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Abstract: The method of parallel feedforward compensator ("shunt”) developed earlier for adap-
tive control of linear plants is extended to a class of nonlinear minimum phase plants. The new
output feedback adaptive controllers achieve global stability of the closed loop system for regu-
lation and tracking problems. The total order of the proposed controller is equal to the relative
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degree of the plant.
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i. INTRODUCTION

The problem of adaptive control using plant output
measurements attached attention of researchers for
more than two decades (see e.g. Astrom and Witten-
mark, 1989; Narendra and Annaswamy, 1989; Niki-
forov and Fradkov, 1994). Among different existing
approaches it is necessary to mention "augmented er-
ror signal” (Monopoli, 1974; Feuer and Morse, 1978),
high-gain or variable structure observers ( Utkin,
1981; Khalil, 1994), parallel feedforward compensators
(shunts) (Mareels, 1984; Bar-Kana, 1987; Kaufman, et
al., 1994; Iwai and Mizumoto, 1992; Fradkov, 1994).
The latter approach provides relatively simple adaptive
control laws for high order plants.

Shunt compensation scheme proposed by Mareels
(1984) requires r parallel filters of total order as r(r —
1)/2, where r is relative degree of the plant. Bar-Kana
(1987) suggested to use simple 1st order shunt for im-
plicit adaptive control scheme of Sobel, et al., (1982).
Bartolini and Ferrara (1992) used the 1st order shunt

in adaptive scheme with explicit reference model and
demonstrated its applicability for nonminimum-phase
linear plants. Iwai and Mizumoto (1992, 1994) sug-
gested design procedure for shunts formed as weighted
sum of r — 1 stable linear systems without zeros. Fi-
nally Fradkov (1994) introduced shunt of order r — 1
with two design parameters and proved that its usage
in the adaptive systems with implicit reference model
(Fradkov, 1974; Fomin, et al., 1981) allows to stabilize
MIMO minimum-phase plants with arbitrary relative
degree.

In 90s the nonlinear adaptive control problems were
intensively studied (see Krstic, et al., 1995; Marino
and Tomei, 1992; Nikiforov, et al, 1996). However
in most of solutions required total order of filters ex-
ceeds 2n or 3n, where n is the order of plant model.
The method of shunt was extended to nonlinear plants
by Bar-Kana and Guez (1990), see also (Kaufman, et
al., 1994), where the inverse of some stabilizing feed-
back was suggested to use as a shunt. It guarantees
existence of output feedback rendering the angmented
plant strictly passive (nonlinear systems with this prop-



erty are called feedback strictly passive (Byrnes, et al.,
(1991) or almost strict passive (Bar-Kana and Guez,
1990) or passifiable (Seron, et al., 1994). However to
apply the method of Bar-Kana and Guez (1990) it is
necessary to find some stabilizing controller which it-
self may be difficult problem.

The present paper is devoted to extending the shunt
method in version of Fradkov (1994) to nonlinear
plants. It is shown in section 2 that the wide class
of nonlinear minimum-phase plants having relative de-
gree r can be passified and therefore stabilized by shunt
of order r — 1. This result gives possibility of simple
adaptive controllers design for regulation and tracking
problems considered in the following sections.

2. STABILIZATION OF SISO MINIMUM-PHASE
PLANTS

Consider nonlinear affine in control plant model

&= f(z) + g(z)u, y = h(z) , (1)
where z € R" is state vector, u € R!is input,y € R! is
output, f, g, h are smooth functions such that f{0) = 0,
h(0) =0, i.e. origin z = 0 is equilibrium of free system
& = f(z).
The preblem is to stabilize the plant (1) by means of
dynamic output feedback

u = U(ys Ty), Ty = X(y,xu) ) (2)

ensuring boundedness of all the trajectories of (1), (2)
and achievement of the goal

(3)

z(t) — 0, z,(t) — 0, when t — oo.
where z, € R"* is controller state vector.

Recall that the plant (1) is said to have relative degree
r at the open set D C R”, if for all z € D the following
conditions are satisfied

LoLin(z) =0, k=0,1,...,r -2,

LyLy " 'h(z) # 0, (4)

where

L¥(@) = Y 520 (2)

stands for the derivative of function ¢(z) along vec-
tor field p(z) (Lie derivative, see (Isidori, 1989)). If
system (1) has relative degree r in the open set D,
then there exists smooth nonsingular coordinate change
z = ®(x) , z € D, such that system (1) model has in
new coordinates so called Isidori’s normal form

2i=2Zu41, 8=1,...,r -1,
» = a(z) + b{(z)u
=q(2), y=21,

(5)

z
z

368

where a(z) = L1 h(271(2)), b(z) = L,L;‘lh(é‘l(z)),
Z=1(241,---,2s) € R*"". The subsystem

(6)

where ¢5(Z) = ¢(0,...,0,Z) describes the motions of
(1) consistent with y(t) = 0, it is called zero dynam-
ics of (1). System (1) is called weakly minimum phase
(resp.minimum phase, exponentially minsmum phase),
if zero dynamics (6) are Lyapunov stable (resp. asymp-
totically stable, exponentially stable). Introduce shunt
system (parallel feedforward compensator) as follows

(7)

where x> 0, ¢ > 0, p = d/dt and consider augmented
plant model described by equations (1), (7) and output

equation
Ve =y+m, (8)

Now we are in position to formulate the main result of
this section

= qO(E) s

(P+1)"'n = Ke(pe + 1) ?b(2)u

Theorem 1. Let the system (1) have relative degree r
in any bounded set and the following assumptions be
valid:

A1l. Function a(z) is locally Lipschitz and a(0) = 0.

A2. Function b(z) is available for measurement, i.e.
b(z) = b(y), and b(y) # 0 for all y € RY.

A3. Function ¢(z) is locally Lipschitz and plant (1) is
exponentially minimum phase.

A4. Function ¢(z) can be represented in the form
9(z) = 9(2,7) = () + q1(2,%)2
where ||g; (2, )| < Ca(1 +|Z]]) for ||Zl| < @, Co > 0.

Then there exist numbers x > 6, ¢, > 0 such that for
any bounded set D, of initial conditions there exists
positive nonincreasing functions Ko (¢) , Lo(€) such that

for any ¢ : 0 < ¢ < ¢ system (1), (7), (8) closed by
feedback
1
—_— e . 3 9
by ve + L sign vl (9

is asymptotically stable for K >> Ko(¢), L > Lo(¢) and
the goal (3) is achieved.

It follows from Theorem 1 that the plant (1) with rel-
ative degree r satisfying A1-A4 can be asymptotically
stabilized by dynamic output feedback (7)—(9) of order
r—1.

Proof. Suppose with no loss of generality that system
(1) already has normal form (5). Fix open bounded
set Do C R™*’~7 of initial conditions of system (5),



(7)-(9). After change of control variable & = b(y)u
equations of augmented plant may be rewritten in form

ply=a(z)+u,
z7=¢(z),
P+ 'w=xke(ep+1) "% .

(10)

Therefore the augmented output y, satisfies equation
Pp+1) 'y = (p+1) " la(z) + Glp)u,
where

GA)=(A+ 1)1 + ke(ed + 1) 7227 (11)
is polynomial of degree 2r — 2 with leading coefficient
go = ke**~1 _ Since (A+ 1)""! and (eX + 1)*~! are
Hurwitz polynomials, it can be shown, see (Fradkov,
(1994), corollary from Lemma 1) or ( Andrievsky, et
al., 1996), that there exist number x > 0 and function
€s(x) > 0 such that G(A) is Hurwitz polynomial for
K > Kg, 0 < € < ¢(x). Pick up such « and ¢ and
introduce function a{(t) satisfying differential equation

Glp)a(t) = (p+1)" " ‘a(z()),

where z(t) is taken along solutions of (7)-(10). System
(10) may be rewritten as linear system

Pp+1) 'y, = Glp)(a+ 1)

(12)

(13)

with new input @ + @, having relative degree 1, which
is minimum-phase. Therefore it can be represented in
special coordinate basis with state vector @ = (y,,¢),
¢ € R?’~2 in normal form, similar to (5):

. =T —
Yo =iy +d € +go(@+u),
§=G¢+ gy (14)

where G is (2r — 2) x (2r - 2) matrix, d ,§ € R¥ -2
and det(A] — G) = G(A)/go (form (14) for MIMO sys-
tems was introduced in (Utkin, 1981; Sannuti, 1983)).
Finally, represent the second equation of plant (10) in

form )
Z=g(Z)+ ali Dz, (15)

where z = (21,...,2,) = Sw, S is (2r — 2) X r constant
matrix; ¢,(Z,%) is smooth function, continuous in # =
0, @ = (y,,£) . Introduce also state vector of the whole
system w = (W,z) .

Pick up initial conditions wo = (y,(0),£(0), Z(0)) in sys-
tem (14), (15) from the compact set D corresponding to
above defined set D,. To demonstrate asymptotic sta-
bility of system (9), (14), (15) use Lyapunov function
of form

Vi(w) = pln(1 + Vo(2)) + €T P + 47, (16)
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where ¢ > 0, V5(Z) is Lyapunov function establishing
exponential stability of zero dynamics (6); P = PT > 0
is (2r — 2) x (2r — 2) positive definite matrix satis-
fying PG +G'P —212,_2, Igr_z is identlty ma-
trix. Function Vo(Z) satisfies quadratic type inequal-
ities (Krasovskii, 1963; Hahn, 1967)

PilEI” < Vo(@) < pallzl®, 1IVVa(2I < pslill
(17)

VVo(2)  90(2) < —poll2]1?
with some positive g ,..., p3.
Apparently function (16) is positive definite and proper,
ie. set D = {w: Vi(w) < V;} is compact for all
Vo > 0 . Choose V; such that D O D and calculate
derivative of function (16)
—pollZIl* + pslizll - lig (2, 211 - 1] - llw]]
14 Vo(3)
—2{lell® + 211l - 1Pyl - lya |+
+2a [d1ya + d€ + 90T — go Ky — go L sign ya| .

Vi(w) < u

using assumption A4 written in form |jg,(,2)||> <
Co(1 + Vo(2)) for some Cp > 0 the inequality (18) can
be represented as Vi(w) < A+ B+ C , where

4 = g oPllElE psCollSI) - Izl - W]
1+ Vo(z) V1+ V()
-Hel? - lyal?

B = —|lEII* + 21! - lwa 111 Pl + 1\d11) —
~(I1Pll -+ 1111) e

C = g2y + 1+ (I1Pgll+ [|d]I)* - g0 K]+
+2golya |(a(t) - L) .

The quantity A is a quadratic form of variables

I1Zll/v/(1 4+ Vo(2)) and [[w]]. Therefore it is negative
definite if 4ppo > (#p3C0||S||)?, or if
B < 4p0/(p3CollSIl)” . (18)

The quantity B is already nonnegative, and C becomes
nonnegative for K > K, , L > L , where

K, [2d; + 1+ (|| Pg|| + 141)?) /9o ,
Ly = sup la(¢)] -

I

(19)

To ensure that Ly is finite initial conditions of filter (12)
should be taken bounded (e.g. zeros), and boundedness
of a(z) for bounded z should be taken into account. Ob-
viously, Ko, Lo depend on ¢ and functions K (€), Lo(e)
can be made nonincreasing.

We have proved that Vi(w) < 0 for w € D, and, there-
fore all the trajectories of system are bounded. De-
creasing g, if necessary, one may ensure that V;(w) <



~6|jw||® for some 6 > 0. Therefore function |jw(¢)|[?
is integrable and in view of boundedness of trajecto-
ries we have y,(¢) — 0, £(t) — 0, iSt} ~+ 0 when
t — oo . Thisin turn yields y(t) — 0, y*)(t) - 0, k =
0,1,...,r — 1, that proves theorem.

Remark 1. Assumption A4 overbounds quadratically
the rate of growth in Z of right hand side of the last
equation (5). However the knowledge of this bound is
not required for control algorithm. Note also that stabi-
lization is global in case when functions ¢, (z) and a(z)
are bounded since in this case parameter g of Lyapunov
function (16) can be chosen from (18) independently of
initial conditions.

Remark 2. The proposed controller is not adaptive and
contains four design parameters: gains K, L and pa-
rameters of shunt x, ¢. The mimber of parameters may
be reduced, since K = L > max{Kg, Lo} may be taken.
Moreover for r = 2, 3 one may take x = 1 as it seen
from Hurwitz criterion for G(A).

Remark 3. Extension of Theorem 1 to MIMO plants is
straightforward when the plant (1) has uniform relative
degree (r,r,...,r).

3. ADAPTIVE STABILIZATION OF
MINIMUM-PHASE PLANTS

Although the proposed controller does not need much
apriori information about controlled plant, the required
information may be further reduced by means of tuning
gains K, L. Adaptation algorithm can be derived by
speed-gradient method (Fradkov, 1986; Seron, et al.,
1994), taking Lyapunov function (16) of nonadaptive
system as the goal function:

K=y, L=nlyl, (20)
where v, > 0, 7; > 0. Standard arguments based on
Lyapunov function

Vaw, K,L) = Vilw) + 5= (K - Ko) "+

2
4 2%(14 ~ Lo) (21)
show that all the trajectories of system (1), (7)-(9),
(12), (20) are bounded and the control objective (3) is
achieved.

If additional structural information about plant nonlin-
earity a(z) is available then the adequate structure of
controller is worth using. Suppose for example a(z) has
that the following form

a(z) = 3 ity (22)
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where a;(y) are known (measured) functions, ¢, are
unknown constant coefficients. Then the structure of
adaptive controller can be taken as follows:

1 N
= —E(T)[Ky-i';oeai(f)] )

where é.- are estimates of unknown parameters #; and
functions @;(t) are the outputs of { identical filters:

Gp)ai(t) = (p+1)" a(y(®)) . (24)

After applying speed-gradient method with objective
function (16) the following adaptation algorithms are
obtained

K

9,

(23)

(25)

Yoyl , 10 >0,
Y @(t), v >0, t=1,...,1.

Theorem 2. Let the conditions of Theorem 1 be valid
and plant model (5) have structure (22). Then there
exist values of parameters & , ¢ such that algorithm (7),
(8), (23)-(25) ensures boundedness of the trajectories
and achievement of the goal (3).

fi

Proof of the theorem is standard. It is based on Lya-
punov function

V3(w)K)é)

. 1
Vilw) + (K - Ko)’ +

2

=1

+

Z—fy-(é,- -6,)° (26)

t

and on the Theorem 1.

Remark 1. The total order of filters in the controller is
(r — 1) - (21+ 1) while dynamic order of the controller is
(r —1)-(21+ 1)+ !+ 1. Using adaptive controller (23)-
(25) instead of (9), (20) allows to avoid discontinuity
of controller and to decrease its gain at the price of
increasing its complexity. Note also that the values «, ¢
do not depend on the plant parameters.

Remark 2. Functions ¢;(-) in (22) may depend also on
time and include not only directly measured quantities
but aiso their derivatives up to the order of relative
degree of filters (24), i.e. up to r — 1. Therefore any
linear function of y'*) , i = 1,...,r — 1 may be added
to (22).

Remark 3. More general finite-differential form of
adaptation algorithms alse can be used:

d{K + Uo(ye)]/dt = 04?2,
d[é.‘ + i’.-(ya)l/dt = ’Yiyaa_i(t) »

where ¥(y,) , ¢ = 1,...,l are arbitrary piecevise con-
tinuous functions satisfying ¥,(y,)ys > 0 . The same

(27



Lyapunov function (26) can be used for stability proof,
see (Fradkov, 1986). Finite terms ¥,(y,) help to im-
prove transient performance of the system. Special
cases of algorithm (27) are proportional-integral algo-
rithm (¥;(y.) = Biys , see (Kaufman, et al.,, 1994)) and
relay-integral algorithm (¥,(y,) = 8, - sign y, .) Solu-
tions to the arising discontinuous differential equations
may be understood in Filippov’s sense.

4. TIME-VARIANT PLANTS AND TRACKING

All the above designs apply to the time-variant plant
if the plant model can be transformed to the normal
form, similar to (5):

,':',:Z,+1, i'—:l,...,r—l,
z, = a(z,t) + b(z, t)u , (28)
7=gq(z,t) .

Assumptions A1-A4 should be replaced by the follow-
ing ones:

AYl’. Function ¢(z,t) is smooth and locally bounded
together with first partial derivatives uniformiy in

t>0; a(0,...,0,7,8)=0.

A2, b(z,t) = b(y,t) and there exists § > 0 such that
by, t)| > 6 for all y,t .

A3'. Function ¢(z,t) is smooth, ¢(0,0) = 0 and sys-
tem z = ¢(0,...,0,Z,t) is exponentially stable, i.e.
there exists Lyapunov function V,(Z, t), satisfying stan-
dard quadratic-type inequalities, see (Krasovskii, 1963;
Hahn, 1967).

A#4’. Function ¢(z,t) can be represented in the form
9(2,2,t) = q(Z,1) + i (2,2,8)2,

where {|g1(2,7,t)(] < C. (1 +|iZ]])

for llZ{ < a, t>0.

Theorems 1.2 hold true for plant (28) under assump-
tions A1’-A4’. Tt allows to solve problem of tracking
where the goal (3) is replaced by the goal

e(t) =0 as t — o0, (29)
where e(t) = y(t) — ya(t) , ya(t) is desired trajectory
of the plant output. To reduce this problem to the
previous one just take z; = e(t) in (28). Then the
highest derivative of command signal yj(t) will appear
in the second equation of (28), while augmented error

will be e, (t) = y(t) — wa(2) + 5(t) .

All proposed algorithms apply with obvious changes
and Theorems 1,2 hold true (i.e. the goal (29) is
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achieved) if the command signal y;(t) is bounded for
t > 0 together with its derivatives y&” ®,k=1,...,r

5. CONCLUSIONS

The above results introduce and justify a new class of
shunt-based adaptive controllers solving output feed-
back regulation and tracking problems for a wide class
of nonlinear minimum-phase plants. The proposed
controllers can be used in various application prob-
lems (control of robots, oscillatory and chaotic systems,
etc.), see, e.g. (Fradkov, et al., 1995). The results of
the paper extend passification approach (Fradkov and
Hill, 1993; Seron et al., 1994) to nonlinear systems with
arbitrary relative degree.

REFERENCES

Andrievsky, B. R. and A. L. Fradkov
(1994) Implicit model reference adaptive
controllers based on feedback Kalman-
Yakubovich lemma. In:Proc. 3rd IEEE
Conf. on Control Applications, Glasgow,
pp.1171-1174.

Andrievsky, B.R., AL. Fradkov and A.A.
Stotsky (1996). Shunt compensation for
indirect sliding mode adaptive control. In:
Prepr. 13th IFAC World Congress. San-
Francisco, June 30-July 5.

Astrom, K. J. and B. Wittenmark (1989).
Adaptive Control Addison-Wesley.

Bar-Kana,I. (1987). Parallel feedforward and
simplified adaptive control. Int. Journ. of
Adapt. Contr. and Sign. Processing. v.
1, pp. 95-109.

Bar-Kana, I. and A. Guez (1990). Simple
adaptive control for a class of non-linear
systems with application to robotics. Int.
Journ. Contr., v. 52, No 1, pp. 77-99.

Bartolini, G. and A. Ferrara (1992). A new
adaptive pole assignment scheme. Journ.
Syst. Engg., v. 2, pp. 134-142,

Byrnes, C.I., A. Isidori and J.C.Willems
(1991). Passivity, feedback equivalence
and the global stabilization of minimum
phase nonlinear systems. IEEE Trans.
Autom. Contr., v. 36, No 11, pp. 1228-
1240.

Feuer, A. and A.S. Morse (1978). Adap-
tive control of SISO linear systems. IEEE
Trans. Autom. Contr., v. 23, No 4, pp.
557-569.



Fomin V.N., AL. Fradkov and
V.A. Yakubovich (1981). Adaptive Con-
trol of Dynamic Objects. Nauka, Moscow
(in Russian).

Fradkov, A.L. (1974). Synthesis of adaptive
system for stabilization of linear dynamic
plants. Autom. Rem. Contr., v.35 No 12,
pp. 1960-1966.

Fradkov, A.L. (1986). Integrodifferentiat-
ing velocity gradient algorithms, Soviet
Physics-Doclady, v. 31, No 2, pp. 97-98.

Fradkov, A.L. and D.J. Hill (1993). Expo-
nential feedback passivity and stabilizabil-
ity of nonlinear systems. Techn. Report
EE9357 Univ. of Newcastle.

Fradkov, A.L. (1994). Adaptive stabiliza-
tion for minimum-phase multi-input plants
without output derivatives measurement.
Physics-Doklady, v. 39, No 8, pp. 550-
552.

Fradkov, A.L. (1995). Adaptive synchro-
nization of hyper-minimum-phase systems
with nonlinearities. In: Proc. 3rd IEEE
Medsterranean Symp. on Conirol and Au-
lomation, Limassol, 11-13 July, 1995,v.1,
pp. 272-277.

Fradkov, A.L. , AYu. Pogromsky and
A.Yu. Markov (1995). Adaptive control of
chaotic continuous-time systems. In:Proc.
3rd Europ. Contr. Conf., Rome, pp. 3062-
3067.

Hahn W. (1967). Stability of motion. N.Y.:
Springer-Verlag.

Isidori, A. (1989). Nonlinear control systems.
An introduction. 2nd edition. Springer-
Verlag.

Iwai, Z. and I. Mizumoto (1992). Robust
and simple adaptive control systems. Int.
Journ. Contr., v. 55 No. 6, pp. 1453-
1470.

Iwai, Z. and I. Mizumoto (1994). Realization
of simple adaptive control by using paral-
lel feedforward compensator. Int. Journ.
Contr.,v. 59 | pp. 1543-1565.

Kaufman, H. , I. Bar-Kana and K. Sobel
(1994). Direct adaptive control algorithms.
Springer-Verlag, New-York.

Khalil, HK. (1994). Adaptive output-
feedback control of nonlinear systems rep-
resented by input-output models. In:
Proc. 38rd Conf. Dec. Contr., pp.199-
204.

372

Krasovskii N.N. (1963). Stabslity of motion.
Stanford.

Krstic, M. , I. Kanellakopoulos and P. Koko-
tovic (1995). Nonlinear and adaptive con-
trol design. Wiley.

Mareels, 1. (1984). A simple self-tuning con-
troller for stable invertible system. Syst.
Contr. Letters, v.4, pp. 5-16.

Marino, R. and P. Tomei {1992). Global adap-
tive observers for nonlinear systems via fil-
tered transformation. IEEE Trans. Au-
tom. Contr.,v. 37, pp. 1239-1245.

Monopoli, R.V. ( 1974). Model reference
adaptive control with an augmented error
signal. IEEE Trans. Autom. Conir., v.
19, No 5, pp. 474-484.

Narendra, K.S. and A.M. Annaswamy (1989).
Stable Adaptive Systems. Prentice Hall.

Nikiforov, V.O. and A.L. Fradkov (1994).
Adaptive control systems with an aug-
mented errors. A survey. Autom. Rem.
Contr.,v. 55, No 9, pp.1239-1255.

Nikiforov, V.0. , A.L. Fradkov and M.V.
Druzhinina (1996). Methods of output
feedback nonlinear adaptive control. Au-
tom. Rem. Contr..

Sannuti, P. (1983). Direct singular perturba-
tion analysis of high-gain and cheap con-
trol problems. Automatica, v. 19, pp. 41-
51.

Seron, M.M., D.J. Hill and A.L. Fradkov
(1994). Adaptive passification of nonlin-
ear systems. In: Proc. 33rd IEEE Conf.
on Dec. Contr., pp. 190-195.

Sobel, K., H. Kaufman and L. Mabius (1982).
Implicit adaptive control for a class of
MIMO systems. IEEE Trans. Aerosp.
Flectr. Syst, v. 18, pp. 576-590.

Utkin, V.I. (1981) . Optimization and Control
ustng Sliding Modes . Nauka , Moscow.
(Translated into English by Springer- Ver-
lag in 1992 ) .



