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In this tutorial paper a brief exposition is made for the
research area related to development and justification of
the so called method of continuous models (MNM). The
essence of the method is in replacement of the analysis
or design problem for a discrete stochastic system with a
similar problem for its simplified (averaged) continuous-time
model. Continuous-time models described by either ordinary
differential equations or stochastic differential equations are
considered. Relations between MNM and averaging method
are demonstrated. Applications to identification and control
problems for systems and networks are described.
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I. INTRODUCTION

A typical approach to problem solving in applied math-
ematics is based on decomposition and simplification of
the initial problem. In the modern control area such an
approach is widely used for large scale control systems
design, distributed control, stochastic control, etc. The math-
ematical models of the processes in the above mentioned
areas manifest themselves as dynamical systems described
by either differential or difference or combined equations.
To apply any simplification method one needs techniques
both for creation and for justification of the simplified mod-
els. The main requirement needed from any simplification
technique is conservation of the main properties of the
process under consideration. For continuous time systems
an approach based on fast and slow motion separation and
averaging of the fast motion is well known [1]–[6]. Such
an approach called the averaging method is well developed
both for deterministic and stochastic systems. Its justification
for ordinary differential equations can be found, e.g. in
[1], [2]. Averaging effect in such systems may be caused
by converging the fast component to a constant or to a
periodic oscillation. Applicability of the averaging principle
to stochastic differential equations is caused by weak depen-
dence property: the disturbance values at the distant instants
are ’almost’ independent. Justification of the averaging for
stochastic systems can be found, e.g. in [7]–[10].

Averaging may manifest itself also in discrete systems de-
scribed by stochastic difference equations. Averaging mech-
anism here is different. It is based on summation of large
number of small increments. After summation the trajectory

of the system becomes close to the solution of the averaged
stochastic difference equation with high probability. It is
similar to the law of large numbers. The averaged difference
equation can be called discrete deterministic model of the
initial system. It is easy to show that the order of approxima-
tion does not change after the next step: replacing the discrete
model with a continuous one by reducing the sampling period
to zero. The resulting ordinary differential equation can be
called deterministic differential model of the initial system.

The deterministic model looks like a model of first approx-
imation. In addition to it one can build a family of higher
approximation models described by stochastic differential
equations. Such stochastic continuous models provide better
approximation of the probability distribution of the initial
system solutions.

Therefore instead of solving analysis or design problem
for initial system one may try to solve a similar problem
for its deterministic or stochastic model. Typically this new
problem is simpler that the initial one. The above approach
was called the method of continuous models [12], [13]. Since
discrete-time averaged models are also of use the method can
be also called the method of averaged models.

Since the 1970s hundreds of papers and a number of
monographs [22], [14], [58], [59], [67], [26], concerning both
application of the machinery and its justification were pub-
lished. Quite a number of them were published in Russian,
i.e. they are not well known in the West. An outstanding
impact in the area was made by the celebrated paper by
L.Ljung [64] that was later listed among 25 seminal papers
of the 20th century in control [32]. Currently the paper [64]
has received more than 700 citations and its citing rate is not
going to decrease.

In this tutorial talk a brief survey of the method of continu-
ous models is presented. Most material and the bibliography
is borrowed from [86] and later papers [87], [88], [89].
Further information and extensions to multi-agent systems
and networks are presented in the related tutorial papers [90],
[91].

II. CONTINUOUS-TIME MODEL BUILDING

The method of averaging has a wide applicability in
modern control system theory, dynamical systems theory,
nonlinear mechanics, etc. [16], [51]. The essence of the
method is in separation of slow and fast components of



system motion, followed by averaging out the fast motion
effects. The formal analysis of the technique for continuous-
time systems one can find e.g. in [51], [73] (for deterministic
case) and in [73], [82] (for stochastic case).

A specific form of averaging for discrete-time stochastic
systems was developed in [12], [14] and, independently in
[64] and then applied to various problems in identification
and adaptive control. Below the scheme of [12], [14], [64]
is described.

Consider a discrete-time stochastic system

zk+1 = zk + kF (zk, fk), k = 0, 1, 2, . . . , (1)

where zk ∈ ℛn — state vector, fk ∈ ℛm — random
disturbance vector, k — gain parameter. Create the averaged
continuous system (continuous model)

dz

dt
= A(z), (2)

where A(z) = lim
k→∞

EF (z, fk) (the existence of the limit
is assumed). Typical relationships between the discrete-time
system and its continuous model are as follows.

1. If the gains k are sufficiently small (k ≤ ) then the
trajectories {zk} of (1) are close to the trajectories of (2)
{z(tk)}, where tk = 0 + ⋅ ⋅ ⋅+ k−1.

2. If the gains k tend to zero as k → ∞ then some
asymptotic properties of the solutions of (1) (e.g. stability,
ultimate boundedness, etc.) may be similar to those of the
solutions of the continuous model (2).

In the case of similarity between (1) and (2) in the above
sense one can use simplified model (2) instead of (1) for the
purposes of system analysis and design. Such an approach
was called the method of continuous models [12], [14], the
ODE approach [64] or the Derevitskii-Fradkov-Ljung (DFL)
scheme [44]. Below the term ’method of continuous models’
will be used since it takes into account two aspects:

— averaging is not the only way of the model generating
(in some cases there is a similarity between (1) and (2)
even for nonstochastic disturbances fk investigated in
[14]);

— one can use different types of models (e.g., stochastic
differential equations).

III. CONTINUOUS-TIME MODEL JUSTIFYING

A number of rigorous results are known justifying ap-
plicability of continuous models for sufficiently small gains
k. Small value of the gains is prerequisite of separation of
motions in system. It implies that the disturbance fk changes
faster than the system state zk. The standard condition of
averaging is weak dependence of fk and fs for large ∣k− s∣
(e.g. independence of fk and fs when k ∕= s).

Probably the first results on justifying the averaging
for discrete stochastic systems in control theory belong to
Meerkov [68], who used discrete averaged model

zk+1 = zk + kA(zk) (3)

(replacing (3) by (2) creates no extra mathematical prob-
lems). The proofs in [68] are based on Krylov–Bogoliubov

averaging method [73]. Similarly to the 1st and 2nd Bogoli-
ubov theorems the convergence in probability of solutions of
(1) and (3) on finite time interval and, under assumption of
asymptotic stability of the model (2), the closeness of the tra-
jectories on infinite interval were established for independent
fk.

Significant progress of the method was made by Ljung
[63]–[67] who also used Krylov–Bogoliubov approach. In
[64] the dependent fk were treated generated by controlled
Markov chain. Moreover, the case k → 0 was examined. It
was demonstrated that in this case model (2) is responsible
for the stability or instability of system (1).

Further development was made by Kul’chitsky [54]–[56]
who studied the averaging for some functional of of the state
vector rather then for the state vector as a whole. It allowed
to weaken the restrictive boundedness condition of [64].

if the gain parameter goes to zero at a suitable rate similar
in spirit results were obtained [19], [20] without requirements
on the dynamics of the model employing a certain set-valued
deterministic model.

Another series of results [12]–[35] is based on the machin-
ery developed by S.N. Bernstein who introduced the concept
of stochastic differential equation (SDE) as early as in 1934
[24] and established the conditions of the convergence in
distribution (weak convergence) of trajectories of (1) either
to ODE (2) or to some SDE [25]. In [12] the mean square
bounds of the model [16] accuracy were obtained both
for finite and for infinite time interval. E.g. it was shown
(in [12] for independent fk and in [33] for fk satisfying
strong mixing conditions) that under Lipschitz and growth
conditions

∣∣A(z)−A(z′)∣∣ ≤ L1∣∣z − z′∣∣, b(z) ≤ L2(1 + ∣∣z∣∣2), (4)

where b(z) = E∣∣F (z, fk)−A(z)∣∣2 the following inequality
holds:

E max
0≤tk≤T

∥zk − z(tk)∥2 ≤ C1e
C2T , (5)

where  = max
1≤k≤N

k, tN ≤ T , C1 > 0, C2 > 0.

In the case when the continuous model (2) is exponentially
stable it was additionally shown in [12], [14] that the
accuracy of approximation over infinite time interval is of
order � for some 0 < � < 1. Namely, there exist ̄ > 0,
such that for ≤ k ≤  < ̄ the following inequalities hold

E∣∣zk − z(tk)∣∣2 ≤ C3
�, k = 1, 2, ..., (6)

where numbers C3 > 0, � > 0 do not depend on .
Though the averaging scheme of [12]–[35] is similar to

that of Ljung [64], the analytical results are different in that
they allow to analyze dynamics of the systems over finite
or infinite time intervals rather than convergence as t→∞.
Moreover the results of [12]–[35] are applicable to the cases
when the gain k does not tend to zero which is important
in many applications.

Finally an elegant approach was developed by Kushner
[57]–[59] who used weak convergence theory for random
functions. This framework however is convenient for the



studying of asymptotics when  → 0 (k ≡ ) rather than for
evaluating mean distance between the trajectories for finite
values of .

IV. STOCHASTIC CONTINUOUS MODEL

The inequality (5) shows that the distance between trajec-
tories of (1) and (2) is of order (k)1/2. This error arises
in part due to random fluctuations. Therefore the model
taking in account stochasticity potentially may have higher
accuracy. Employing the framework of averaging for SDE
[42], [82] yields the stochastic continuous model [21], [22],
[50]

dy = A(z(t))dt+ ((t)B(z(t))1/2dw, (7)

where (t) ≡ k for tk ≤ t ≤ tk+1, B(z) =
lim
k→∞

Eℎ(z, fk)ℎ(z, fk)T, ℎ(z, fk) = F (z, fk)−A(z), w(t)

— standard Wiener stochastic process, z(t) — solution of
deterministic model (2). In [12] the following stochastic
model

dy = A(y(t))dt+ ((t)B(y(t)))1/2dw (8)

was suggested. Model (8) does not use the solutions of
deterministic model (2). It was shown that the conditional
incremental covariances of solutions of both (7) and (8)
coincide with corresponding characteristics of (1) with the
accuracy of order 2k . In [33], [14] the family of stochastic
models having higher accuracy was introduced. E.g. the
accuracy of model

dy =

[
In −

1

2
(t)

∂A(y)

∂y

]
A(y)dt+

((t)B(y(t)))
1/2

dw (9)

in terms of the conditional incremental covariances is of
order 3k . Note that the model (9) is nothing but the
Stratonovich version of the SDE (8).

V. EXTENSIONS

In the tutorial some extensions of the previous results are
presented. First the case of the systems described by more
general equations than (1) are examined:

zk+1 = Φ(zk, fk, k), (10)

Let EΦ(z, fk�) = z + A(z) = �2a(z, �). The statement
of Theorem 1 holds under additional condition ∥a(z, )∥ ≤
L3(1+∥z∥). Note that the rigth hand side of system (10) can
be defined as follows A(z) = lim

→0
−1[MΦ(z, fk)− z].

The above results are extended to the case when the right
hand side of (1) or (10) do not satisfy global Lipschitz
condition (e.g. for some hybrid or adaptive systems). In this
case the upper bound for k depends on initial conditions.

VI. CONTINUOUS-TIME MODEL FOR NETWORKS

New problems such as synchronization and control of
networks have become popular during last decade. They
demand for new approximation results. One of new demands
is to study accuracy of continuous modes over infinite time
interval under partial stability assumption for (2) instead of
asymptotic stability. For such cases the following theorem
can be useful [86].

Definition 1: Let Ω,Ω0, Ω ⊆ Ω0 be closed subsets of
ℛn and Ω consists of equilibria of (2). The set Ω is called
Ω0−pointwise stable if it is Lyapunov stable and any solution
starting from Ω0 tends to a point from Ω when t→∞.

Theorem 1: Let Lipschitz and growth conditions (4) hold.
Let there exist a smooth mapping ℎ : ℛn → ℛl and a
bounded set Ω0 ⊆ ℛn such that rank∂y/partialz = l
for z ∈ Ω = {z ∈ Ω0 : ℎ(z) = 0} and the set Ω is
Ω0−pointwise stable. Let there exist a twice continuously
differentiable function V (z) and positive numbers ϰ1,ϰ2,ϰ3

such that
V̇ (z) ≤ −ϰ1V (z), (11)

∣ ∂
2V (z)

∂z(i)∂z(j)
∣ ≤ ϰ3, V (z) ≥ ϰ2∣∣ℎ(z)∣∣2. (12)

Then there exist numbers ̄ > 0, K2 > 0, 0 < � < 1 such
that for 0 ≤ k ≤  < ̄ the following inequalities hold

E∣∣yk − y(tk)∣∣2 ≤ K2
�, k = 1, 2, ..., (13)

where yk = ℎ(zk), y(tk) = ℎ(z(tk)).
The theorem provides an upper mean square bound for

the distance between the current state and the limit manifold
Ω = {z ∈ Ω0 : ℎ(z) = 0}. An open problem is relaxation
of the pointwise stability condition. Another problem is
extending the results to discontinuous models important for
economic games, and pattern recognition (some special cases
are considered in [46], [62]).

VII. APPLICATIONS OF CONTINUOUS MODELS

There are three stages of continuous model using: a) model
building; b) model justifying; c) model analyzing ( either
analytic or numerical). The stage b) including checking the
conditions of appropriate theorems sometimes happens to be
rather involved. In many cases the theorems serve as ”moral
support” [64] of the designer’s intuition.

Continuous models were used for the analyzing of algo-
rithms of identification [21], [22], [23], [12], [14], [37], [55],
[57], [58], [59], [65], [67], [79], optimization [28], [14], [35],
[39], [50], [59], [31], filtering [21], [22], [56], [60], [70]
and adaptive control [17], [13], [33], [14], [34], [36], [40],
[54], [66], [74], [75], [81]; stochastic eigenvalue seeking
[77], [85]; games solving [68], [80]; pattern recognition [12],
[62], [65]; learning of neural networks [53]. A number of
recent works open new networks related application areas:
analyzing convergence of learning algorithms for coverage
control of mobile sensing agents [29], distributed learning
and cooperative control for multi-agent systems [30], [47],
distributed topology control of wireless networks [27], etc.



VIII. CONCLUSION

Using the continuous models one can simplify the stability
and performance analysis of adaptive systems and facilitate
discrete-time system design by means of continuous-time
design methods. Continuous models provide more detailed
information about system behavior than, e.g., Lyapunov func-
tion. The main approaches to justifying averaging method
for discrete-time stochastic systems are Krylov–Bogoliubov’s
approach [64], [68], Bernstein’s approach [12]–[14] and
weak convergence approach [57]. However the procedures of
building the averaged (approximate) models are essentially
the same. Basic conditions for applicability of averaging are
stability of the system and mixing properties of disturbances.

A number of researches are devoted to analysis of the
systems with constant or not tending to zero gain (learning
rate). Perhaps, the first result of such kind was published
in [12]. Unlike many other papers, in [12] approximation
bounds were established for nonconstant not tending to zero
gain. It was shown in [86] that the stability restriction of
[12] can be relaxed to partial stability. Further relaxation is
an avenue of further research.
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