SYNTHESIS OF ADAPTIVE SYSTEM OF STABILIZATION
OF LINEAR DYNAMIC PLANTS
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The synthesis is considered of an adaptive system of stabilization of linear dynamic plants. Neces-
sary and sufficient conditions of adaptivity are obtained for the existence of a quadratic Lyapunov
functon in the synthesized system. It is shown that the adaptivity of the system is preserved under
the action of plant disturbances that decay in time. Examples are presented that illustrate the use
of the obtained results,

1. Introduction

Let us consider a control system described by the equations®

ax/dt=Ax+bu+i(1), y=L'x, M

u=c'y. @)

Here x, y, f, b, and c are real vectors of dimension n, I, o, n, and ! respectively; A and L are matrices of di-
mension nx nand nx(; uis a scalar. Equations (1) describe the dynamics of a controlled plant in the interval 0=t

< = (u = u(t) is the control, y = y(t) is the vector of output variables, x = x(t) is the state of the plant, and f(t) is a
disturbance); Eq. (2) describes the controller, We shall assume that A, b, and L do not vary in time, and that

j NE(¢) I dt<<eo (i.e., the disturbances decay in time). By x(X) we shall denote the (1x 1) transfer matix of the
[}

plant;
X(}') =L' (A'III_A) _lbv

where [ is a unit mawix of order n, and A is a complex variable,

It is required to stabilize the system (1)-(2) in indeterminate conditions, i.e., in the case that various param-
eters of the plant (1) and the disturbance f(t) are unknown, Since the initial vector of coefficients of the controller
¢(0) may not ensure the stability of the system, it is necessary to adjust the conwoller, The adjustment is realized
with the aid of a continuous adaptation (self-adjustment) algorithm

de/dt=F (y). Q)

As is usual in the adaptive approach [1], the missing information about the required control law can be ex-
racted from observations at the output of the plant during its normal operation. It is evident that "good" perfor-
mance of the stabilization system signifies that with the passage of time the vector x(t) becomes small, whereas the
coefficients of the controller ¢ (t) are "frozen,” Let us give a precise definition.

*The vectors are column vectors, the asterisk denotes transposition, and il Il is the Euclidean norm of a vector or
matrix.
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Following [2], we shall assume that A = A(£), b = b(£), L = (&), f(t) = fg(1), and E=E, where [ is the set of
all unknown parameters, and E fs a known set of feasible values of {, Let x(0) be the initial state of the plant,

Definition 1, A stabilization system (1)-(3) is said to be adaptive in the class =, if for any x(0), c(0), and
any E=E the solution {x(v), c(t)} of the differential equations (1)-(3) is defined for any t = 0 and it satisfies the
conditions

1) lim x(¢) =0,

1~

2) there exists a finite limit lime(¢).

{=> oo

Thus the synthesis of an adaptive stabilization systems involves the determination of a function F(y) that does
not depend on EEE, and such that the conditions 1 and 2 are satisfied.

In this paper we shall find the necessary and sufficient conditions of existence, in the system (1)-(3), of a
Lyapunov function

V(x, ¢) =x"Hyx+ (c—c,)*H,(c—c,) 4)

that has the following properties: a) V(x, ¢)> 0 for x= 0, c=cy b) V(x, ¢) < 0 forx= 0, f(t)= 0, where Hy(H,) is a
real symmewic matrix of order n(l), ¢, is an I-dimensional vector, and V(x, ¢) is the derivative of the function (4)
by virtue of the system (1)-(3). These condidons are also conditions of adaptivity in the corresponding class, They
are formulated in terms of the transfer mawix x(X) of the plant,

Let us note that similarly formulated problems are examined in the theory of searchless self-adjusting systems
(5SS) with a reference model [3-7). Moreover, the idea of using a Lyapunov function (4) for the construction of an
adaptation algorithm has been adopted by the author from well-known papers [3-51. In [3-7} however, the onlycase
under consideration is = n, L = I, which signifies that all the components of the state vector of the plant are ob-
setvable, The procedure of synthesis of the adaptatlon algorithm based on the results of [3-7] involves finding the
matix Hy in (4) from the relation Hed g + A Ho =—Q, where Ay = A +bcgL*, and Q = Qe> 0 is an assigned matrix,
Here the matrix A, must be known. The procedure proposed by us does not require that the matix Ay be known;
on the other hand it comprises all the algorithms that can be obtained with the aid of Lyapunov functions of the form
(4). Finally, in contrast to [3-7] our algorithms do not require integration of the differential equation of the "ref-
erence model, " so that their realization can be simplified.

A similar problem was also considered in {8] and [9], where, however, u(t) is a piecewise-constant function
and the algorithms of control and adaptation operate in discrete time, and they differ in form from (2) and (3).

The examples presented in Sections 3 and 4 show that in the synthesis of an adaptation algorithm on the basis
of the obtained results, the required a priori information about the plant isinmany cases very small, i.e., the adap-
tivity class 2 is sufficiently large.

2, Formulation of Results

By a(\) we shall denote the numerator of the (Ix 1) transfer matrix of the plant, i.e., of the mauix a(X)
= X(\)8 (M), where §(\) = det(AI, ~A). It is evident that the elements of () are polynomials of degree not
higher than n—1.

For a V(x, ¢) of the form (4) we have
i
Tl"(x,c)=.\'110(A+b('L')x+ (c—eo) " H F(y)+x1i(t).

As usual, the polynomial 7(A\) = 7o+ T\ A+ ...+ T K will be called a Hurwitz polynomial of degree k if 1, = 0
and all the roots of the equarion 7(\) = 0 have negative real parts, The principal result of this paper can be formu-
lated as a theorem.

Theorem 1. Suppose that the plant tansfer mawix X(\) = o(X)/5() does not identically vanish. For the sys-
tem (1)-(3) to have a Lyapunov function (4) that satisfies the conditions a) V(x, ¢)> 0 forx=0,c=c, andb) V(x,
¢) < 0for x = 0 and for f(t) = 0, it is necessary and sufficient that the adaptation algorithm (3) have the form

1961



lf de/dt=--(g'y) Py, ®

uw

™ Plant

where P = P* {s a positive-definite matrix of dimension 7 1, and the [-dimensional
vector g is such that g*«(X) Is a Hurwitz polynomial of degree n—1 with positive
coefficients,

ﬁController

Iy
1

The proof of Theorem 1 is presented in Appendix 1. It is based on frequency
conditions of existence of a solution of matrix inequalities (the so-called "Yakubo-
vich—Kalman lemma~ [11]) which appeared for the first time in investigations of
the absolute stability of nonlinear control systems [10, 12].

From Theorem 1 it is easy to obtain the following theorem which gives us the
conditions of adaptivity of the stabilization system (1)-(3) in the sense of Defini-
tion 1,

. Theorem 2, Suppose that the adaptation algorithm (3) has the form (6), where
Fig, 1 P =P" is a positive-definite (I I) mawix, and g is a given {-dimensional

[

vector, Then the system (1)-(3) will be adaptive in a given class E, if forany

§=E the polynomial geo ;(A) Is Hurwitzian of degree n—1 with positive coefficients and j' e () 1I* dt<<oo. In
[}

this case, J‘ Ix () I? dt<oo.

The proof of Theorem 2 is presented in Appendix II. By taking P as a diagonal matrix, it is possible to sim—
plify the adaptation algorithm. In particular, for p = I; the algorithm (6) assumes the form

de/dt=—(g"y)y. )

A block diagram of an adaptive stabilization system that realizes the algorithm (7) is presented in Fig, 1.

Remark 1, The system (1), (2), (6) is structurally stable in the sense that the adaptivity of the system is not
violated by small variations of the parameters of the plant (1) (with preservation of order of magnitude), or bysmall
variations of the parameters of the adaptation algorighm (6).

Remark 2. Let us note that if the conditions of Theorem 1 and 2 are satisfied, the original control system (1)-
(2) will become stable if the controller coefficients are taken in the form ¢ = —ng, where % > 0 is sufficiently large.
Thus the system (1)-(2) will belong to the class of configurations that are stable for farily large feedback gains (this
class of systems has been considered in detail in [13]), In spite of this it is often less preferable to use in this case
rigid ("nonadaptive~) feedback. Indeed, the minimum value of the controller gain that would ensure system stabil-
ity is not known, since it depends on unknown plant parameters. On the other hand to choose the gain "with a mar-
gin” is often inacceptable in the practical realization of a control system. An adaptive control system finds auto-
matically the controller gains that ensure stability and adjusts them if the plant parameters vary,

Now let us consider examples of solution of the problem of synthesis of an adaptive stabilization system onthe
basis of the obtained results,

3. Particular Case

Suppose that the control system is described by the equations
®
9

A(p)o=B(p)uto(t),
u=C(p)o,

where

n-—{ -1

k
A@=p+Y ap, B)=Ybp, €)=Y cp,  p=drat

Tt 1m0 =0
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is the differentiation operator (pl = didtl), and u, o, and v are scalars with Jﬂ q°(¢)dt<<oo, Here the observable

output of the plant is the vector y = (o, 4, w0 =1)%), The transfer matwrix has the form x(AN)=BA)/AN)x (1,
Ar e AITD

It is well known that for k+ I =n the system (8)-(9) can be reduced to the form (1)-(2). The adaptation
algorithm (6) assumes the form

(10)
de/ dt=—[G(p)c]Py,
-t
where ¢ = (Cg, oesy €7-1)", G(P)=Z g:p', and P = P* is a positive-definite matrix of dimension Ix !, In
i=n

the case under consideration we have g*a(X) = G(A)B (A), i.e., the polynomial gro (1) is Hurwirzian if G(N) and
B(\) are Hurwitzian,

It follows from Theorem 2 that the system (8)-(10) is adapdve for any minimum-phase plant (8); if k+I=n,
the polynomial G()\) will be Hurwitzian and the coefficients of B(A) and G(A) will have the same sign, Let us note
that the condition k+ 1= n signifies that it is ngcessary to observe the maximum possible number of derivatives of
o(t) which is equal (with o also taken into account) to the difference of the orders of the numerator and denomina-
tor of the transfer function of the plant from u too,

Thus for the synthesis of an adaptive system of stabilization of the plant (8) on the basis of Theorem 2, it is
not necessary to know the order of the differential equation of the plant, It suffices to know the difference between
the degrees of the polynomials A()\) and B(A), i.e., the quantity n~k,

For P= Ij, the algorithm (10) can be written in simple form, convenient for analog-computer realization:
dei/dt=--[G(p)alp's (i=0,1,...,1-1). an

4, Examples of Synthesis of Adaptive Stabilization Algorithms

Example 1. On the basis of Theorem 2 let us synthesize an adaptive system of stabilization of a flying
vehicle with respect to the pitch channel, With a number of simplifying assumptions it is possible to describe the
motion of a flying vehicle with respect to the center of gravity, for the pitch angle, by the following equation[14]:

(pP+ap+as)p® = — (byp+bs)Be+q (1. 12)
where & is the pitch angle, &, is the angle of deviation of the elevator, a,, a,, b;, and b, are constant coefficients,
with by, b, > 0, and (t) is a disturbance, Suppose that the control law has the form

8e=ciB+copt, (13)
where ¢, and c, are feedback factors. In this case y = (9, p9)", and the algorithm (11) can be written in the form
de/dt=y(0 +apd) 0. deofdt="(V+ap&)p9, a4
where y > 0 and o > 0,

It follows from Theorem 2 that the synthesized system (12)-(14) is adaptive for any values of the unknown co-
efficients ay, ay, by, by (by, by > 0) and for ¢(t) € L, (0, =),

For checking the operability of the proposed method, we simulated the system (12)-(14) on a BESM-4 com-
puter under the following conditions: by = 100, b, = 250, o= 4, y= 10, ¢4(0) = c,(0) = 0, and @(t) = exp(—31).

we carried out experiments for various values of a, and g, corresponding to unstable plants (12), and for various
initial conditions of the plant. The simulation results showed that the process of adaptation of the controller coeffi-
cients converges must faster than the transient process in the plant. In all the experiments the transient time varied
in an interval from 2 to 10 seconds, whereas the contoller coefficients varied between 0.2 and 1 seconds, The ex-
periments also showed that after the completion of the process of adaptation of the controller, the output variables
of the plant satisfy with great accuracy the equation 9(t)+ ap8(t) = 0, Thus the equation 9+ap$=0 (in the general
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case the equation G(p) o = 0) can be interpreted as the equation of the "reference model.” Its coefficients must be
selected on the basis of the desired performance of the conwol system after adaptation,

Example 2, Let us consider a second-order plant with two outputs (n= 1= 2), Its transfer matrix is

L(A)=

1 by +by2
( ) ' 15

Pi4+ah+an bayA+Dhaa

Suppose that the class = is defined by the conditions bij_s bi; sbij‘, where the bij-' = 0are known (i,j =1,
2). This means that the denominator of the transfer function is completely unknown, whereas for the amplifier co-
efficients we have only some estimates, For this case it is easy to write down the adaptation algorithm (6); it fol-
lows from Theorem 2 that the condition of adaptivity of the system in the class = is the fulfillment of the in-
equalites

gibi+g.62,>0, gibiot+g:bu>0 (16)

- +
for any bjj = bjj =bgj d. j = 1, 2), where g =( &1
-4}

fices to solve the inequality (16) for bjj = bij*; a solution of (16) will exist if and only if the convex hull of eight
two-dimensional vectors of the form
biy bix
= ’ E 3
( b‘.!l ) ( b'.'.’.! )

does not contain the origin of coordinates, Thus the synthesis of the adaptation algorithm reduces to solving a sys-
tem of eight linear inequalities,

) is determined from formula (6). It is easy to show that it suf-

In the same way we can comsider the case n = = 3, In this case the number of inequalities in the system will
be equal to 24,
APPENDIX I

Proof of Theorem 1. Let us note first of all that the condition V(x, ¢)> 0 for x= 0 and ¢ =¢, is equivalent*
to Hy> 0 and H, > 0, For f(t)= 0, it is possible to write formula (5) for V(x, ¢) in the form

V (x, ¢) =x* (Hodo+4s Ho)x-+2(e—co) *[H,F (y) +x"Hoby], .1)

where Ay = A+ bcyL®. By virtue of the linearity, in ¢, of the right-hand side of (A.1), the condition V(x, ¢) < 0 for
x# 0 is equivalent to the relations HoA g+ A, H,< 0, F(y) = —x"HpH;ly. Since x(X)= 0, it follows thaty = 0, and
hence x’ Hp = const for y = const, which means that the equation Hp = Lg is valid for an-dimensional vector g,
Thus the conditions (a) and (b) of Theorem 1 are equivalent to the fact that the adaptation algorithm is specified
by Eq. (6), where P = Hl“> 0, and the vector g satisfies the relations

Av=A+bes L*,  Hodo+As Ho<O, Hib=Lg. (A.2)

Thus we obtain the following algebraic problem. We are given matrices and vectors A, b, L, and g, It isre-
quired to find the conditions of existence of the matix H, = Hy > 0 and of an I-dimensional vector ¢, that satisfy
(A.2). The solution of this problem {s given by the next lemma which yields directly the asserton of the theorem.

Lemma 1. Suppose that the matrix y(A) = L* (Al —A)" b of dimension 1x 1 is expressed in the form y(A)
= a{X)/8(N), where &) = det(AIn—A), and o(A) Is a matrix of dimension I x 1 consisting of polynomials of degree
not higher than n—1. For the existence of a matrix Hy = H,* > 0 and of a vector ¢, that satisfy (A.2), it is necessary
and sufficient that the polynomial gea(A) be a Hurwitz polynomial of degree n—1 with a positive leading coefficient.

For proving Lemma 1, we shall need the following assertion which can be easily verified with the aid of the
Routh-Hurwitz determinant criterion,

Lemma 2. Let P(A) be a polynomial of degree n, and let Q(\) be a Hurwitz polynomial of degree n—1. Then
the polynomial P() + #Q(A) will be Hurwitzian for all sufficiently large positive » if the signs of the leading co-
efficients of P(\) and Q(\) coincide.

* The notation H> 0 signifies that the symmetric matrix H is positive definite, i.e., z *Hz > 0 for z =0,
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Proof of Lemma 1. Let us inwoduce the notation 8¢ N) = det(AI;—A), xoA) = L'(Ap=A¢) b, It is easy to
show that §¢X) = §(A)=cy*a(A), xfA) = a(X)/&(X). Tt follows from the results of [10] (Theorem 2) that with fixed
Ay itis necessary and sufficient for the existence of a matrix Hy = Hy *> 0 satisfying (4.2} that the following condi-
tions hold:

1) 6(X\) is a Hurwitz polynomial,
2) Regexo(iw)>0 for any we(—w, +=),

3) lim w? Re g*y, (iw) >0.

w— %

At first we shall show that from the fulfillment of conditions 1, 2, and 3 it follows that the polynomial ()
= g*a(A) is Hurwitzian of degree n—1, and it has a positive leading coefficient, Indeed, 7(X) = g*x(A)5¢N)
therefore A Argr(lw) = A Argg* xo(lw) - A Arg §4(iu), where A Argy (w) Is the increment of the argument of the func-
tion ¢ (w) for a w that varies from ~w to =, By virtue of Mikhailov's criterion it follows from condition 1 that
A Arg §y(lw) = nr. From condition 2 it follows that |A Arg g* xliw)| =7, i.e,, AArgr(iw)= (n—1)r. But r(X)isa
polynomial of degree not higher than n—1; hence A Arg T (w)| = (n—-1)m,

Thus, AArgr (iw) = (n~1)w. But this signifies that the polynomial 7(\)is Hurwitzian, its degree is equal to
n—1, and all its coefficients are positive, i.e., the necessary of the conditions of the lemma has been proved,

n=-1
Now let us prove the sufficiency of the conditions of Lemma 1. Let gra (M) = (X)) = Z’T.l‘ be a Hurwitz

=y

polynomial, with ., = g*Lb> 0. For proving the sufficiency it suffices to take the vector ¢, in such a way that the
conditjons 1-3 are satisfied. Let us show that such a vector can be taken in the form co=—ng, where w> 0 is suffi-
ciently large. Indeed, from Lemma 2 and from the equation 8X\) = 8(X)+ur(\) we obtain condition 1. For prov-
ing condition 2, let us note that v(fw)= 0 and &iw) + wr(iw)=0 for sufficiently large w for any w€(—w, +w), There-
fore condition 2 will be equivalent to the inequality Re [g'x-o(iw)]'1> 0. It is evident that Re [g°x,(Iw)T! = Re
ng x (W) g*x (iu;)]'l=u +Re @(iw)/r(iw)); therefore it suffices to show that the quantity Re (8 (iwyr(iw)) is
bounded for w- t«, But for w— =« we have Re(é(iu)/-r(iw))=Re(iw/rn_l+0(1))=0(1), i.e., thecondidon2is
sadsfied. Finally, the fulfillment of condition 3 follows from the equations lim w® Re g*yo(in) =—g'L*4sb=—g"L*
w—x

Abt#Ta-1.

This completes the proof of Lemma 1, and hence also of Theorem 1.

APPENDIX II

£

Proof of Theorem 2, Let j' if(¢)1i* dt = n? < . From the condition of the theorem and from Theorem 1 it
¢

follows that \'/(x. €) =—x"Qx + x"Hf(t), where Q = Q*> 0 and Hy = Ho' > 0 are matrices of dimension nxn, There-
fore V(x (1), ¢ (1)) = —elx(tyn? . HHgM (O uf ()t for a positive &, and hence V (x(t), ¢ (1)) — V (x(0), & (0))

I}
=—ept +IH,llptn, where p = J'nx(s) 12 ds.
0
Since V(x, ¢)=0, it follows that

ep: — 1 Hollnp:< V (x(0), €(0)). (4.3)

By solving (A.3) for p,, we obtain p, = niHgi/e + YV (x(0), c(0))/e, i.e., gt!lx(t)nzdt<m. But the right-hand
°

side of differential equation (6) is a quadratic form of the vector x; hence there exists lim e(t) and the

=
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vector function ¢ (t) is bounded in the interval [0, =), Next, for any positive t we have

dx(s)
ds

t t
1
x(e) 2 = Y J'x- (s) ds = % J'z' (5) [Ax (s) +be* (s) Lx (s) +1(s) ] ds. (4.4)
0 0

Since the integral in the right-hand side of (A .4) is convergent, there exists lim fx(¢)I2=p. But
t—x

«

j lix(t)l* dt < =, so that p = 0, and we have proved that the synthesized system is adaptive,

In conclusion the author expresses his deep gratitude to v, A, Yakubovich for his valuable advice and for the
interest he displayed, and also to B, R. Andrievskii and B, D. Lyubachevskii for a number of valuable remarks,
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