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Abstract

The possibilities of studying nonlinear physical systems by

small feedback action are discussed. Analytical bounds of

possible system energy change by feedback are established.

It is shown that for 1-DOF nonlinear oscillator the change

of energy by feedback can reach the limit achievable for

linear oscillator by harmonic (nonfeedback) action. Such a

phenomenon is called feedback resonance. Speed-Gradient

based method of creating feedback resonance in nonlinear

multi-DOF oscillators is described. Example problem of

escape from a potential well is studied by computer sim-

ulation. Copyright c 1999 ECC.

1 Introduction

The concept of resonance is one of the core concepts for

physics and mechanics. It has numerous applications in

spectroscopy, optics, mechanical engineering, laser and

communication technologies, etc. Perhaps it was �rst de-

scribed by Galileo Galilei in \Discorsi a Dimostrazioni

Matemache" (1638) [1]. Small resonant forces applied to

a system lead to signi�cant changes in its behavior. The

resonance phenomenon is well understood and perfectly

studied for linear systems. If, however, the dynamics of

the system is nonlinear, the resonance is much more com-

plicated because interaction of di�erent harmonic signals

in nonlinear system may create complex and even chaotic

behavior [2, 3]. Nonlinear resonance caused by aperiodic

force was studied in [4].

New avenue of research in physics was opened in the

90s by the works on control and synchronization of chaos.

It was discovered by E.Ott, C.Grebogi, J.Yorke [5] and

their numerous successors that even small feedback ac-

tion can dramatically change the behavior of a nonlinear

system, e.g. turn chaotic motions into periodic ones and

vise versa. Although similar phenomenon for nonchaotic

systems was previously known to control theorists, an in-

terest in control of chaos has gained interaction between

physics and control theory, see, e.g. [6, 7, 8].

In order to examine possibilities and limitations of

small control, the notion of swingability was introduced

in [12]. The system was called swingable with respect to

a characteristics (functional) G, if the value of G can be

changed in an arbitrarily broad range by means of arbi-

trarily small external action (control). It was shown in

[12] that �nite-dimensional continuous-time conservative

systems are swingable with respect to energy, if the energy

layer between initial and �nal states does not contain equi-

libria of unforced system. This result was extended to

swingability with respect to several integrals (invariants

or Casimirs) of free (unforced) system [13, 6]. Finally, the

notion of feedback resonance was introduced in [9, 10].

In this paper further investigation of feedback resonance

is performed. It is shown that for 1-DOF nonlinear oscil-

lator the change of energy by feedback can reach the limit

achievable for linear oscillator by harmonic (nonfeedback)

action. Speed-Gradient based method of creating feed-

back resonance in nonlinear multi-DOF oscillators is de-

scribed. Example problem of escape from a potential well

is studied by computer simulation. Extension to a class

of strictly passive nonlinear systems is given.

2 Feedback Resonance in 1-DOF

Oscillator

Consider the controlled 1-DOF oscillator, modeled after

appropriate rescaling by the di�erential equation

�' +�(')0 = u; (1)

where ' is the phase coordinate, �(') is the potential en-

ergy function and u is the controlling variable. The state

vector of the system (1) is x = ('; _') and its important

characteristic is the total energy H('; _') = 1
2
_'2 + �(').

The state vector of the uncontrolled (free) system moves
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along the energy surface (curve) H('; _') = H0. The be-

havior of the free system depends on the shape of �(')

and the value of H0. E.g., for a simple pendulum we

have �(') = !20(1 � cos') � 0. Obviously, choosing

H0 : 0 < H0 < 2!20 we obtain oscillatory motion with

amplitude '0 = arccos(1 � H0=!
2
0). For H0 = 2!20 the

motion along the separatrix, including upper equilibrium,

is observed, while for H0 > 2!20 the energy curves become

in�nite and the system exhibits permanent rotation with

average angular velocity < _' >� p2H0.

Let us put the question: is it possible to signi�cantly

change the energy (i.e., behavior) of the system by means

of arbitrarily small controlling action?

The answer is well known when the potential is

quadratic, �(') = 1
2
!20'

2, i.e., system dynamics are lin-

ear:

�' + !20' = u: (2)

In this case we may use harmonic external action

u(t) = u sin!t (3)

and for ! = !0 watch the unbounded resonance solution

'(t) = � ut
2!0

cos!0t.

However for nonlinear oscillators the resonant motions

are more complicated with interchange of energy absorp-

tion and emission. It is well known that even for a sim-

ple pendulum the harmonic excitation can give birth to

chaotic motions. The reason is, roughly speaking, that

the natural frequency of a nonlinear system depends on

the amplitude of oscillations.

Therefore the idea arises: to create resonance in a non-

linear oscillator by changing the frequency of external ac-

tion as a function of oscillation amplitude. To implement

this idea we need to make u(t) depending on the current

measurements '(t); _'(t), which exactly means introducing

a feedback

u(t) = U ('(t); _'(t)) : (4)

Now the problem is: how to �nd the feedback law (4) in

order to achieve the energy surface H('; _') = H�. This

problem falls into the �eld of control theory. To solve it

we suggest using so called Speed-Gradient(SG) method

(see [6, 11, 12, 13] and Section 4 below). For the system

(1) the SG-method with the choice of the goal function

Q(x) = [H(x)�H�]
2 produces simple feedback laws:

u = � (H �H�) _'; (5)

u = � sign (H �H�) � sign _'; (6)

where  > 0, sign(H) = 1, for H > 0 , sign(H) = �1 for

H < 0 and sign(0) = 0. It can be proven (see Section 6

for general statement) that the goal H(x(t))! H� in the

system (1), (5) (or (1), (6)) will be achieved from almost

all initial conditions, provided that the potential �(') is

smooth and its stationary points are isolated. It is worth

noticing that, since the motion of the controlled system

belongs to the �nite energy layer between H0 and H�,

the right hand side of (5) is bounded. Therefore, taking

su�ciently small gain , we can achieve the given energy

surface H = H� by means of arbitrarily small control.

Of course this seemingly surprising result holds only for

conservative (lossless) systems.

Let now losses be taken into account, i.e., system is

modeled as

�' + % _' + �(')0 = u (7)

where % > 0 is the damping coe�cient. Then it is not

possible any more to reach an arbitrary level of energy.

The lower bound H of the energy value reachable by a

feedback of amplitude u can be calculated as (see Section

4)

H =
1

2

�
u

%

�2

: (8)

In order to achieve the energy (8) the parameters of

feedback should be chosen properly. Namely, parameter

values of the algorithm (5) providing energy (8) under

restriction ju(t)j � u should be as follows: H� = 3H;  =

%=(2H). For the algorithm (6) any value H� exceeding H

is appropriate if  = u (see Section 6).

Note that H� does not have the meaning of the desired

energy level in presence of losses. It leaves some freedom

of parameter choice. Exploiting this observation we may

take H� su�ciently large in the algorithm (6) and arrive

to its simpli�ed form

u = � sign _'; (9)

that looks like introducing negative Coulomb friction into

the system.

It is worth comparing the bound (8) with the energy

level achievable for linear oscillator

�' + % _' + !20' = u(t); (10)

where % > 0 is the damping coe�cient, by harmonic

(nonfeedback) action. The response of the model to

the harmonics u(t) = u sin!t is also harmonics '(t) =

A sin(!t + '0) with the amplitude

A =
uq

(!2 � !20)
2
+ %2!2

: (11)

Let % be small, %2 < 2!20. Then A reaches its maximum

for resonant frequency: !2 = !20 � %2=4, and the system

energy averaged over the period is

H =
1

2

�
u

%

�2

+O(%2); (12)

Comparison of (8) and (12) shows that, for a nonlinear

oscillator a�ected by feedback, the change of energy can

reach the limit achievable for a linear oscillator by har-

monic (nonfeedback) action, at least in the case of small

damping. Therefore, feedback allows a nonlinear oscilla-

tor to achieve as deep a resonance as can be achieved by

harmonic excitation for the linear case.



Figure 1: Behavior of Du�ng system under harmonic in-

put

3 Escape from a Potential Well

The study of escape from potential wells is important in

many �elds of physics and mechanics [14, 15]. Sometimes

escape is an undesirable event and it is important to �nd

conditions preventing it (e.g., buckling of shells, capsize

of ships, etc.) In other cases escape is useful and the

conditions guaranteeing it are needed. In all cases the

conditions of achieving the escape by means of as small

an external force as possible are of interest.

In [15] such a possibility (optimal escape) has been stud-

ied for typical nonlinear oscillators (7) with a single-well

potential �e(') = '2=2 � '3=3 (so called \escape equa-

tion") and a twin-well potential �d(') = �'2=2 + '4=4

(Du�ng oscillator). The least amplitude of a harmonic

external forcing u(t) = u sin!t for which no stable steady

state motion exists within the well was determined by in-

tensive computer simulations. For example, for escape

equation with % = 0:1 the optimal amplitude was evalu-

ated as u � 0:09, while for the Du�ng twin-well equation

with % = 0:25 the value of amplitude was about u � 0:212.

Our simulation results agree with [15]. The typical time

histories of input and output for u = 0:211 are shown in

Fig.1. It is seen that escape does not occur.

Using feedback forcing we may expect reduction in the

escape amplitude. In fact using the results of section 2,

the amplitude of feedback (5), (6) leading to escape can

be easily calculated, by just substituting the height of the

potential barrier max



�(')�min



�(') forH into equation

(8) where 
 is the well corresponding to the initial state.

For example taking H = 1=6; % = 0:1 for �e(') gives

u = 0:0577, while for the Du�ng oscillator the choice

H = 1=4; % = 0:25 yields u = 0:1767. These values are

substantially smaller than those evaluated in [15]. The

less the damping, the bigger the di�erence between the

amplitudes of feedback and nonfeedback signals leading to

escape. Simulation exhibits still stronger results: escape

for the Du�ng oscillator occurs even for u =  = 0:122, if

Figure 2: Behavior of Du�ng system under feedback input

the law (6) is applied, see Fig.2.

4 Speed-gradient Algorithms and

Energy Control

Various algorithms for control of nonlinear systems were

proposed in the literature, see e.g., [16, 17]. However

the overwhelming part of control theory and technology

deals with stabilization of prespeci�ed points and trajecto-

ries. For purposes of \small control" design the following

\speed-gradient" procedure is convenient [6, 11, 12, 13].

Let the controlled system be modeled as

_x = F (x; u); (13)

where x 2 Rn is the state and u 2 Rm is the input (con-

trolling signal). Let the goal of control be expressed as

the limit relation

Q(x(t))! 0 when t!1: (14)

In order to achieve the goal (14) we may apply the SG-

algorithm in the �nite form

u = �	(ru
_Q(x; u)); (15)

where _Q = (@Q=@x)F (x; u) is the speed of changing

Q(x(t)) along the trajectories of (13), vector 	(z) forms a

sharp angle with the vector z, i.e. 	(z)Tz > 0 when z 6= 0

(superscript \T" stands for transpose). The �rst step of

the speed-gradient procedure is to calculate the speed _Q.

The second step is to evaluate the gradientru
_Q(x; u) with

respect to controlling input u. Finally the vector-function

	(z) should be chosen to meet sharp angle condition. E.g.

the choice 	(z) = z;  > 0 yields the proportional (with

respect to speed-gradient) feedback

u = �ru
_Q(x; u); (16)

while the choice 	(z) = signz, where sign is understood

componentwise, yields the relay algorithm

u = �sign(ru
_Q(x; u)): (17)



The integral form of SG-algorithm

du

dt
= �ru

_Q(x; u); (18)

also can be used as well as combined, e.g. proportional-

integral form.

The underlying idea of the choice (16) is that moving

along the antigradient of the speed _Q provides decrease

of _Q. It may eventually lead to negativity of _Q which,

in turn, yields decrease of Q and, eventually, achievement

of the primary goal (14). However, to prove (14) some

additional assumptions are needed, see [6, 11, 12, 13].

Let us illustrate derivation of SG-algorithms for the

Hamiltonian controlled system of the form

_q = rpH(q; p) +rpH1(q; p)u; (19)

_p = �rqH(q; p)�rqH1(q; p)u; (20)

where x = (q; p) is the 2n-dimensional state vector, H is

the Hamiltonian of the free system, H1 is the interaction

Hamiltonian. In order to control the system to the desired

energy levelH�, the energy related goal function Q(q; p) =

(H(q; p)�H�)
2 is worth choosing. The �rst step of speed-

gradient design yields

_Q = 2(H �H�) _H

= 2(H �H�)[(rqH)TrpH1 � (rpH)TrqH1]u

= 2(H �H�)fH;H1gu;
where fH;H1g is Poisson bracket. Since _Q is linear in u,

the second step yields ru
_Q = 2(H � H�)fH;H1g. Now

di�erent forms of SG-algorithms can be produced. For

example proportional form (16) is as follows

u = �(H �H�)fH;H1g; (21)

where  > 0 is the gain parameter. For a special case

n = 1;H1(q; p) = q; q = ' it turns into the algorithm (5).

Analysis of the system containing the feedback is based

on the following result (proof see in [6]).

Theorem 1. Let functions H;H1 and their partial

derivatives be smooth and bounded in the region 
0 =

f(q; p) : jH(q; p) � H�j � �g. Let the unforced system

(for u = 0) have only isolated equilibria in 
0.

Then any trajectory of the system with feedback either

achieves the goal or tends to some equilibrium. If, addi-

tionally, 
0 does not contain stable equilibria then the goal

will be achieved for almost all initial conditions from 
0.

Similar results are also valid for the goals expressed in

terms of several integrals of motions and for the general

nonlinear systems with SG-algorithms (see [13]).

Now consider the 1-DOF oscillator with losses (7) con-

trolled by the algorithm (9) (Extension to n-DOF systems

see in [10]). Let the goal be increasing the energy of the

system. Evaluating the energy change and substituting

u(t) from (9) with  = u yields

_H =
@H

@p
(�%p + u) = �%p2 + pu = jpj(u� %jpj):

Therefore _H � 0 in the region de�ned by the inequality

jpj � u=% which is equivalent to the restriction on the

kinetic energy p2=2 � (u=%)2=2. The latter inequality

holds if the condition

H � 1

2

�
u

%

�2

(22)

is imposed on the total energy of the system. Hence the

energy increases as long as (22) remains valid. It justi�es

the estimate (8).

In the case when the feedback (5) is used we obtain
_H = �%p2 � (H � H�)p

2 = p2((H � H�) � %), and
_H � 0 within the region H � H� � %=. It yields the

estimate

H = H� � %


: (23)

However H� cannot be taken arbitrarily large because of

control amplitude constraint juj � u which is equivalent

to jH �H�j jpj � u. The above inequality is valid if

2(H �H�)
2H � 1

2
u2: (24)

Since (24) should be valid in the whole range of energies

0 � H � H�, it is su�cient to require it forH = H�=3 pro-

viding maximum of the left hand side of (24). Therefore

the maximum  consistent with (24) is  = u=
�
2
3H�

�3=2
.

Substituting the above  into (23) and taking maximum

over H� we obtain that the bound (8) is achieved with the

choice  = %=(2H);H� = 3H.

5 Excitation of Multi-DOF Sys-

tems. Excitability Index

The above consideration can be extended to a class of mul-

tivariable (multi-DOF) systems. Consider Hamiltonian

systems with dissipation having Hamiltonian function

H =
1

2
pTA�1(q)p+ �(q) (25)

and dissipation function (Rayleigh function) R(p), where

q = (q1; � � � ; qn) is the generalized coordinate, p =

(p1; � � � ; pn) is the generalized momentum, x = (q; p) is

the state of the system. Assume that �(q) � 0, and

0 < �jpj2 � pTA(q)p � �jpj2 (26)

jrR(p)j � �%jpj (27)

for some � > 0, � > 0, � > 0, % > 0. It means that the

kinetic energy matrix A(q) is uniformly bounded and uni-

formly positive de�nite, viscous damping is bounded. It

was shown in [10] that under above conditions the lower

bound of the energy level achievable by the control satis-

fying

ju(t)j � �u (28)



is as follows:

H =
�

2

�
u

2

�2

: (29)

To achieve the level (29) the Speed-Gradient control algo-

rithm (17) of Section 3 can be used which is locally optimal

(it minimizes the energy growth rate dH=dt over all con-

trols saisfying (28)). It follows from the results of [18] that

for small � > 0 the locally optimal control (17) provides a

suboptimal solution for the problem of the terminal energy

level minimization. In addition, the achievable energy has

the order of C (u=%)2.

The factor C depends on the shape of the potential and

its evaluation is not an easy task. It follows from (29) that

for the Hamiltonian systems with dissipation C � �=2,

where � > 0 is lower eigenvalue of inertia matrix A(q).

Using energy balance method (see [21]) for simple pendu-

lum the estimate C = 8=�2 can be obtained. Numerous

simulations show that C � �. We may conjecture that

inequality in general case.

The suboptimally property holds for the class of strictly

passive nonlinear systems, satisfying relation

V (x(t)) � V (x(0)) =

tZ
0

[u(s)y(s) �W (x(s))] ds (30)

for some nonnegative function V (x) and positive de�nite

function W (x), where y = h(x) is a system output. In

this case the control law

u(t) = �u sign y(t) (31)

provides suboptimal (for small � > 0) solution to the fol-

lowing optimization problem:

sup
ju(t)j��u

V (x(t)): (32)

The above considerations motivate introducing a new

characteristic of the physical system measuring its reso-

nance properties. Recall the relation between the oscilla-

tion amplitude of a linear 1-DOF system and its energy:

A =
p
2H. The value (

p
2H)=u has the meaning of max-

imum amplifucation of the input signal (exciting force)

having amplitude u. It characterizes the depth of the res-

onance achievable in the system. The same is true also

for nonlinear systems if we agree to de�ne resonance mode

as one corresponding to a maximum excitation of system

output by means of a bounded feedback signal.

Having in mind the above arguments we introduce the

function AF (v) measuring resonance property of a nonlin-

ear system under feedback excitation as follows:

AF (v) =
1

v

q
2V (v); (33)

where V (v) is optimal value of the problem

sup
ju(t)j�v

V (x(t)): (34)

The function AF (v) is called excitabilty index. It can

be measured experimentally by applying a feedback sig-

nal u(t) = U(x(t)) to the system. Note that the magni-

tude frequency response for linear system is measured in

a similar way by means of applying a harmonic signal to

the systems. The value of AF (v) characterizes the damp-

ing properties of nonlinear systems. The lower bound for

AF (v) is provided by output amplitude created by the

Speed-Gradient input signal (31). Moreover, if v = �u,

W (x) = �%jyj2 and � > 0 is small, this estimate is subop-

timal.

The role of excitability index for nonlinear systems is

analogous to that of maximum magnitude frequency re-

sponse for linear ones. (The di�erence is that the maxi-

mum magnitude frequency response is measured by scan-

ning over frequency range, while the excitability index can

be calculated by scanning over a range of input ampli-

tudes). For example, it is possible to use it for refor-

mulating stability criteria for feedback interconnection of

two nonlinear systems. To this end, we take stability cri-

teria based on passivity theorem [19, 20] and substitute
1
2(vA(v))

2 instead of storage function value.

For special case when one of the two subsystems is linear

(the whole system in that case is called Lur'e system) we

obtain classical circle criterion by this procedure.

Thus the introduced above excitability index allows to

extend classical absolute stability results to the system

with nonlinear nominal part. Note that the notion of ex-

citability index is most useful for weakly damped (close

to conservative) systems, where AF (v) can be well deter-

mined by measuring system output as response to small

v. It follows from (8) that for 1-DOF systems with small

damping �% the estimate AF (�)=� � 1=%, where % is vis-

cous damping coe�cient holds for small � > 0.

Conclusions

The fundamental question of physics, mechanics and other

natural sciences is: what is possible and why? In this pa-

per we attempted to investigate what is possible to do

with physical system by feedback. It was shown that if

system is close to conservative, its energy can be changed

in a broad range by small feedback forcing. The 1-DOF

nonlinear oscillator was taken as example but similar re-

sults hold for much more general systems. The introduced

concept of excitability index characterizes the depth of the

resonance in the nonlinear system achievable by feedback

forcing.
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