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ADAPTIVE SYSTEMS

SPEED-GRADIENT SCHEME AND ITS APPLICATION
IN ADAPTIVE CONTROL PRCBLEMS '

A. L. Fradkov : UDC 62-506:518.5

We consider a scheme for designing adaptive control algorithms that involves regulating the
motion in the space of adjustable parameters in the direction of the gradient of the rate of
change of the estimator functional. This scheme, which was first formulated in {1, 2] for the
identification problem, includes a number of familiar adaptation and identification algorithms
constructed by the direct Lyapunov method. General stability conditions for such systems are
obtained. For regularizing algorithms we present ways that give a system robustness prop-
erties with respect to the effect on the object of uncontrollable perturbations and with respect
to the discreteness of an adaptation algoritkm. We give examples of the use of this scheme
for designing adaptation algorithms in 2 number of problems of adaptive control of dynamic ob-
jects. :

1. INTRODUCTION

f=r" o During the Inct 10 o215 vears o Iarge number of publicaticns have appeared dealing with the dovelopmeant

of algorithms for the adaptive control of dynamic objects (see, for example, the bibliographies in {3-6]). These
algorithms relate to diverse particular problems, and diverse considerations, frequently heuristic, are used for
designing them. Therefore, there is a natural interest in establishing general principles for the design of adap-
tive control algorithms and in determining the general properties of the systems designed. The first results in
this direction are due to A. A. Krasovskii [1, 2], who obtained a general type of 2lgorithm that is optimal by the
"generalized operation” criterion for the problem of identification with an adaptive model. This algorithm is
described by a functional series and is not realizable in pure form, but if we take the first approximation to it,
then we get a family of well-known gradient algorithms that use sensitivity functions.

If we consider the second approximation, then (assuming a high frequency of the input signal and the quasi-.
stationarity of the tuning mode) we can determine a family of algorithms of which particular cases were con-
structed earlier with the help of Lyapunov functions. The present article dea s with an investigation of the gen-

- eral properties of such algorithms. We obtain conditions for stability and for the attainment of the adaptation
goal, and we present a method for regularizing algorithms that ensures the robustness of the system with re_
spect to the effect of uncontrollable perturbations and the discreteness of the adaptation algorithm.

It turns out to be convenient in the beginning of the exposition (in §§ 2 and 3) net to refer to the identi-
fication problem or to any other adaptive control problem, but to speak of investigatiry the atability of a 8ys-
tem of differential equations with a specified form, without indicating a concrete adaplsiivii goal a .2~z .55 of
adaptiveness. Concrete adzptive control problems are considered in 34 as examples of the use of the geueral
results. N

The scheme considered in this paper for designing adaptation algorithms will be called the speed-gradient
scheme. The origin of this rame s explained below in §2, where we give the general formulation of this prin-
ciple and establish conditions for the stability and asymptotic optimality of systems constructed with its help.

. In 3 we present a method for regularizing algorithms that ensures the robustness of the systems constructed
with respect to the effect of uncontrollable perturbations and to the discrete realization of the algorithms. In
#4 we give examples of the application of the spced-gradient principle to the analysis and design of adaptive

- . systems for controlling dynamic objects.

" 2. FORMULATION OF THE SPEED GRADIENT PRINCIPLE

| '”'” " Let us conslder an adjustable object described by the differential equations
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i=F(z,ct), n

Where x is the state vector of the object, c is a vector of adjustable parameters, and F(x,c, t) is a smooth
function. )

The vector x can be made up of the state vectors of the controlled object itself, of the controlling and
measuring devices, of the regulator, etc. For the formation of an algorithm for adjusting the vector ¢ we are
given a certain auxiliary (estimator) functional Jg that characterizes the quality of operation of the system. We
consider two basic cases: )

I. Jt = Q&(t), t) (local functional);
1

n. Ji= SR(J:(s), ¢(s),s)ds (integral functional).
Qe

Here G(x, t) and R(x,‘c,t) are certain smooth functions.

In each of these cases we can compute t.he function jt, the rate of change of the functional Jt, by virtue
of Eq. (1) (for a fixed vector c). For the first case Jt = F(x(t), c(t), £)TUQx(t), t) + I/ A(x(t), t), and for the
second case .it = R(x(t), c(t), t); i.e.; in both cases j'r = p(x(t), c(t), t}), where o(x, c,t) is some function having
continuous partial derivatives with respect to the components of the vector c.

We now define the speed-gradient algorithm to be the following law of charge of the vector of adjustable
parameters:
é=—TV.(z,61t). _ (2)
, ﬁére I = T >0 is a positive-definite matrix ot tae appropriaw cidsr (&5, U ~vhL where y>0, and [ is
‘the identity matrix). According to the algorithm (2), for T'=v1 the vector ¢ is varied in the direction of the
gradient of the rate of change of the functional Jt, which justifies the name of the algorithm. As remarked in

{1, 2], 2 number of algorithms proposed by various authors for solving concrete problems of adaptive control
of dynamic objécts reduce to the form (2) (see below, §4).

The system (1), (2} of differential equations is closed, and we can pose the problem of investigating the
qualitative properties of its trajectories in the phase space {x,c}. In particular, it is of interest to study the
stability of the system (1), (2), which can be interpreted as stabilization of the object (1) with the help of the
algorithm (2). Here it is natural to require the theoretical solvability of the stabilization problem, i.e., the
existence of a nstabilizing” vector of parameters c,. The following theorem shows that under the additional
assumption that the function ¢ix,c, t) is convex in c the algorithm (2) stabilizes the object (1) in the sense that
the trajectories of the system (1), (2) are bounded. -

Theorem 1. Suppose that there is a vector ¢, such that for any.x and t
9(z,c., t)<0, : (3)
and, moreover, the function @(x, ¢,t) is convex in c; i.e., for any ¢', c", x, and t
o(z, ¢, ) —g(z, ', )= (—c") Vg(z, ¢, ).
Then along any trajectory of the éystem (1), (2) the value of Jy is bounded above:
) LI L) —e T e —e). ¢ - )
If, moreover, the functional J¢ is local and

in{Q(z, t)— o0 as [zrfl— oo, A (6)
>0

then all the trajectories of the system (1), (2) are bounded,. ‘

Remark 1. The condition (4) is obviously satisfied if the function ¢(x,c,t) is linear in c.

Remark 2. It is easy to show that the theorem remains true If (3) is replaced by the weaker condition

(z(t), e, 1) <B(2), o B 3"

Ll -

ivhere B(¢)=0, \P()dt<oo.

[ B |
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A proof of Theorem 1 is given in the Appendix and is based on the use of the direct Lyapunov method. Ag
the Lyapunov function we take the following functional Vi of the trajectories of the system (1), (2):

Vi=JHfile(t) —c.]' T [c(t) —c.]. (7

In addition to stability conditions we can also get estimates of the quality of the systems designed. The
following theorem gives us the asymptotic optimality of speed-gradient algorithms in the sense of a minimum
for the estimator function Q(x, t). .

Theorem 2. Suppose that the right-hand sides of Egs. (1), (2) are locally bounded uniformly with respect‘ {
tot=g; i.e., T .
sup  {[1F(z )|+ Ve (z, £) [} < o0, ' (8)
>0, [zi<p .
for éhy p>0, where z = {x, c} is the state vector of the system (1), (2). Suppose that the functional Jt is uni-
formly continuous with respect to x, t in any region of the form {(z,t): lz!= P, tZ 0}, is local, is nonnegative,
and satisfies the conditions (4), (6), and, instead of (3), the weaker inequality .

oz, . ) <—aQ(z,8)  (a>0). )
Then Q(x(t), t)—~0 as t—o,
- A proof of Theorem 2 is given in the Appendix.

Remark 1. The inequality (9), which can be rewritten in the form .jts——!l'Jt, is the condition for exponen-
tial stability of the object (1) at ¢ =c,, while the condition (3) means that (1) is stable in the Lagrange sense [7j.

- ¥

LIt should alsc be imcaticacd tial in the case of an integual functiogal Jg the asymplolic optimality in the
sense of the criterion !

'E .
QO = —iTSR(.z(s). c(s), s)s

can be derived from Theorem 1. Indeed, for R(x, ¢, t) = 0 it follows from (5) that lim %t = min ¢+ = 0. More-
t—-co c,t

over, it follows from Lemma 1 (see the Appendix) that when the condition (8) holds, the re!at'ion limR(x(t), c(t),
t—w

t) = 0 is valid. In applying Theorem 2 the relations mentioned are interpreted as the adaptation goals, and the
algorithm (2) is intended for attaining them.

3. REGULARIZATION OF SPEED-GRADIENT ALGORITHMS

For the practical application of an adaptation algorithm it is important to consider the behavior of the
adaptive system when factors not taken into account in the initial design act onit. These factors usuallv include
inaccuracies of the original mathematical model: determinate and random noises, additional nonlinea: “i> 5 and
inertial properties, etc. "Another important factor is the discreteness in time of the operation of the coutrol-
ling device when it is realized on a digital computer. A practically efficient system must preserve its efficien-
cy, at least under small actions of the indicated factors; i.e., it must be robust with respect to them.

Simple examples show that systems designed on the basis of the speed-gradient principle may not have
robustness. In particular, the action on the object of arbitrarily small uncontrollable noises can destroy the
stability of the system: the adjustable coefficients c(t) can grow unboundedly as t — « (see, e.g., [4, 8])). The
speed-gradient scheme can fail to be robust because the system (1), (2) is in a certain sense at the boundary of
stability: the derivative of the Lyapunov function V¢ is not a negative~definite function.

In order to give the system (1), (2} robustness properties we can use the idea of regularization [9). In-
stead of the functional J; the following "regularized" functional can be used for designing an algorithm:
4

Tomdit 5 {Retopras | (10)

where A >0 is the regularization pai'ameter. Applying the speed-gradient principle, we get, instead of the algo-
rithm (2), the regularized algorithm

C=—F(V.9(z,c, t)+2c), ] - (11)
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Accordingly, regularization has led to the introduction of a negative feedback in the circuit for tuning the

parameters.

= Passing to a study of the robustness of the system (1), (2) with respect to noises, we remark that by the

stability of the system in the presence of uncontrollable noiseés of unknown intensity it is natural to mean its
dissipativeness (7], i.e., the convergence as t— e of all its trajectories into some bounded region in phase space
{x, ¢} not depending on the initial conditions x(0), ¢(0).

Theorem 3. Suppose that the functional Jt is local and satisfies the conditi_ous (4) and (6), the condition
IV xQ(x, t)li2= p[1 +Q(x, V)], where p>0, and, instead of (3}, the inequality

@z, c., ty<—aQ(x, t)+p, - (12}

where a >0, 8= 0. Suppose, further, that the dynamics of the object is described by the following equation in-
stead of (1): ‘ :

E=F(z, ¢, 1) +E (1), , | | (13)

where £ ()= %, »>0.

“Then the system (11), (13) is dissipative.

A proof of the theorem is giveninthe Appendix. Theorecm 3 shows that the regularized algorithms ensure
the efficiency of the system for an arbitrary level of uncontrollable noises, since no bounds are imposed on the
quantity #. However, it is easy to see that the size of the limit set, which characterizes the quality of the sys-
tem, increases with increasing ®. ' :

. Remark 1. It is not hard to show (by modifying slightly the proof of Theorem 3) that an analogous resuit
holds in the case when £(t) is a random process nat is Louudcd o the meoon eomare MIED?< C <) or has the
form of a white noise with bounded intensity. Here the system (11), (13) is dissipative in the mean-square
sense; i.e., we have the inequality - .

G o (=" + leB <D (14)
for some D> 0. E ‘ ) . -

Remark 2. The theorem remains true if we replace the integrand Nch? in the functional {10) by @), and
the Ac in the algorithm (11) by AVw(c)/2. We can take the "penalty” function w(c) to be any convex smooth func-
tion satisfying for some By, B >0 the quadratic growth condition w(c)= B lci?~ 3,. In particular, w(c) can be
set equal to zero in a specified bounded "admissible" region.*

Let us now consider the question of the influence of the discreteness of a realization of an adaptation
algorithm on the efficiency of the speed-gradient scheme. In this case the regularized algorithms (11) also
have the property of robustness, although in a somewhat weakened sense. The fact of the matter is that the
equations of the dynamics of adaptive control systems are usually nonlinear, and their right-hand sidcs do not
satisfy a global Lipschitz condition. Such equations can lose stability (dissipativeness) properties upon dis-
cretization, even for an arbitrarily small discreteness step. However, it is frequently possible to show thatthe
discretized system has the property of so-called limiting dissipativeness [13]. This property amounts to the
existence in the phase space of the system of a ball D, into which all the trajectories of the system with initial
conditions in some ball Dy converge in the course of time, where the radius of the ball D, grows unboundedly as
the discreteness step decreases. From a practical point of view, limiting dissipativeness coincides in essence
with the usual dissipativeness for a small discreteness step. )

It turns out that the regularized speed-gradient algorithms (11) ensure the preservation of limiting dis-
sipativeness of the system in a discrete realization. Let us formulate a precise statement for the stationary
case.

Theorem 4. Suppose that the conditions of Theorem 3 hold, and that the functions F(x, c,t) and Q(x, t) do
pot depend on t. Suppose that the function F(x, c) satisfies the conditions of local boundedness (8) and is locally
Lipschitzian, § F(x', ¢)— F(x", c)is L(r,c)ix'—x" for Ix'Isr, Ix"i=r, and that the function Q(x) satisfies the

*A closely related result is given in [10]. A negative feedback in the adaptation circuit was used in a particu-
lar case In [11]. Other ways are also known for making the algorithms more robust, for example, the introduc-
tion of an Insensitivity zone, which is widely used in the method of recursive goal Incqualities-[12].
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inequality IV2Q(x)i= . Let the adaptation algorithm be described by the following difference equation instead
of (11): . .
¢(trr) =c (i) —AT[V.p(z(), c(ti), ) +ac(t) ], (15)

where tg =kh, k =Q 1, ...,h>0.
Then the system (13), (15) has the property of limiting dissipativeness as h— 0.

A proof of the theorem is given in the Appendix.

In concluding the section we mention that regularization of the algorithms means, of course, giving up
their optimality [for the algorithms (11), (15) Theorem 2 becomes false]; however, this is the price for increas—
ing the robustness of a system (see, e.g., [14]). N

4. EXAMPLES OF APPLICATION OF THE

SPEED-GRADIENT SCHEME

; By choosing various forms of the functional Jt» we can obtain various algorithms for adaptive control and
identification described in the literature. Some examples are given in Table 1. In the majority of cases a di-
rect check shows that the conditions of Theorems 1 and 2 hold, and the familiar results about stability of adap-
tive systems and about the attainment of adaptation goals follow from these thecrems. Let us consider several
examples in more detail.* - '

Example 1. "Direct" Adaptive Control with a Reference

Model [3, 4. 15-20!

Suppose that an adjustable object is described by the equation
' #=(A+AA)z+ (B+AB)r (1), - (16)

where r(t) is a vector drive signal, A and B are matpices of unknown parameters of the object, and AA and AB
are matrices of adjustable coefficients; i.e., ¢ = {.1'4_\, AB}. For an estimate of the system's quality we choose
the local functional J¢ = eT (t) He(t), where e(t) = x— xM(t), xpM(t) being the solution of the reference. model equa-
tion Xy = AMXM + BMr(t). By the adaptation goal we understand the minimization of Jts i.e., the satisfaction of
the condition e(t)—0 as t— . Computing Jt = ¢(x,c,t) a-cording to the speed-gradient principle, we get o(x,
c, t) =eTH[(A + AA)x+ (B + AB)r(t)— Apxpyr- BMr(t)], from which VL:AJt = HexT, VQBJ't = HerT(t), and, conse-
quently, the adaptation algorithm (2) for I’ = yI can be written inthe formt

dAA/dt=—1Hez', dAB/dt=—yHer (t). . (17)

Thé condition (4) holds here because J¢ is linear in c. Moreover, the condition (9) holds because, setting
Cp= {AM—A, BMm-— B} and choosing the matrix H for the given Hurwitz matrix Ay from the condition HAM +
AMTH <0, we get that

9z, ¢, t)=e"HA o< ~aqe'He (a>0). . (18)

The condition (6) holds for a Hurwitz matrix A M and bounded r(t). Thus, the trajectories of the system
(16), (17) are bounded and the adaptation godl formulated above is attained for any values of the unknown object
parameters when the indicated conditions in Theorems 1 and 2 hold. An analogous result holds also in the case
when not all the elements of the matrices AA and AB can be adjusted, but the matrices A, AM, B, BM have a

special form (see Table 1). ,

Example 2. Adaptive Identification with a Predicting Model [4, 29]

Suppose that the object is described by the equations
, A(P)y=B(p)u, H(p)y=y, H(p)u,=u, : 19)
where p =d/dt, u, y, u,, y, are scalars, A(p) = PR+ on 1 p™ 1+ . +¢,, B(p)= bmp™ + ... +b, are polynomials with
unknown coefficients determining the dynamics of the object, and H(p) is a2 known Hurwitz "filtering" polynomial

*The results obtained in Examples 1'and 2 are well known; the algorithm in Example 3is apparently new.
tWe mention that if in this example we regardthe vector xpj(t) as the state of the object and x(t) as the state of
e

the adjustable model, then we arrive at the Identification algorithms considered In [20]. @

1337

ﬁﬁ!ﬁ R e o o cat 'm . o ek 3 - o



Jqers
a:SﬁSmEbuuuﬁd L0 0
| =2% =3} wiod mao ], (1% 05) 2] 4 — m o (1*7205) f =5 7z
[zgl wida19s |  >HO+ OH'TmMMY D tm ! Te g . pr 2=y (1) ms] g
oﬂs» Ao rol=p
. 3@ ¥ A
! ] {4 *o} w>
k] ' ' [ ]
Yy=pUl | | O
[vad mauspaegiyD uror| <P =0 —"ron) oy Pk — =g N *1- a2 |- v
ony uadndN ‘ujwary ZIMINH S 023,44 — =D i ='r|lo SN
LR [OLT T o<t Ny (1) £g + 2% =
‘ 0> i+ DH (% + A =g Ma—zme ol =1 (g'y)=> (v
(12} eipusaey ‘vapny ZUMIMH O | (PN Jroph = =y Spp =] (gt r—z)otry =gz
0= )e [0 ol =p
0+ =
_”ou Aoy “tosuiMm tEi—< a? _. {2l =ogmg
[} - \ + » jocsnse =
LR Vo) < o) oy wat—=g| T T TN a9| === [vv &
JisaoIny ‘Aofjefjwoz Zamy Wy ‘Zo Y — = p TR o rio
[0z} Aseqepiol
W%xhvu»w “Aowpysy R OF o ph — = TP (Mg 4 "y ="
vl Trowred ‘jpaopury . L T T . ave S e LT SNy :
‘L] wipulEN ‘Sa0p1r] 0>t v Czoprh e 1P . ¢ , {gv'vv}e=o (v
[91] nwpueq zyamy Wy ¥ Ve 2 =L ge+ @)+t v)=+]}
s1oqn ANsos fsuonip 1 =dn 1 A
oany -u0d 2ousBivAuc) Ez:Bm_- aovaaqv« [ 1euonoung 193{q0 =y jo uoReNbZ o

swiy3rr0d|v juaipean-pasds T FIAVL

-

1338



e

(2 woxosyy, wodj sMo[ioj siy3) SUOI3IpUoD eI hu«.d:.uua J07 0--(3)3 uayy ‘o ur

X9AUOOS1OY B:u 2 40%)1] uonouny oY) ¢ sjdwexs uy jI

‘¢ "8U0Z sARISULSU] ue Juidnpoajuy Aq pazlasindax s g ajdurexa

ur wyjlro3(e ay) puew ‘yjoeqpesy o>¢«mmw_~_m Buyonpoaju; £q pazixemSoa st (eg oldwexa uj uryjxodfe sy, °1 “E90N

[67l uovy

._:z _
Tejuoudyod !

W $aan ‘— -—v e -AN
T d () gh— =T

et e |
.:_.1 (1jod -~ we Tng

&
n

R L A L

o -IE.«_!..IS ' -&HA&V !_..

) ™y — () Y () = () g

o (5) g =!p

-

. *.sl.s .~!=v =23
‘netnld) ) B V(D) g
od) g~ R

(82
AOPEI] “TINSA]IpUY

1L2] ujwod *Aocussyy

ZIMIMY € — (VN

o« A0 (ne
1enuoustod ‘

-

a>1el o
.o . T...z_
< fyl R
R PR Py |
Sid peld — =

MLt =0
) Hld) == () g

o
SAPE S
H

.-._ I=ny .. Wl =-2

" JE LTI h-'l&—(!b“:

oy foeee —::.s._lzt B wl =t A&v 1
‘wlpe=d ng. . kidy):

(9z] Aovpead

ZIAMH 8 — (Y)O

ok e ()]

HIEHEN]
1 - U 92182p. jo TeWIOU
-{1od Zypamy © (0r,8

o

h ?—.._.n L

= o< =1
apx='r

Contoe=—=(ow
W="rep=(ye

L= == 00 4
hipa--n ‘zp=HK'w} P =y

(% ]

[cg] eApNY ‘eipudrN
{£2]) uysrug

0=(na uJ_L. <
< (g —"1on ,ymy
Z)MINH O

s v 2 LA

[ !
“n _._.:.f -

Ssiogd — =1

r
K- Tt e =y
B e e @ .oAh:ﬂ.:

Spe =

'ty =l :T:w..: =l
O REROE T
Ui -4 ()62 K g 79 = ;

b il &

1339

— T

-

e



t

[Egs. (19) can easily be reduced to the form of the state equations (1)]. Let J =1/, S 8% (2 (s), c(s)) ds, where d{x,
o
-

c) = Ay(p)y,— Bat(pluy, and the degrees of the polynomials Axg(p) and Bpy(p) are equal to the degrces of A(p) and
B(p), vespectively. The coefficients of the polynomials Api(p) and Bp({p) can be interpreted as paramsters ofa
"predicting” model; then 6(x,c) has the meaning of the discrepancy between the model and the object. There-
fore, we take the vector of adjustable parameters to be the vector of coefficients of the polynomials Aj(p) and
Bumip)i e, eT = (aMo'”"aMn—t' bMo""'me)‘ We understand the adaptation goal to pc the minimizaiion ofthe
mean-square of the discrepancy: limt-'Jt=0. Computing Jt = 0.58%(x; ¢) and then VJ¢ according to the speed-
gradient principle, we arrive at the followirg algorithm for adjusting the mocdel parameters:

ay, = — b (he®?, 1=01,....n—1. (20)
by, = BB (z (W) e a”, T=04,...,m

It is not hard to see that in this case the conditions of Theorem 1 hold with Remark 3 taken into account
[for ¢ T =(agy.--s Tpyo bgs ... ) and B(t) = n2(t), where n(t) is an arbitrary solution of the ccy{ation Hip)n = 0].
Therefore, the remarks following Theorem 2 imply that the adaptation goal is attained for any values of the un-
known object parameters and, moreover, 6 (x(t), c¢(t))—0. We mention that if the degree of the polynomial H(p)
is not less than the degrees of A(p), B(p), then the algorithm (20) can be realized without changing the deriva-
tives of the signals u(t), y(t).

Example 3. Adaptive Stabilization of an Object

. with Amplification Coefficient Depending on the

Phase Coordinates

Suppose that the 6bject and the control law are described by the equations
i=dx+p(z)ba, y=Lz, n=c"y, ) (21)

where x€RD is the state vector of the object, u is a scalar control, yERM is a vector of measurable coordinates
of the object, cERM is a vector of adjustable cocfficients of the controller, and A, B, and Lare unknown cbject
parameters. Itis assumed that the amplification coefficient u(x) is measurable, depends continuously on x, and
satisfies the inequality p(x)= u> 0. Equations of the form (21) are encountered, e.g., in problems of controlling
the power output in nuclear reactors [30]. Since we are considering the problem of stabilization [the object

(21) can, generally speaking, be unstable], we choose J¢ = xT(t) Hx(t), wherc H>0 is some matrix of order n x n.
Proceeding according to the speedgradient principle, we get

Jo=q(z, ¢) =z"H(Aztp(z)bc'y), Vg (z, c)=z"Hou(z)y.

Since the quantity xTHb appearing in the algorithm must depend only on the measurable coordinates, we
impose the additional requirement that Hb = LTg. Here the speed-gradient algorithm takes the form

é=—p(z)g'yTy. . (22)

Obviously, the conditions (4) and (6) hold in this case. We can show that the condition (9) holds if for
some ¢, we have the inequality HA | + A,‘T-H <0, where A _=A+bc *TL. Since the matrix H can also be varied,
we get that the conditions of Theorem 2 hold and the system (21), (22) is efficient if for some H>0, ¢, we
have the relations ’

Hb=L'g, HAAATH<O0, AcmA+besL. (23)

By Lemma 1 in [26), (23) holds if and only if the polynomial &(p) gTW(p), where W(p) =L(pl—A)~ b is the
transfer function of the object and &(p) = det(pl— A), is Hurwitz of degree n—1 with positive coefficients. The
last conditlons determine a class of objects for which the adaptation goal x(t)— 0 is attained, by Theorem 2.

CONCLUSION

It should be mentioned that the questlons touched upon In this paper do not, of course, exhaust all the
problematics of adaptive control theory. We have neglected stages in the design of an adaptive system such as
the choice of the basic circuit structure, the choice of an estimator functional according to the specified con-
trol goal, and the choice of the adaptation circuit parameters according to the specified adaptiveness class.

‘
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The results above relate only to a unification of the stages of choosing the structure of the adaptation circuit
and of analyzing the efficiency of the system.

The problem of comparing the various methods of designing adaptive control algorithms and of deter-
mining their limiting possibilities is as yet far from a definitive solution. The questions connected with the
robustness of the algorithms and the possibility of their regularization are important aspects of this problem.

APPENDIX

Proof of Theorem 1. Computing the derivative of the functionzl (7) by virtue of the system (1), (2) and
using first the inequality (4) for ¢' = ¢, ¢" = ¢(t) and then the inequality (3), we get dVysdt = ¢(x(t), c(t), t) +
[c(t)—-c‘]TI“‘éS ¢(x(t), c,, t)=0, from which Je= Vi= Vg = J0+0.5(c(0)—c*]Ti‘-lic(O)—c*]; i.e., the inequality
(5) holds. The second part of the statement of the theorem follows from the fact that, by what was proved, the
state vector {x(t), c(t)} of the system (1), (2) lies in the region V(x, ¢, t)= V(x(0), c(0), 0), which, by the condi-
tion (6}, is bounded uniformly with respect to t= 0. The theorem is proved.

Proof of Theorem 2. Computing (as in the proof of Theorem 1) the derivative of the functional (7) by
virtue of the system (1), (2), we get from the condition (9) that . - :

AV /dt<—aQ(z (1), t) <0,
¢ -

from which aj' Q(z(s),s)ds < ¥V,-¥, and, consequently, j'ods < VJ/a. Since the trajectories of the system (1), (2)
[ [ ]

are bounded (by Theorem 1), the statement of Theorem 2 now follows from the following simple lemma.
Lemma 1. Let us consider a system z = F(z,t) whose right-hand side is locally bounded uniformly with

respect to t=2 05 fie., 1T(z, YU=7(r) < for 2€ 2= [z U2 =1}, t= 0. Let z(t) be a bounded solution of the Sys-

tem, and Suppose that the function Q(r,t)= 0 is uniformly continuous with respect to z, t in any region 2, and

is such that ‘IO(z(t),t)dt< ». Then }im Q(s(t), 1)=0.

Proof of Theorem 3. We again consider the functional V¢ of the form (7) and estimate the derivative of
Vit by virtue of the system (11), (13). Writing x{t) = x, c(t) = ¢, we get '

rl

. aVi/dt<@(z, co, 1) TV Q(z, t)TE (L) =2 (c~c.) e,
Using the conditions of the theorem and the easily checked inequalities

V.Q(z, )7k (1) <0.5e19.0(z, U2+ (2e) 498 (1) 3",
=(e~c.)Te<03p (c—c.) T (c~c.) +0.5ic. 2,

in which e =a/p and u is the greatest lower bound of the spectrum of the matrix ', we get that

)
Wil < = Qa0 = (e T e=e)+ B < V4 (A.1)
where @, = min {0.5, A u}; 28, = 2B+a +npla +Allc I,

It follows from the inequality (A.1) that lim Vi< B /or,. If we now recall that (6) holds, then we see that
the theorem is proved. b -

Proof of Theorem 4. For a proof we use the results in [13, 31]). Along with the system (13), (15) let us

F(z,¢c)

consider the continuous model Z = A(z) of it, where : = (z) , A= (
4 =L(@(z,¢)+ Lo)

). It follows from the proof

of Theorem 3 that the system z = A(z) satisfies the exponential dissipativeness condition [13] with the function
V(x, c) of the form (7). The noise £(t) In (13) Is, by assumption, bounded. Therefore, the limiting conditional)
dissipativeness of the system (13), (15) follows directly from Theorem 1 in {13].
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