (18), assuming for simplicity that the distribution of vector
@ (X) is spherically symmetric, and that noise lacks, i.e,, that n = 0.
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In this case Eq, (2) will have the form .
' de/dt=x(c/llell—c./lle.ll), @Y

where the constant % depends on the form of the distribution of ¢(x),* The stationary solutions to (31) have the
form Ac,, A >0, Any solution to (31) lies in the two-dimensional plane defined by the vectors ¢ (0) and c..

We now introduce a measure of accuracy of approximation
w(c) =llc/licl—e./lle.]| lI*=4sin*(6(c)/2),
where 6(c) is the angle between the vectors ¢ and Ce. .
Theorem 4, Let ¢y# Ace, A =0, Then, for any t 20, the following inequality is valid
| w(e(t)) <w (es) exp(—nt/2lleol), 32

where c (t) is the solution to (31) for the initial condition c (0) = ¢,. The proof of Theorem 4 is provided in Ap-
pendix 3.

Analogously to the case of the algorithm of (17), it is shown that, in the given case, Theorem 1 is applicable,’
i.e,, formula (32) provides an estimate of the speed of convergence of the initial algorithm of (18) for small yy. It |
is of interest to compare (32) with the estimates obtained by the methods of the theory of finitely-converging algo-i
rithms for the solution of inequalities [9], Let yy = y, let vector ¢(x) be uniformly distributed on the sphere of radi;
us 1, and let kg be the number of steps required to attain the specified precision w (¢} ) < &. It follows from the re-
sults of [9) that k, = w(cy)/ (21 V&), while, from (32), we have kg = 21n (w(co)/ €) (%)) Thus, taking into ac-
count the independence of the input stimuli ¢ (x; ) (k =1, 2,...) allows us, for small values of €, to improve the
estimate of practical speed of convergence of the algorithm of (18). '

In conclusion, we use the models we have been considering for the analysis of the dynamics of search-type
adaptation algorithms with paired probes [10, 111, This algorithm, in the problem of seeking a minimum of the
functional 1(c) = My Q (x, ¢), where Q (X, ¢) is the quality function, has the form

Y

C = Cp-1 — ﬁ [Q (ks Coo1 + @aZp) — @ (Xny Coo1 — Zi)] Zg (39):]

Here, z), are independent vectors, identically distributed with density q (z) of directions of probe steps, and the
ay, are the lengths of the probe steps, <

It is known [11, 12] that (2 ) ' M {[Q (X}, ¢ + &2zy) —Q Xk, ¢—azy)1zx} = ? vi(c) when zy € Ny, (0, °1 ),

) . o

where I (e)= S I(ct+az)q(z)dz is the smoothed functional, Equation (7) will have the form d¢/dt =~ r’vi(c)
: R™ 3

and its solutions will be lines of steepest descent for the smoothed functional (). &)

With the usual requirements of smoothness and boundedness of growth on function Q (x, ), the conditions of "j
Theorem 1 are met, i.e,, for small values of the y) the well-known estimates of speed of convergence of gradient
methods of minimization [13] are valid, Let us consider in more detail the use of random search for reconstituting f
an unknown function, With Q(x, ¢) = [y (X) —cTcp(x)]z, the algorithm of (33) assumes the form o

Sk = Co1 — Vi [¥ (Xe) — CT_, @ (Xi)] 2] @ (X) Zs- 39

If zy € N (0, 121 ) and ¢(xy) € N (0, R) we then obtain A(v) = Rv, b(v) = (m + 2)r4vT (R SpR + 2R?) ‘
v—r*vI Ry + m (m + 2)o’r*L. Thus, for small values of the y, the behavior of the algorithm of (34) is close to X
that of the linear algorithm of (16). For the stochastic model of relationship (15), when yy =y we obtain the esti-
mate .

'
*

e — 1
* For example, if ¢(x) € Ny (0, rzlm), then ®» =1vZ/w. If, however, ¢(x) is uniformly distributed on a sphere of i
radius r then ® = 21T (m-1)/2 and, asm - », ¥ ~ 1Y 2/mm, Here, I' (2) is the gamma function and m is the
dimensionality of vector ¢(x). A
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m(m + 2)yo*riL
(m+1)(m + 3)yr2L® ’

M|V exp-[——rzky (2l —(m + 1) (m + 3)pr2Ld)]| vo P -+ 57— (39

4 e.,, the estimated error for the stochastic model is larger (as also in the case of the algorithm of (16)).

APPENDIX 1

. We write Eg, (1) in the form ¢y = ck-l—YRA(ck—l)—yhkp where by = h (X, cx_1). We define the sequence
of vectors {dy } Eq by the relationships dy = ¢y, dj =dy_3— y, A(d)_1) and use the notation p) -—6 max llici -4 |I%,
L ; i =i<
v, = maxldj—c(t;) |3 k=0, 1,..., N. It is clear that M maxlley—c () |*=2Mpy +2vy. The quanti
E"-i 0sisk’ ‘(t")" 0sisk (ol N TEUN QEnEH VN
is.the error in the approximate solution to differential Eq. (2) by Euler's method. Standard computations [14] give

e following estimate of this error:

"‘t ' va<<IA (co) 2 exp (4Lity) [exp (Liy)—1]2L( "2 (A1)
]
¥
4 lemma 1, letz,,..., zZN be 2 sequence of m-dimensional random vectors, and Fy, ..., Fy an expanding
ffamily o algebras, with zy being measurable with respect to Fi and M {2k |Fx.1} =0, k=1,..., N, Then,

5 k N
‘»M.mﬂ.4 . f of the lemma is analogous to that given in [4],
K&!N E1Ztr< m §1M|]zk1f The proof of the lemma is analogous to that given in [4]
¢ e

T D a TR o PRI A R e T

g

For estimating the quantity M, we use the following lemmas,

3 Lemma 2. Under the conditions of Theorem 1, the following inequalities hold

Miey\1*<Cy exp (2txY2L 3 +Ls), k=0,4, ..., N,

}}g};ete Cy dependson Ly, L,, and [lcq .

To prove the lemma, we estimate the size of M ) ||? by virtue of Eq. (1) in terms of M "01(.4"2. afterwhich
,We camry out induction on Kk,

L Sl T

3 Lemma 3 [1], Let the sequence of numbers yuy = 0, k = 0,..., N, satisfy the inequalities yy =1y +

i ' * .
s )y Vibioy, Ty r2>0. Then, p, < riexp (rs 2 '\’i) .
b=t i=1

=it

Proof of Theorem 1, We apply Lemma 1 to the sequence of random vectors yhy, k =1,..., N, having

aken as F the o algebra generated by the random vectors ¢y, ..., Cx. From Lemmas 1 and 2 we have

- * 2 N . , —_—
g M max ﬂc,, + Dvac | <im R AMINE émyiyla(t+ Crexp Qiy Vot + L. (A2)
fau) k==l

We now estimate the quantities |je, —dy ||%, k =1,..., N:

k k
Je,—d,IP= ﬂ [c,, + 2 yiA‘(cH)] - 2 v (Ale ) —A (di_l)]r <
i==1 i=]

9
8 3 "

v < Zﬂck — ) vAle ) n‘ + 2Lty D) yile, —di B

j== . i=1

. e k

- o, 2 x fe A (c; r 2Lt T

ko < 12:<Nﬁ & + ‘gl Yi (01_1) + 'y El ng'; 1

We tum to mathematical expectation and, using (A,2) and Lemma 3, we obtain
Mp.n<8thLz[1+Cl exp (th12L1z+Lz)] exp (ZletN)‘Y. . (A.3)
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The assertion of the theorem follows from (A.1) and (A.3).

APPENDIX 2

With no loss of generality we can take ¢, = 0, It follows from (7) that A(0) = 0, We denote by A*, A" >0 g
the smallest and largest eigenvalues of matrix H, In addition, we use the notation

R .‘
(¢, ¢)y =cTHe!, [y =c"He, t,= D v \1'
' i=1 ;

We shall write K =const if the quantity K depends only on Ly, L,, H, §, &, and m, For the proof of the theorem
we need the following lemmas,

Lemma 4, ¥ the numbers ) = 0 satisfy the inequalides py = (1 + rl'yk) Bk-1 +T2 Yk k=1, 2,..., where
1, I; >0, then py =< (o + /1) exp(rity)d.

If, however,' 1;<0and 0 < yg <y < —1/1q, then py = —31,/13 + yaexp(rltk).

The proof of Lemma 4 is carried through by means of standard estimates close to those in [4].

lemma 5, When 0 =y}, =y < %3 = 26A/[A"*(Ly’ + L,)], the following inequalities are valid :

M eyl <leolly exp (—2uty) + Ko,
a3 = lleo B} exp (—%sty), where Ky = const, ®, =25/A"—y (L + L) AT /A%, %y = 28/ A" —yL?Av/A", and -

the sequence of vectors dy, k =0, 1,.,., was introduced in the proof of Theorem 1,

Proof; M {leytZler—i} =leamy1%—2va(A (Cam1), Chm1)m+VaZM {th(xy, Cr) 1 g | lea—e} < (1=2vaB/A" +¥W*A""La/A' +
+‘YA’L13X"/N) llc._,“’gwu’Lz. -

By averaging this inequality and using Lemma 4, we obtain the required estimate for M|jcy [|3;,, The estimatg

for [|dy ||} is obtained analogously,
A

lemma 6, If the conditions of Lemma 5 are met, then Mljcy —dy ||* = yexp (% 4ty) Kq/%, where % =
2L, + yL,%, K = const,

Proof, We have M {flcj—di | le-1} = @ + v lox-1—dk-1l? + 712 La @ + lek-gl®). Averaging this fn=
equality, and using Lemmas 5 and 4, completes the proof,

Proof of Theorem 2, Let %5 = 28/A" =7y, (Li® + L) A"/ A' >0, We select number o on the basis of the com
dition 1—an /%g = @, Le, & = %g/(N g+ ng) >0, and we set t. = %t In (Jeg || 12/7®). 1t follows from con-
dition (7) that [[e () || gz = y* when t = t., and it follows from lemma 5 that Mlley [z = y* + Ky y when gy =t
Therefore, when t =1, the inequality M |ley —c (ty) [I*= 2M ey [l 2 /A + 2 fle (y) l2/A = Kg y is true, wheres
K¢ = const, If, however, t, =t, then, by using Lemma 6 and Ineq, (A.1), we obtain Mljey —c(ty) [ =2M Jey~
dic|? + 2 Jldg —c () ||* = 27K (exp (%4, )/%,—~27" exp [4L1t,) [exp (L1 K5) —1P/Lf s Kqyexp(n ty) + Kyl
(%4‘7)125 Ko y'"%%4/%s = Ky y%, where Ky, Ky, K, =const. ‘

Thus, M[je, —c (t) |* = K,y®, k=1, 2,..., where K, = max {K¢, Ko}, q.e.d.

APPENDIX 3 ;
Proof of Theorem 4. We compuie the total derivative of function w(c) by virtue of system (3'1), directing o;
of the coordinate axes along the vector ¢s ; dw (¢) dt = vwT (de/dt) = —2% []t:l]'1 sin @ [—sin @ (cos © —1) +cos
sin 6]1= —nw(c)/2|c]. But, as we easily convince ourselves, d (lclly/dt =0, so that dw(c)/dt = —%w (c)/2 ]
whence follows the assertion of Theorem 4,
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