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We consider the problem of adaptive stabilization
for multiple-input objects of control without measuring
output derivatives. We propose a simple law of adaptive
stabilization based on a compensating dynamic feed-
back introduced into the controller and on the implicit
reference model method [1, 2]. We show that a com-
pensator of the order r — 1 exists for minimal-phase
, objects of the scalar order r > 1. Its inclusion into the
“ object gives the latter the strict minimal-phase property
(r=1). This gives us the opportunity to apply the adaptive
stabilization algorithm [2], as well as its generalization
described below.

Consider a linear stationary object

.f=Ax+Bu, y=cx9

xR, yeR, ueR"

with the matrix transfer function W(A) = C(AJ - A)™'B.
Let I=m, 8(A) = det(AJ — A), and @(A) = d(A)det W(A).

Definition 1 [3]. We call the system (1) a
minimal-phase system, if @(A) is the Hurwitz
polynomial, and a strictly minimal-phase
system, if, in addition, CB is a symmetric positively
definite matrix.

Definition 2 [4]. The system (1) is said to have
the relative scalar order r,if

CAB=0fori=0,1,...,r- 2,detCA""'B#0. (2)

Obviously, a strictly minimal-phase system has the
relative scalar order r = 1. For r = 1, the polynomial
@(A) is of the degree n — m and its leading coefficient is
equal to detCB.

We set up a problem of finding a linear adaptxve
controller

1)

u=07y, 3
6 =0(y, 0), 4

where 0 is the (! x m) matrix of adjustable parameters.
The controller has to ensure the attainment of the stabi-
lization, which is the objective of control:
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’Iimx (1) =0,
Theorem 1. Let the adaptation algorithm (4)
have the form

}i_{t}.e(t) = const. (&)

- T
de 81y
=== ... | ©

gnY 'Y

where 8 = col(8) € R™ is a column vector constructed
fmmthecolumnsofthematnxe I'=I">0isa(lmx
Im) matrix; g;, i = 1, ..., m, are the l-dimensional vectors;
and the matrix G’W(}\.) is a strictly minimal-phase one,
withG= (g, ..., &m)-

3 Tiéen, the objective (5) is attained in the system (1),
(3), (6).

In addition, the system has a quadratic Lyapunov

Sunction of the form

V(x,0) = X' Px+ (B—0%) P,(B-6%), (7
which has the property V(x,8) >0 forx#0,0 #6,,, and

V(x,0)<0forx=0.

The Theorem 1 is a generalization of the results
obtained in [2]. It is proved by analogy with [2]. In [2],
matrix I' was assumed to have the block-diagonal form,
and the adaptation algorithm (6) has the form

8,=T:»'G, i=1,..,m, (8)

where 6; are the columns of the matrix 8, I';= I"; >0 are
(m X m) matrices, and G is an (I X m) matrix. Following
the lines of [2], it is possible to show that, if rank(B) =m,
and the structure of the main loop (3) is fixed, the con-
ditions of the theorem are also necessary for the existence
of a Lyapunov function (7) with the properties declared
above. This means that the class of problems solved
within the framework of the main loop structure (3) and
of the Lyapunov function of the form (7) cannot be
extended.

The conditions for the applicability of the algorithm
(6) can be somewhat relaxed if the structure of the main
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loop is extended. Consider the generalized structure of
the main loop, which contains an additional cross-link
matrix

u=D8%y, 9
where D is a constant (m X m) matrix.

Theorem 2. For the system (1), (6), (9) with a
certain matrix D, the objective (4) is attained if the sys-
tem with transfer matrix G*W(A) is a minimal-phase
scalar one and has the relative order r = 1.

The proof is obtained by reducing Theorem 2 to
Theorem 1 by choice D =(CB)™! and substitutionu =Du.

Note that the conditions of Theorems 1 and 2 are
fulfilled only for r = 1, which excludes many important
problems.

We consider below the general situation r > 1.
Synthesizing and analyzing the stability of adaptive
control systems is difficult in this case because
the known solutions are quite cumbersome [5 - 7].
The adaptive stabilization algorithm that we propose
for the case r> 1 contains a feedback dynamic compen-
sator in the main loop. This is equivalent to modifying
the control object. The analysis of stability of the adaptive
system is based on the following statement.

Theorem 3. Let the object with a transfer func-
tion G be a minimal-phase one with the relative scalar
order r > 1 for a certain (I x m)-matrix G*W(A), for
which the matrix GTCA"~! has the Hurwitz form.
Let P(A), Q(A) be the Hurwitz polynomials of degrees
r—2,r -1, respectively, and the signs of their coeffi-
cients and those of ¢(A) = &A)detGT*W(A) coincide.
Finally, let

We(X) = GTWA) + xeP(eN)/ QM) (10)

Then, there exist a number K, >0 and function €,x) >0
such that the matrix W (A) is a strictly minimal-phase
one for X > Xy, 0 < € < ().

The proof is based on the following lemma, analo-
gous to Lemma 3 of [2].

Lemma 1. Let D(A, €), E(A, €) be (m X m)-matrix
polynomials with coefficients that are continuous in € in
the point € = 0;

D(A, €) =D, (E)A" + ... + Dy(g),
EQAe)=E, (A"~ + ... + Ef€).

Let the polynomials det EQ\, 0), det{AD(A, 0) + E, _,(0)]
have the Hurwitz form.

Then, the pobynomial (A, €) = det[eA"D(eA, €) + E(A, £)]
has the Hurwitz form for all sufficiently small €> 0.

Proof. Let € = 0. Then, n(A,€) = ®n(A, 0) =
det E(A, 0). Consequently, m(n — 1) roots of the polyno-
mial 7t(A, €) tend to the roots of the polynomial det £(A, 0),
and the remaining m(r + n) —m(n — 1) = m(r + 1) roots
tend to infinity. Let us analyze the behavior of the roots,
with a substitution €A = p and assuming V(i €) =
e™"=Yr(u/e, €). We obtain
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limv(u, €) = p"" 7" det [uD(, 0) + E,_,(0)].

Consequently, m(r + 1) roots of v(i, €) tend to ., i =1, ...,
m(r+ 1), which are the roots of det{fAD(A, 0) + E*~'(0)],
and the remaining m(n -~ 1) roots tend to zero. Thus,
m(r + 1) roots of the original polynomial nt(A, €) have
the form p;/e + O(1l/€) and, under the conditions of
the lemma, for small € > 0, these roots lie in the left
half-plane. The lemma is proved.

Corollary. Let the polynomials detE(A,0),
detD(A, 0) and det[AD(0, 0) + E, _ ,(0)] have the Hurwitz
form. Then, there exist a number X, > 0 and a function
€(x) > 0, such that the polynomial n(A, €) =
det[eA"D(eA, €) + E(A, €)] has the Hurwitz form for
K> Ky, 0 <€ <gy(Xx).

This corollary is proved by analogy with the proof
of Lemma 1.

To prove Theorem 3, let us represent det W,.(A) as

detW A\ = {S(MQ M)}
x det{R(A)Q(A) +xeS (M) P(eX) 1},

where R(A) = GTW(A)3(A). Under the conditions of the
theorem, the matrix R(A) can be represented as R(X) =
R,_,A*""+ ... + Ry, where R,_, = GTCA"~'B (see,
e.g., [8]). The polynomial detR(A) has the form
detR(A) = &(A)"~ (), where @(A) is a Hurwitz poly-
nomial. By lemma 1, the polynomial 8(A)™™*! x
Q(A) ™detW,.(A) has the Hurwitz form for sufficiently
small € > 0, if the polynomial det{ xAP(A)],, + R,_,0,_,}
has the Hurwitz form, which, in turn, is true for suffi-
ciently large x, if -R, ., is a Hurwitz matrix. To prove
the theorem, it must be established that the matrix
%i_’mo W(A) is symmetric and positively definite. This is

true, because )!imoW“O.) = xeP,_, I,,. Theorem 3 is

proved.

Note. If r = 2, the statement of Theorem 3 is true
for Xy =0, i.e., we can put X = 1 in the filter (10).

Now we can describe the structure of the adaptive
controller proposed and conditions of its applicability.

Theorem 4. Letan object have the transfer func-
tion G*W(A), the minimal-phase property for a certain
(I X m)-matrix G, and the relative scalar order r > 1.
Let the matrix ~-G™CA"~'B have the Hurwitz form.
Let P(A), Q(A) be Hurwitz polynomials of degrees r 2,
r — 1, respectively, and the signs of their coefficients
and those of (A) = A)detG™W(L) be the same. Let
the control algorithm have the form

u; = 0,y+6,v, i=1,..m, (11)
dél (81y+vy)y

_aT = _rl .o ’ (12)
(Y + V)Y
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de (ey+v) vy
=-T, , (13)

(&Y + Vy) Vi

where éx = col(8,) € R™ is a column vector con-
structed from the columns 8, and 8, = col(8,) € R™ is
a column vector constructed from the numbers 9,;;
I =T]>0isan (mxIm)matrix,T, =T, >0isa
(mxm)matrix, G=[g,, ..., &n), &»i=1, ..., m, are the

[-dimensional vectors; v;, i = 1, ..., m, are the outputs
of the subsidiary systems (of the filters):
Q(p)vi;=xeP(ep)u;, p=d/dr. (14)

Then objective (4) is attained in the system (1), (12),
(13) for all x > X,, 0 < € < €y(X). The objectives

‘li_{nx/i(t) = 0, }imei(t) =const, i=1,...,m, (15)

are attained as well.

Proof. Let us introduce the extended object
& - AZ+Bu, y5=Cx (16)
with the state vector x = col(x, x;, ..., X,) € R**+™=D,
where x; is the state vector of the ith filter (14); with the

output vector 5; = col(y, vy, ..., V,); and with transfer

function W(L) = col(W(A), Wr(A)), where Wy (L) =
keP(eA)/Q(A)L,,. Evidently, the algorithm (12) - (14) is
a specific case (up to the choice of notation) of the algo-
rithm (3), (6), namely, that of the extended object with

block-diagonal matrices I"' = diag(T",, I';] and G =
diag[G, I,,]. In applying Theorem 3, we choose x> 0,
€ > 0in such a way that the function G*W(A) = GTW(A) +
Wg(A) is a strictly minimal-phase one. Now the state-
ment of the theorem follows directly from Theorem 1.

Corollary. Under the conditions of Theorem 4,
it can be easily shown that the problem of adaptive sta-
bilization can be solved by algorithms structured in a
simpler way, e.g., by an algorithm with 2m adjustable
parameters

R of

u; = eug,-'y+62,v,, i=1,...,m, (17)
0, = -1, (gly+Vv)ely (18)
8, = 1. (gIy+ V) v, (19)

where 0,;, 0, are scalars.

To conclude, we note that the existing adaptive sta-
bilization algorithms [5 - 7] applicable to the case r> 1
contain several additional filters with the total order
three to five times higher than the order of the controlled
object. The algorithms we proposed have the dynamic
compensator of the order m(r — 1). Such structures
were, for the first time, studied in [9], in nonadaptive
situations. Let us also note that when the parameter x of
the compensator increases and € decreases, the stability
domain of the adaptive system in the space of object
parameters extends to infinity and covers any compact
subset of the set of minimal-phase objects. In practice,
the compensator parameters K and € should be chosen
according to a priori information on the parameters of
controlled object.
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