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We describe a class of control and adaptatisn aigo-

.rithms for nonlinear nonstationary systems which extend

the class of velocity gradient algorithms!™® Applicability
conditions for the algorithms are established aand the time
to attain the objective is estimated.

1. Conrider the controlled system

& . F(x,u,1), t >0, ' (1)

dr
where x € K™ is the state, ue R™® the control, F(:) is con~
tinuously differentiable. Let the control objective be
specified. .

o), n<a for >0, 2)

where Q(x, t) =0 is a continuously differentiable objec-
tive function, A > 0. Itis required to find a control al-

gorithm
u() = Y, bx(s),u(s).0 < s < 1, 3)

which ensures that for all initial conditions xy=x(0), up=
u{0) the system (1)-{3) attains the control objective (2) for

some ta > 0.

The term "control" {s understood in a broad sense:
the vector u(t) does not necessarily represent physical
action on the controlled system coordinates., Equation
(1) may represent a closed-loop plant—controller system
(a generalized tunable plant), and u(t) may be the vector
of tunable controller parameters, the parametric coatrol
vector, etc.; (3) may correspond to the system adaptation
algorithm. The function Q{x, t} {s generally a measure of
deviation of the controlled-system path from the desired
path; the control objective (2) requires minimizing Q(x, t)
with specified accuracy.

2. Consider control algorithms of the form

dutv(x.ut)
dt -

V¢ u0), “ .

where I =I"r > 0isamxm, A is the gradient symbol,
olx, u, 1) =8¢/ 3t +{%Q|TF(x, u, t) is the derivative func-
tion of Q(x, t) on (1) for u=const. §(x, u, t} is some vec-
tor function which satisfies the pseudogradient inequality!

Vix u ', ¢(x.u ) 2 0. (5)
For instance, we may assume

vix ut) = Ty Vuelx u 1); (&)

V(x.u, ) = 7sign T, v(x, u1), (6a)

where I‘,=1‘,T> 0 {s a m x m matrix, y > 0 a number, ¢
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a vector whose components are the signs of the compoaents
of the vector .

For ¢ (x, u, t) =0 the algorithms (4) reduce to veloc-
ity-gradient algorithms.!=?

Theorem 1. Suppose that for every vé
R™ there exists a unique solution u = y (x,
v. t) of theequation u +%(x, u, t) =v, the
functions F(x, u, t), Y4Q(x, t), V,Q(x, u, t).
x{x, u, t) arebounded in every region { (x,
u, t):{l x| + full=37;. and the growth condi-

tion inf Q(x, t) = for [ xjJ/l—- = holds. More-
" t>0

over, let the function ¢(x, u, t} be convex
in u and let there exist a vector us € RIt
and a number a> 0 such that for all x, t

¢e(x, u,, 1) < -aQ(x, ). (7)

All the paths of the system (1), (4) will then be bounded
and uQ(x(t), t)—0 for t— =, i.e., the control objective
(2) is attained for every A > 0.

3. Consider a controlled system with perturbation
dx .
- = Fewn + (50 8

and, as in Refs. 2 and 3, the robustified algorithm

&tj{f—"f—» = IV, [etr u D tpw(+ v u )], 9

where w(u) is a convex regularizing function, T =I'T > 0,
u>0,

Theorem 2, Let the conditions of Theo-
rem 1 hold with (7) replaced by

wlxu, D+ [V,00x )]f(x. 1) € —aQ(x, ) +4

Let w(wzplull?=p, (a, 8, py. py are
positive numbers). Then (8), (9) is a dis-
sipative system and for every aA>ga there
exist a matrix Ty >0 and a number uqy > 0
such that for T2 Ty, 0< u S u, the control
objective (2) is attained. Here Q(x(t), t)
approaches the objective with an exponen-
tial velocity, and for the time t, we have
the estimate ¢, <a™ In [2(¥(xy. uo,0) — f/a) (A - Bla) ' ].

(10)

The proof of Theroems 1 and 2 requires taking the
derivative of the function

Vix.u 1) = Qx, ) 405 lu - u, +¥(x. u, )i}, (11)
in the system (1), (4), or (3), (9).
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Remark. a) The inequality (1) implies that for
some (generally unknown) u =u, the control objective (2)
is attained in the system (5) for A = 8/, This inequality
holds, for {nstauce, (u coatroiled sysiems which are ex-
peneatially stasle for u=us, f(c. t) =0 if Q(x, t) is
quadratic and f(x, t} is bounded. Theorem 2 implies that
in this case the algorithm {9) ensures that for every u(0)
the system attains a control objective which is arbitrarily
close to the best attainahie ohjective,

b) In practice. the regularizing functon wiu) is often
chosen'in the form wiu)=0.5"ul?, i.e., V= =y; if we also
take {(x, u, t) in the form (6). then the algorittm (9) is
described by a matrix integrodifferentiating element with
the transfer function WA = (I +I" A\ (& + M1, whose input
is the velocity gradient Va@ k. u, t). This sugzests the
term iategrodifferentiating velocity gradient algorithms
for this class of algorithms.

4. For I =0, the algorithm (4 is best written in
finite, rather thdn differential, form

u=u-nvxut), (12)

which explicitly includes tae stepping factor Yi> 0. Let
¥(x, u. t) salisfy the strong pseudogradient condition

Yx, u, O Ve(xu, ) 2 pilV,o(x u, )i . (13)

for some p>0,6= 1 and all x, u, t, [The function (6),
for instance satisfies (13) for 6 =2, I'y = plI, and the func-
tion (62) satisfies (13) for 5=1,p=v/v/m.)

Theorem 3. Let (12) be uniquely solv-
able for u, let ¢(x, u, t) be coavex in u, and
let (7). (13) hold. If & > 1, then for every
A > 0 the coantrol objective (2) is attained
o the system (1), (12) for

> yo(a) = Vo —u <nuo~u.n(s-1) -t
71 2 To(8) pr Aah

If 6§ =1, then s =1,v, >llup —u,li/p. 0 Qx(1), 1) <Q(x,,
0)e~of The time to attain the objective

within £ has tne exact estimatet.<a“h1(Q(x.,,0)/e].

Remarks, a) The theorem remains valid if Uy =
u, {x, t) but lug—ua (x, t)}| is bounded.

b) The algorithm (12), (6a) coincides with the optimal
control algorithm for damping the function’® Q(x, t).

5. As an example let us consider the design of
model reference adaptive systems. Let the controlled

system (1) have the form Z_x =4 (x, ) +B(x, t)u,ue RM
t

- dx,,
and let Q(x, t) =eTHe, where ¢ =x - x,(2), - = AuXy
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*Bur(t) is the model cquation, H=HT » 0 is amx<m-
matrix, rit) € R™ is the setting signal. Then 21X, u.
eTH[AMe +(A—A\I)x +Bd~Byr! and the velocity graiient
has the form 7 ;o =BTHe. Usicg <(x, 4. t in the form

15) and {6aJ), we obtain the contrnl algorithms

=

du d(T"\ 8" H

—— = '8 He - _(__‘___e_)_ . (14)
dr dr

ﬂ = B He - d(y sign B He) . (15)
dr dt

. . drx
For the, controlled system oy ' = d(x, t) + B(x t)(u'x),
/' t

which correspoands to the coefficient adjusting problem

for a linear controller, using the same Q(x, t1, we obtain
Vu@ =(BTHe) x and different algorithms:
d d(TI"{B™ He:
2 e B ey - 2B Hex) : (16)
dt . dt .
H T
ﬂ = _[B"Hex — M (17
dt dt

For linear controlled system, the algorithms (14)-
(17) reduce to well-known algorithms from Ref. 6. The
structure of (14) correspoads to the classical Pl-con-
troller; the algorithm (13 for I =0 is the signal adapta-
tion algorithm which has been systematically used, say,
in Ref. 7, Algorithms of the form (16) have been pre-
viously designed by the hype rstability method.? and the
"signal-parametric” algorithms (17) with integral and
relay components have been studied in detail in Ref. 9.
The unknown applicability conditions for the algorithms
{14)-(17) and their regularized forms follows from
Theorems 1-3,
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