SPEED-GRADIENT LAWS OF CONTROL AND EVOLUTION
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Abstract. A class of evolution laws of manmade and natural dynamic systems is
described. The essence of these laws 1is the motlon along the gradient of the
speed of appropriate goal functional change. It is shown that such systems
(SG-systems) cover many different control and adaptation algorithms as well as
8 set of well known physical systems evolution laws. Theorems about SG-systems
Bstability and robustness as well as some examples are given.
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. INTRODUCTION

In automatics as well as in the other fields
[ sclence an interest grows to general principles
nifying the solutions of different kinds of
roblems. Conventionally such principles are
ariational ones and postulate the solution sought
0 realize the extremal value of appropriate
unctional. For Instance, some optimal control
ethods [1-2] give the equations,the solutions of
hich define control action as a function of time
nd/or controlled plant state variables. Analogous
rinciples based on-calculus of varlations are
ged in physics (minimal action principle (3] ).
' Perhaps it 1s more convenient to obtain the
olution moving step by step along time axis and
8ing only current information provided by the
ocal goal functional. We can mention  Gauss
imal forcing principle as an example of this
local” approach. Local principles do not require
he xnowledge neither of the future of the system
pr of the final time of its evolution. So they do
't require the anticipation actions. On the other
'-.. the local approach to system design requires
e further analysis of global system behavior:
Rability, convergence, etc. Speaking about local
Pinciples advantages M.Planck regretted that they

. In the control sclence the local principles
used rather often, e.g. Zubov principle of
timal transient processes damping (5], locally
ft1mal adaptive control algorithms (6,7], etc.

' In the 2nd section of this paper ° one more
1l principle named speed-gradient (SG)
iple 18 described. This principle was
lated in (8) and then generalized in (S9-1t].
vers many different laws of adaptation and

bo applicable only to the problems of mechanics’

control as well as many evolution laws of
different natural systems. The further sections
contain the stability and robustness theorems for

 SG-systems as well as some examples of such

systems: proportional-integral regulator, model
reference adaptive systems designed by Lyapunov
function and hyperstability methods,
identification systems and some physical systems
‘(Newton's law, diffusion and heat conduction
equations, viscous fluid equations). '

2. SPEED-GRADIENT PRINCIPLE

Consider process equations in the form
dx/dt=F(x,8,t) , 120 (1)

where x¢R" i3 a process state vector, s¢R® is an
input vector, F("):R%R™ {s continuously
differentiable vector-function in Xx,e. Input
variables may be of arbitirary nature : real

control action for the plant, adjustable

parameters or smth. else. The problem 1s to choose

the evolution law'’ .
o(t)=otxl,of, 1] @)

according to some criterion of good" Iunctionlng
0f the gystem.

Suppose this criterion requires to provide
low values of some goal functional Qt—Q[x e W1,
Typically Q, may be of the 1local Iorm

1No‘cation xg means the set of values {(x(s),
O<s<t ), -v,Q denotes the gradient of Q in x,
sign "r"  denotes transposition and
x=col(x1,...,xn) means that x is the colum vector
which components include all the components of
vectors or matrices X,,...,X,.
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Q,=Q(x(t),t), where Q(x,t)>0 1s a scalar smooth
goal function or of the Integral form :
Q= q(x(s) 6(s),8)ds.

In either case one can determine a function
w(x,6,t) - the velocity of Q, change along
trajectories ot (1). For example,
(x,8,t)=(v,Q)7P(x,6,t) for a local case and
«(x,8,t)=q(xe,t) for anintegral case. Obviously
Q= (X(t),0(1),1).

In (8] the following law has been introduced

de/dt=-Tv e (X,8,t) (3)

algorithm in
Later the finite form was

called = speed-gradient (SG)
differential form.
suggested (10]:

8- =-Tv 0 (X,6,1). (4)

In (3), (4) r=r’>0 is a positive definite
matrix. The most general Iorm is a combined form
,oI SG-law:

d%-[ew(x,e.t)].—.-rveu(x.,e.t)) (5)

where w(°) satisfies pseudogradientity condition
vTv,w20. We may rewrite (5) in an integral form

e=—y(X,6 t)—rj‘o st ds, (6)
The formulation of speed-gradient principle
is as follows.
0f all possible motions those motions are
realized for which input variables change
proportionally to the speed-gradient of
appropriate goal functional.
Now let us give some examples illustirating
SG-laws derived on the basis of this principle.

2.CONTROL AND ADAPTATION LAWS

Erample 1. Proportional-integral regulation

law.

Let the process equation be
X=Ax+Bu,  y=Cx, (1)

where xeR" 1s a process state vector, ueR' 1s a
scalar control action, :,rel'(1 is controlled
variable, A,B,C are matrices of appropriate size.
let control goal be y(t)—-y, as t—» , where y, is
required value of y. Thus, the goal function may
be taken as -

Q=L (F(0)-y,3=LeP (1), ®)
where e=y-y, 1s an error Ifunction.

If we choose u(t) as the plant input, that 1s
e=u, we can calculate the speed of Q, change along
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~74="CB, Where >0, 7,0, 74>0. The combined SG- 'ﬁ

trajectories of (7):

Qy=«(X,0,t)=eC(Ax+Bo)

and then determine the speed-gradien
vgw(x,8,1)=eCB. Assuming that sign(CB) is knowm
(CB>O for simplicity) we define w=r,v,Q,

(5) 1s then given by
2t (enrpe)=rse. o}

After :Lntegrating and substituting
get the usual PI-regulation law:

e-u

u(t)=-r e (t)-ryJT e(s)ds. (1 _f

p
Erample 2. Model reference adaptive controb
via hyperstability crtterton. 1

Let controlled plant be described by equation

I=(A+AA)X + (B+aB)r(t), (1)
where xeR® 1s & state vector, T(t)eR" is command]
action vector, A,B, - unknown parameter matrices,]
AA, AB, - adjustable parameter matrices of}
appropriate size. Let control goal be e(t)--0 as;
t—~ where e=x-x;, X,€R" 1s a state vector of;
reference model :

X (t)=AX + Byr(t).

Choosing Q(x,t)=eTHe where H=HT>O as the goal
function and 6=col{s4,aB) as an input vector, wej
may calculate the speed and the speed-gradient as)
follows

QtseTH[ (A+AA)X+ (B+AB)r( t)-Amxm—er(t)]. j
AQt‘:Hex ’ BQt=Her ,f%

The combined SG-law (6) Tfor this case has & IOI'!!Ii
s

AA=—jl'A—rBf°He(s)xT(s)ds . 1

T (131
t

ABz-wB-rBfOHe(s )rT (s)ds. “‘3

4

where Sp(w Hex")30,Sp(¥gHer™)>0. (For instano

¥,=sign(Hex"), ¥y=sign(Her’) ). The laws (13
coincide with adaptation algorithms synthesize
via  hyperstabllity criterion [12,131. S
SG-algorithms may be regarded  as th
generalization of conventional NRAS algorithms IOA
nonlinear case. :
Erample 3. Nonlinear plant {dent tftcattd
with ezpltcit and implicit models.
Consider a nonlinear system (e.g. a pendulum
described by second-order equation

y=assin(y)+bsf(t), - (14



gsurable external force,
Araneters to- be determined.
& o1 of system (14) as follows

g ipdy (=) 4+, (F-¥p )+ sin(y)+b L (1), (15y
ifere  d,>0, d2>0 .are introduced to ensure
bility Choosing Qt-e He, a=col(am b ). where
_xm_col(e A ) e, =Y-¥p» -y—y and
iculating speed—gradient as 1t was done above we
o vrite differential SG-law (3) in the form

ém=°"a(h1z 10558, )81n(y),
(h12e1+h22e2)r(t)

4ntirication laws of type (16) were suggested

¢ many authors (see [8] for bibliography). To

Jerive another type of identification law let us

andon the explicit adjustable modttel (15) and use

tegral goal functional Q,=0.5 Jo® 2(s)ds where
t)-y(t)—amsin(y)-b (1) 1s the measure of model

gristion from the system (14) (equation error).
en straightforward catcutation gives

8,b are unknown
Form adjustable

3) (16)

Ly 2 0Q,, 6Qy,
Q= 6°(t), — =681in(y), —'=81(t)
2 aam abm
ith the following SG-law .
é.m=—raésin(Y) s 6m=—.vb61 (t), aT)

4. PHYSICAL SYSTEM EVOLUTION LAWS

In this section we apply the SG-principle for
gscription  of  natural  systems. The goal

# "y that real system behavior corresponds to
!l or decreasing values of the goal functional.

Ezample 4. Newton's evolution law.

Consider the motion of a material point in a
Fientlal force field. Let the state vector x be
¥ vector of point coordinates x=col(x, xa.xs)

,‘w the input vector be x. Then the process
Jation (1) is

4 1=6, (18)
& know that the point motion is characterized by
g ereasing of potential energy Q(x).So we try to

%e Q(x) as the goal function. It 1s clear that

J-(v,Q(x)1%e and speed-gradient of Q; due to (18)

90 =vgQ(x). Choosing the SG-law in
L I we obtain the law of motion

X=-m'v 2Q(X) (19)

Finciding (naturally !) with Newton's law when m
! the point mass.

foe v 1s generslized coordimate, f(t) is-

Fuctional for such systems must be chosen in such.

Ierential Iorm (3) with scalar gain matrix

Eromple - 5. Wave, diffusion ,heat conduction
and vtscous fluid transfer equations.

Note that the SG-principle may be extended to
distributed parameter processes. For instance
state vector x may be an element of Gilbert space
X and F(') - nonlinear operator (possibly
unbounded) defined at the dense set DFcX. The
solution of (1)-(5) may be defined as a
generalized one.

Suppose x=x(r) 1s the temperature or the
concentration of a substance in some region ncR3,
r=col(r,,r,,r;)en and process equation is
specified In the form' (18).Choose the goal

functional &8s the measure of the field
ununiformity :
! 2
Q(X)=E Jlvpx(r)|©ar. (20)
o}

Under zero boundary conditions we have

Qy=-fax(r)e(r)dr, vyQu=-sx(r),
Q

3 g2
where A=z _0 - Laplace operator. It 1s easy to
1=1Or7; .
see that the differential form of SG-law (3)
corresponds to D'Alamber wave equation, while the
finite form (4) with 6,0 glves the heat
conduction (diffusion) equation.

Now let us choose

t
Q=fp(r.1)ar + of Jlogv(r,s))2drds, -~ (@1)
: Q Q

where v(r,t) - field or fluid particles
velocities, p(r,t) - pressure, n>0 - viscosity
coefficient. For this case the speed-gradient is
VpP-nav.  Combining (3) with (18) we get

- Navier-Stocks equation for viscous fluid transfer:

\'r=—[vl,p(r.t)—nAv(r.t)]. . (22)

Similarly choosing the goal functional as
appropriate energy or entropy function one can
obtain  equations for different electric,
thermodynamic and other systems. It 1s worth
mentioning that the differential form (3) of
SG-laws corresponds to reversible processes while
the finite form (4) generates irreversible ones.
Some other examples of SG-principle application

in control science and physics are given 1in
(11,141,



5. STABILITY AND ROBUSTNESS OF SG-SYSTEMS

It 1s convenient to study dynamic properties
0f SG-systems by means of Lyapunov functions. For
example the stability theorems for combined SG-law
are formulated as follows. ,

Theorem {1 (10]. (local goal functional).let
system (1),(5) have unique solution for any
initial conditions x(0),6(0), functions F(x,e,t),
v,Q(x,t), w(x,t), vy«(x,8,t) be locally bounded in
t (bounded in any region {(x,e,t): |x|+]e]<3,
120 } ) and following conditions are held:

1.Growth condition: 11%1 Q(x,t)—>w as jx]—re .

) 2.Converity condition: function «(x,8,t) is.

convex in e. T

3.dttatnability condition: vector eeR™ and;
tfunction »(Q) exist such that »(Q)>0 when Q>0 and

w(X,8,,t)<-2(Q). (23)

) Then all solutions, of system
" bounded and Q;—~0 as i-+w.

Theorem 2 (14] (integral goal functional).
let conditions of theorem 1 are fulfilled with
~2(Q)=0 1n (23).

Then all solutiong of system (1),(5) are
bounded and q(x(t),e(t),t)=-0 as t—+w.

Consider local case and finite SG-laws which
we can write as R

=6, (X, )+ (X, T)w(X,1) (24)
where r(x,t) 1s a scalar.

Theorem 3 {14]. Let =all conditions of the

(1),(5) are

theorem 1 are fulfilled as well as strong
pseudogradientity condition
v(z,t)Tv o (X,8,1)20|vgu(X,0 018 (25)

for some >0, 6>1 and inequality

or (X,1) [9g0(X,0,0)1° 210 6,1 (26)
(vector e, may depend on x,1).

Then all solutions of system (1),
bounded and ot-»o as t—w,

The proof of theorems
Lyapunov functional

(24) are

1,2 1s based on

V,=Q,+3l0-0 +v (X, )17 (o-6 v (X, 1)1, (27+

while for theorem 3 one can use V,=Q,. The
theorems can be generalized for the case when
process state vector X belongs to an- infinite

dimensional Gilpert space. The precise
formulations use appropriate existance and
uniqness theorems (see [15]). More detailled

investigation of SG-system
robustness can be find in [11].

stabllity - and

Let us 1llustrate the usage of the theorems

for example 2. In this case regularity - and

" some well known results (see e.g.

convexity conditions are carried out owing’
linesrity of plant and reference model equati
both in the coordinates and in the adjus
parameters. The growth condition is held when
For the validity of the attainability condiff
the existance of €,=Cc0l(aA,,sB,) 1t
nesessary such that A+aA =Ap, B+aB,=B,. Thus:

e=6, we have Q =e"HAre. Obviously 11 Ay 1s st
and matrix H=HT>0 is chosen as the solution
Lyapunov equation

=-R

for some R=R%>0, thenAmcgmdition (23) will be neu ]
with £(Q)=eQ, e=min  (R), X (R) - eigenvalues o/
R. Hence e(t)—0 as t—ro. Thus we have obtainq 1
[13]) by mau ‘

of the theorem 1.
The process model (1) is often not knou
precisely so that the true model has a form

1=P(x,8,t)+s(X,0,1), @}
where ¢ is an unknown bounded disturbance, §
Adaptive SG-systems are known to become unstable !
even for arbitrary small disrurbance level (16},
To provide the robustness of the system the |

' modified laws are usually used, e.g.

é=—-rveét-Vw (e), (30}
where w(e) 1s convex penalty function (see (16,17}
for linear plant). System (29),(30) trajectories
tend not to the point but to the region. The §
bounds for final set cen be found in [11). Note
that the modified SG-system (29),(30) keepé; its |
properties in presence of unmodelled dynamics ;
(singular  perturbations, additional  filters
etc.,see (11]). :

6. CONCLUSION

The unified approach to system evolution |
description was given. This approach has different j
applications. the control science being the first’
of them. The general methodology for control am:
adaptation algorithms analysis and syntheall‘;
appears to be fruitful for their comparison and:
rational choice. s

The second application field is physica whare:
some well known problems may be considered Irom:
new point of view. For instance a simple proof
suggested in [11) for Onzagger symmetry principle
validity for SG-systems.

But 1t seems that the most interesting 81'4.,
intrinsic  applications are  generated W
physical-cybernetic analogy. An example of Sudl
result 4s as follows. The particle
electromagnetic field is known to belong to
class of SG-systems only when magnetic part of b8
field 1s absent. The reason of it is that magnet
field action generates rotational motions whic3
doesn't meet the requirements for SG-systens.




VA

qmediately the question arises: can't we "generate

{mslytically such rotational motions in control
Yi-systems? Occasionally it is the case and such
{ystems may possess some new propertles. .For
dupstance  one can introduce the rotational

ptions into wmodel reference adaptive systems

gee example 2) when adding the antisymmetric

wxmponent to H mairix. Matrices of such kind may
% generated as Iyapunov equation (28) solutionsj
or non-symmetric right-hand side. So we receive
gme new algorithms which one can name

jrotational" ones. These algorithms are not of

ypeed-gradient type because both goal Iunctional
nd Lyspunov function are invariant to asymmetry
if He

Simulation results for MRAS with implicit
reference model showed that the rotational
igorithms provide them additional possibility of

iransient procesées oscillability regulation. See

§71g.1, where transient processes of system

I=AX+bU, u=6"X, &=-r(XTHD)X (31)
for XeR®, r=3.5 are presented). Plant transfer
tnction 18  W(p)=1/(16p°+4s1.41p+1). Matrix H 1s
found as solution of equation (28) for Ap=A+ad,

o7
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