pUALITY THEOREMS FOR CERTAIN NONCORVEX

gXTREMAL PROBLEMS

A. L, Fradkov IDC 519,95

This article investigates the problem posed in [1],

Suppose real functions F(x), Gy{x), ..., Gp(x) are given on an arbitrary set X. Let Tys =+ T bE
real numbers, with 7 = Ilrj lljm:,. Consider the following relations:

F{x) =0 for G (x)=0,...,G.(x) =0 (0.1)

-2

1,20, j=1,...,m:F{2)— )Y G {z)=0, Vi€X (0.2}

J
@t is obvious that (0.1} is implied by {0.2), but that the converse is in general false, The problem posed in
i1}, and given detailed consideration in {2], consists of giving conditions under which (0.2) is implied by
0.1, i.e., when (0.1) and (0.2) are equivalent, Several problems in the absolute stability of control sys-
tems lead to this problem [2, 3]. But it also has applications in the theory of operators on spaces with in-
definite metrics [4] and in the variational caleulus [5]. Under the assumptions we have made, the functions
Fix), Gi(%), ..., Gy (x) obviously depend on several "censtructive™ parameters,* and we have to find the
domain A, say, in the space of these parameters in which (0.1) holds. Finding this domain involves com-
plications, because of the constraints Gy{x) = 0, ..., Gy(x} = 0, Therefore the following procedure is often

uged, called the S-proceduret in [3]. Form the function S(x, 1) = F(x) - ZTjGj (x), which depends on the

extra parameters Ty, ..., T, and find the domain B in the parameter spage1 for which (0.2) holds, It is
always true that A < B. If the conditions (0.1) and (0,2) are equivalent, then A = B.

We shall say, following [2], that the S-procedure for the inequality F(x) = 0 with the constraints Gy (%)
z0 ..., Gm{x) = 0 i3 advantageous or favorable if (0.1) implies (0.2). Similarly, we may define the ad-
vantage or favor of the S-procedure for the inequality F(x) > 0 and F(x} = 0 under the constraints Gj(x) > 0
and Gy(x) = 0, for all possible combinations. The advantage of the S-procedure is intimately linked with
the validity of a duality theorem in a certain mathematical programming problem. This tie-in is inves-
tigated in Paragraphs 1 and 2 of this article. We note that the nonconvexity of the functions met with in ap-
plications complicates the application of the usual duality theory [6). For example, the functions F{x),
Gi{x), ..., Gy (x) can be indefinite quadratic forms. .

Nonetheless, it is known [2, 4] that for m = 1, if F(x) and G(x) are quadratic (Hermitian) forms} on
the real (complex) space X, with G(xg) > 0 for some x € X, then the S-procedure is favorable, i.e., (0.2) is

*For example, if F(x), Gy(x), ..., Gyp{x) are quadratic forms on a Euclidean space X, then these parameters
may be the coefficients of the forms.
tWe give the S—procedure as described in [1].
By a quadratic form F{x} on a real linear space X, we mean a functiona! of the form F(x) = B(x, x), where
) Bix, y) is a symmetric bilinear functional on X x X. By an Hermitian form on a complex linear space, we
Mean a functional B(x, x) where B(x, y) is an Hermitian-symmetric and Hermitian-bilinear functional on
X X X {i.e., linear in the first argument, antilinear in the second, and satisfying the relation B(x, y)
* By, x) for all %, y€ X).
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implied by (0.1). If F(x), Gy{x), ..., Gp{x) are quadratic (Hermitian) forms, then whenm > 1 in the rg,
case and when m > 2 in the complex case the S-procedure is not favorable in general. It was Proved fo,
the complex case in {7] that when m = 2, i.e., when Fix), Gy(x), Gy(x) are Hermitian forms on the linggy
space X, the S-procedure is not favorable if Gy(xy >0, Gy(xg) > 0 for some xy€ X, In Paragraph 3 of thi
article we prove these statements by a method which differs from that of [2, 4, 7). The proofs are g,
on certain facts from the Euclidean geometry of the space # (X} of quadratic (Hermitian) forms on the
dimensional space X.

In Paragraph 4 we reformulate conditions (0.1) and (0.2) in terms of the space F(X) of Hermitigy i
(quadratic) forms, and derive the necessary and sufficient condition for the S-procedure to be favorap|e;
for any Gi(x) € #(X), j = 1, ..., m when the forms F(x) € F(X) are given. The question of finding the !
classes 0% forms Gy(x), ..., Gy, (%} having this property arises in problems of the absolute stability of ¢
trol systems, where the S-procedure is applied to an a priori unknown form F{x), The results of Parg. #
graph 4 make it possible to resolve the question of the advantage of the S-procedure for quadratic and g,
mitian forms in two variables, %

Paragraph 5 extends the results of Paragraphs 3 and 4 to a class of functions broader than that of
quadratic or Hermitian forms. In the last Paragraph we collect together several exampies of unfavorap)g
S-procedures. They show, in particular, why this or that condition of the various theorems of the Previg
Paragraphs is necessary.

§1. Geometrical Interpretation of the Problem. General Conditions

for the S-Procedure to be Favorable

In this Paragraph we give a geometrical interpretation of the relations used to formulate the differeq
variants of the S-procedure. Using this, we obtain general criteria for the S-procedure to be favorable, ?
The line of argument is akin to that of Paragraph 3 of [2], where the S-procedure for the inequality Fx)={

with the constraints Gy(x) = 0, ..., Gy,(X) = 0 was considered. We nole that the results obtained here ma
easily be generalized to the case of infinitely many constraints. Here we consider in more detail the case
of the inequality F(x) = 0 or F(x) > ¢ with the constraints Gi(x) 20, ..., Gz} =z 0or Gy(x) = 0, ..., Gyt

= 0 (the case where the constraints are in the form of an arbitrary combination of equalities and lnequali-
ties is treated similarly). We now write out the conditions on the S-procedure for these variants*:

Flry =0 dor Gy(z) =0,...,C,.(x) =0, z€X. (1.1
r: 8{z,1) =0 Vz€X. (L.:
F(z) >0 for Gy(z}=0,...,Gn(z) =0, zEX. (L3
r=0:85(x, V>0, VI€X. (14
F(z) >0 for G.(z) =0,...,Gn(z) =0, z€X. (1.5
dr:8(z, 1) >0 Vz€X. (L.
Here X is an arbitrary set, and F{x), Gi(¥), ..., Gp(x) are real functions on X.

Consider the map ¢:X — RM*! whose coordinate functions are (%), ..., Gmix), i.e., @x) = (K

---:» Gmix), F(x)), x€X, Our conditions locate the set R™*! in the space ¢(X). Letz = Eyeorrdméme
eR™*! Introduce the sets Q = {z:gj =0,j=1,...,m, Eys <0}, Q' = {z:«ﬁj =0,j=1,...,m, Ep+t
< 0} (see IPig. 1 for m = 1). Q and Q' are convex cones,t Now we can write condition (0.1) in the form
¢X} 1 Q =¢. Similarly we can rewrite conditions (1.1), (1.3), and (1.5) as: ¢X)NQ'=¢, Xy NQ=¢
¢X) 0 Q= ¢,

Now consider (0.2). This condition means that {zp, 2) = 0 when z€ ¢(X), for some vector Z,
= (Epts » v« Eymr EOmH)GRm“, where £ymyq > 0, .on =0forj=1,..., m Itcan be easily verified that

(zg, Z) <0 for z€Q. This, in turn, is equivalent, for € > 0, to the satisfaction of the inequality (24, 2) <0

*Here and in what foltows, the vector inequality 7 = 0, where 7 = "Tj 124, is to be taken component by co:
ponent, i.e., as the set of inequalities 7y =0, j = 1, ..., m. By S(x, 7 we mean the function S(x, 7 = F{

T e
— jﬁl TjGj .

tThe set K in the linear space is called a convex cone Bl]if K+ K=K and MK « K for A >0,
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£, when z€ Qg, where Q. = {Z€RM*; £ ¢ £ .\ j=1, ..., m, &gy <0}
(the set Qe is the "conical neighborhood" of the set Q; see Fig, 1).
>a'

Let us say that the sets A and B in the linear topological space X are
separable (more precisely, linearly separable}, if there exists a continuous
linear functional {€ X* and a real number ¢ such that f(z) = ¢ for z€ A and

]
f{z) = ¢ for z€ B. Similarly, A and B are strictly separable if these in-
/ equalities can be replaced by strict inequalities, We note that if the set A
D / is open, then the condition [{z) = ¢ for z € A is equivalent to the condition

f(z) >0 for z€ A, This is because f is a continuous linear functional, and
Fig. 1 so the set {f(z) :z € A} is open [8).

gl

Moreover, it is easy to see that if one of the sets A and B is 2 cone, then ¢ can be set equal to zero
(n the definition of linear separability, If both A and B are cones, then ¢ is necessarily zero. Condition
(0.2) may now be reformulated as follows: the sets ¢(X) and Qg are separable for some & >0, since Qg is
acone, Similarly, coundition (1.2) is equivalent to the separability of sets ¢(X) and QL, where Q; = {z
eR™YL e | < —€fmey. J =1, ..., m, £,44 < 0}, and condition (1.4) (respectively (1.6)) is equivalent to
the strict linear separability of the sets ¢X) and Q (@(X) and QY.

LEMMA 1, Let A and B be sets in the linear topological space X. - The separability {strict separa-
bility) of the sets A and B is equivalent to the separability (strict separability) of the sets coA and coB.*
If one of the sets A and B is a cone, then the separability (strict separability) of A and B is equivalent to
the separability (strict separability) of the cones X (A) and X (B).

The prool of this lemma is obvious,

Let us now give the necessary and sufficient conditions for all variants of an S-procedure to be favor-
able,

Proposition 1. TFor (0.1) to imply (0.2), it is necessary and suflicient thut ¢{X) N Q@ = ¢ imply that
cop(X} 0 Qg = ¢ for some € > 0. ;

Proposition 2. TFor (1.1) to imply (1.2), it is necessary and sufficient that ¢(X) it Q' = ¢ imply that
cop(X) N Q¢ = ¢ for some & > 0.

Propositions 1 and 2 follow from Lemma 1 and the separability theorem of Edel'geit, which can be
formulated as follows (see, e.g., [8]).

LEMMA 2. In order that a convex set A and an open convex set B be separable in a linear topological
space, it i3 necessary and sufficient that AN B = ¢,

Remark, The set cop(X) in Propositions 1 and 2 can be replaced by the set Jﬂ‘{qa(X)}, by Lemma 1,

The strict separability condition for convex sets-s formulated rather cumbrously. Hence the theo-
rems on the equivalence of (1.3) and (1.4), and (1.5) and (1.6) are proved under additional assumptions of
the type that the set cop({X) be compact, and this permits us to use the following classical conditions of
strict separability (8].

LEMMA 3. Let A and B be closed convex sets in a locally convex space, and let A be compact. For
Aand B to be strictly separable, it is necessary and sufficient that A 1 B = ¢.

Proposition 3. Let the set ¢(X) be compact. Then, for (1.3) to imply (1.4), it is necessary and suf-
fleient that @(X) N Q = ¢ imply that cop(X) N Q = ¢.

Proof, Since the convex hull of a compact set in a finite dimensional space is compact, (1.4) reduces
to the separability of the compact convex set cog(X) and the closed convex set Q. Lemma 3 may now be ap-
plied to complete the proof.

_ Proposition 4, Let the set ¢(X) be compact. Then, for (1.5) to imply (1.6), it is necessary and suf-
ficient that (X) N Q' = ¢ imply that co(X) n Q' = ¢.

Remark 1. The set cop(X) can be replaced by the set ¥ {(X)} in Propositions 3 and 4.

*We use the notation that coA denotes the convex hull of the set A, i.e., the smallest convex set containing
A. By ¥(A) we mean the smallest convex cone containing A,
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Remark 2, The compactness requirement on ¢(X) in Propositions 3 and 4 may be weakened by re-
quiring instead that there is a set X; = X such that ¢(X,)is compact, and that the smallest compact coneg
P and Py, coutalning respectively ¢(X) and ¢(X,), coincide. In this case, we will call the cone P compactly |
generated. In fact, since @ and Q' are cones, the strict separability, for example, of the sets ¢(X) and §
is equivalent to the strict separability of the sets P and Q, and this in turn is equivalent to the strict Sep-
arability of the sets P, and Q.

This remark is useful, for example, in the case where F®), G; (&), ..., Gm(x) are positively homo-
geneous continuous functions of the same degree of homogenelty* on the finite-dimensional linear space ¥
(in particular, when they are guadratic or Hermitian forms), Then X; may be taken as the unit sphere in
the space X,

When Proposition 1 is applied, it is often difficult to check the separability of the sets ¢(X) and Qe. :
Moreover, it is usually impossible to replace the set Q¢ by the set Q, since the separating hyperplane
(Zg, 2) = 0, Zg= (Egts v+ Egms Eom+1) MUst have the coefficient {,m +4 nonzero (see Paragraph 6, Example
1). But the substitution may be justified, if some additional regularity conditions are imposed on the func.
tions Gy(x), ..., Gy (). We will use the so-called Slater condition, well known in mathematical program-
miog (e.g., [6]): :
Hz, € X: Gi{ze) >0, j=1,..., m 1.7
Moreover, when the constraints are equalities, as in (1.1) and (1.2), we must use the modified Slater con-
dition [7]:

Vem g, u==1, Iz €X:16,(2)>0, j=1,...,m. (1.8

When m = 1, for example, (1.8) means that the function Gy(x) changes sign on the set X, We will call the
constraints Gy(x} = 0, ..., G = 0 (GX) =0, ..., Gp{x) = O regular if (1.7) (respectively (1.8)) holds,

The regularity of the conditions involving any arbitrary combination of equality and inequality constraints
is similarly defined.

Proposition 1'. If the constraints G;(x) = 0, ..., Gy(x) = 0 are regular, then (0.1} and (0.2) are
equivalent if and only if (X) N Q = ¢ and co(X) 0 Q@ = ¢.

Proof. Itis suificient to prove that among the hyperplanes (z;, z) = 0 separating the sets cop(X) and
Q there is a hyperplane whose coefficient £, 14 is nonzero. So let us assume that there is no such hyper-

plane: suppose that any separating hyperplane has the formz gojgj = (. Since 50j =0, j=1, ..., m,we
Jemt ) .
haveggojGj(x) =0 Y¥x€X, and therefore EngGj(xo) =< 0, which contradicts (1.7). The parallel assertion
- jumt
about (1.1) and (1.2) is proved in exactly the same way.

Proposition 2!, 1If the constraints Gy(x} = 0, ..., Gy (x} = 0 are regular, then (1.1) and (1.2) are
equivalent if and only if ¢(X) N Q' = ¢ and cop(X) N Q' = ¢ are equivalent.

A simple sufficiency condition for the S-procedure to be favorable in all variants is that the set ¢(X)
he convex, The following assertion follows directly from Propositions 1', 2', 3, and 4.

THEOREM 1. The S-procedure for the inequality F(x) = 0 under regular constraints is favorable if
@(X) is a convex set.

Remark 1. The theorem remains true without any changes even when the constraints are given as
any arbitrary combination of equalities and inequalities,

Remark 2, It is easy to show that the regularity condition in Propositions 1 and 2, as well as in
Theorem 1, may be replaced by the condition that the convex cone ¥ {p(X)} generated by the set ¢(X) be
closed,

THEOREM 2. The S-procedure for the inequality F(x) > 0 is favorable if the set ¢(X) is convex and
the set #{p(X)} is compactly generated.

*The function F(x) on the linear space X is said to be positively homogeneous of degree k, if for any vector
x€ X and scalar A we have f(Ax} = |AIKf(g. In the formulation of (1.3) to (1.6) for homogeneous or positively
homogeneous functions, the set X can be replaced by the set X\ {0}
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As an example of the application of Theorems 1 and 2, consider the question as to whether the S-pro-
cedure i8 favorable when F(x), Gy(x), ..., Gy (x) are quadratic or Hermitian forms which are simultaneously

diagonalizable.
THEOREM 3. The S-procedure is favorable in all variants if F(x), Gy{%), ..., Gy () are guadratic
(Hermitian) forms on the space X = RP (respectively X = C®) which are simultaneously diagonalizable,

Proof. We shall prove that the set @(X) in this case is a closed polyhedral cone. In fact, after the

|

| forms F(x), Gi(X), ..., Gm(x) have been reduced to diagonal form, they can be considered as linear func-

' tiong of the new varlables yi = le , 1=1,...,n, defined on the closed convex peolyhedral cone K
=g oe e Yo €RMiy; =0, i=1, , n}. The shape of the cone K under the linear mapping also is a

closed convex polyhedral cone, The assertlon of the theorem now follows from Theorem 2 and Remark 2
of Theorem 1.

' The convexity requirement on ¢{X) in Theorems 1 and 2 can be weakened. Suppose, for example, that
the constraints are specified as inequalities G;(x} = 0, ..., Gy (%) = 0. Introduce the sets ¢(X) = ¢(X) qQ

= {zERm‘L1 Z =2z %, £ E@(X), Z,€ Q. Itis obvtcnus that every hyperplane separating the sets @ and
o) = oX) — Q will separate the sets ¢(X) and Q, and conversely It is well known [6) that {f the set X is
convex, if the function F(x} is convex, and if the functions Gy(x}, ..., Gy{x) are concave, then the set ¢(x)

- @ is convex. Thus the following statement is true,

THEOREM 4. Let F{x), —G x), j = ..., mbe convex functions defined on the convex set X. Then
- (0.1) implies (0.2) if the constramts are regular and (1.3) implies {1.4) if the set ¥ {p(X)} is compactly
generated,

§2, The S-Procedure and Duality in Mathematical Programming.

Applications of the S-Procedure

Congider the following mathematical programming problem:

F(z) —inf, G(x) =0, j=1,...,m, z€X. (2.1)
The functions F(x), Gy(x), ..., Gy (x) are real-valued functions defined on some set X. For each 7= |!1rj||j“f=1l
we define the function
= Flz)— ; 2.2
| P = int [ £(2)- 3 <6,a) | (2.2)

Jom1
and congider, as in [6] for example, the problem dual to (2.1)*
Y(r) —sup, 7, =0, j=1,...,m (2.3)

Denote by v the value of the lower bound in problem (2.1}, and by ¥ the value of the upper bound in problem
(2.3). It is easy to see that we always have ¥V = v. This means that we have the duality relation in problems
.1)-(2.3), if v =v, i.e.,

B, FO—smpint [ Y iseie ] 2.4

) =t
J=i,oom

Similar definitions are given for the problem with any arbitrary combination of equalities and inequalities
a3 constraints. For example, when the constraints are equalities, Gy{x) = 0, ..., G (x) = 0, the duality
relation hag the form:

"

inf F(z)= sup i mf [F(x)— Zt,Gj(.r) ] (2.5)

1

Gl =

i, ..., m

The following simple assertions state the link between the duality relation and the advantage of the
S-procedure,

—
*It is possible that (1) = —= for some or even for all T. If ¥(1) = — =, then we naturally take sup ¥
7 ) y p¥(mn
T

= oo,
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THEOREM 5. The S-procedure for the inequality F(x) ~ o = 0 with constraints Gy(x) = 0, .. G
= 0 is favorable for any w € R!, if the duality relation holds for the problems (2,1)-(2.3) holds and the um--.
bound Vv is attained. Conversely the duality relation in the problems (2.1)~(2.3) holds and the upper houng
is attained if (0.1) implies (0.2} for the functions F(x) -, Gi(x),..., Gy, (x), wherea isany real numbey,

Proof. Suppose (0.1) holds. Then the lower bound v = « in problem (2.1). By the duality relatigy -
v = 0. So there are numbers 7, =0, j = 1, ..., m such that ¥(1) = @, i.e., (0.2) holds. Thus the firgt
assertion of the theorem is proved. By the definitionof v, F(x) —v=0for Gix) =0, j =1, ..., m, ie
the functions F(x) — v, Gy(x), ..., Gq(x) satisfy (0.1). Therefore they satisfy (0.2), i.e., there are num:
bers 7; = 0 such that (1) = v. This means that V =z v, which was to be proved. '

THEOREM 6, The S-procedure for the inequality F(x} > o with the constraints Gixy =0, ..., Gy,
= 0 is favorable for any « € R! if the duality relation holds in problems (2.1)-(2.3) and the lower bound iy i
the direct problem is attained, Conversely, the duality relation holds in problems (2.1)-(2.3), if {1.3) i
implies (1.4) for the functions F{x) — &, G{(%), ..., Gy (%), where ¢ is any real number, i
Proof, Suppose (1.3) holds. Then in problem (2.1), the lower bound v > 0 (since it is attainedy, and]
therefore v > 0. Therefore there are numbers T{ =90, j=1,..., msuch that ¥(n >0, Le., (1.4) is ful. §

filled. Conversely, for a given v, for any & > 0 the functions F(x) — v + &, Gi(x), ..., Gy (x) satisfy {1.3),2
Therefore there is a vector Te = 0 such that ¥(1g) =v— ¢, i,e,, V= v, and so ¥ = v. ‘

Thus, any pair of extremal problems for which the duality relation holds and the lower bound of the
direct problem is attained furnishes an example of the eguivalence of (1.3) and (1.4). The attainability of
the upper bound in the dual problem means that (0.1) and (0.2) are equivalent, Therefore theorems Euaran,
teeing the attainability of the extremal values in the direct and dual problems would be of some interest, ;
Several assertions of this kind are cited in [6], T F(x), Gy{x), ..., Gy (%) are positively homogeneous fung
tiong on a linear space (e.g., quadratic of Hermitian forms), then Theorem 5 can be made more precise,é

THEOREM 7. TLet the ¥{x), Gy(x), + .+, Gpy(x) be positively homogeneous functions of the same de-
gree of homogeneity, defined on the linear space X. Then (0.1) implies (0.2) if and only if the duality re- :
lation holds for the problems (2.1)-(2.3).

Proof, The set (X} is a cone for the positively homogeneous functions. Therefore in problem (2.1),'
either v = 0 and (0.1) holds, or v = —w and {0.1) does not hold. Similarly, if (0.2) holds, it means that
v = 0 in the corresponding dual problem, Therefore (0.1) and (0.2) arc cquivalent if and ouly if v = v,

Let us now go on to give examples of the application of the S-procedure, It is known that every quad-
ratic or Hermitian form is uniquely (up to a scalar multiple) defined by its set of zeros (for Hermitian
forms, sce {4] for example). For certain forms, a similar assertion is reclated to the advantage of the 8-
procedure,

THEOREM 8. Let the quadratic (Hermitian) forms Gy(x), ..., Gq(x) on the linear space X satisfy
{1.8) so that (1.1) implies (1.2) for any quadratic (Hermitian) form F(x). Then every quadratic (Hermitian)
form F(x) whose set of zeros contains the set of common zeros of the forms Gyix), ..., Gp(x) is represen-
table as a linear combination of these forms,

Proof, By hypothesis, both the forms F(x}, G(x), ..., Gn(x) and the forms F(x) Gy(x), ..., Gp®
satisfy (1.1). Applying the S-procedure, we get that for all x¢ X the inequalities F(x) —Z 'erj(x) =0,

~-Fx - ZI ‘rj'Gj(x) = 0 are satisfied. If we add these inequalities we obtain 'rj' = =Ty j J:'l, e.., m, i,e,

J==i
m

Fx) = Z TjGj{x), as was required to prove.

Jux i

COROLLARY. Let Gy(x} and Gy(x) be Hermitian forms on the complex linear space X, and let them
gatisfy (1.8), and let the set of zeros of the Hermitian form F(x) contain the set of common zeros of the
forms Gy{x) and Gy{x), Then the form F(x} is a linear combination of the forms Gi(x) and G,(x),

This comes from Theorem 8 and the results of paragraph 3 of this article (Theorem 17), We remark
that the analogous statement for a real space X is false (see Example 4 of Paragraph 6).

The S-procedure can be used to investigate problems on the simultaneous reduction of quadratic or
Hermitian forms to diagonal form.
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THECREM 9. Suppose ¥ = RD (X = C) and that the quadratic (Hermitian) forms F(x) and G(x) do not
—-—""_'__"—_"— . - N - . :
ommon zeros except for x = 0. Then there is a nonsingular linear transformation on X which simul-

have C g
sly reduces F(x) and G(x) to diagonal form.

taneou
Proof, By hypothesis, the form F(x) does not change sign on the set of zeros of G{x), i.e., either

the fOM(x), G(x) or the forms —F(x), G(x) satisfy (1.3). It is known [2, 4] that if m=1and F(x), G(x)
are quadratic (Hermitian) forms, then (1.8) implies (1.4); another proof of this is given below, Suppose
for deflniteness that (1.3) holds for F(x), G(x). Then there is a number T such that the form 5(x) = F{x)

_ 7G{x) is positive definite. By a well known theorem of linear algebra, the forms S(x) and G{(x) can be
.mu[taneously diagonalized. But after this reduction, the form F(x) = S(x) + TG(x) is also in diagonal

form, as was to be proved.

¢3. The Space of Forms and the Convexity of ¢(X)
§3. 7€

In the next two paragraphs we consider the S-procedure for the case where F(x), Gy(x}, ..., Gpx)

are quadratic (Hermitian) forms on a real (complex) linear space X.

Denote by # (R™) the set of all guadratic forms in n real variables, and by & (C™) the set of zll Her-
mitian forms in n complex variables. It is obvious that & B and #(CN) are real linear spaces; besides,
dim F®Y = n@m + )2, dimF(CY = n’ In what follows, we will identify the form F(x) with its matrix F
with respect to some fixed basis, We transform the spaces & R} and F(CM) into Euclidean spaces by de-
fining in them the scalar product {F, G) by the formulat (F, G) = SpFG. We note that an orthogonal (unitary)
change of variables will induce an orthogonal transformation in the space FRY (in the space F(CM)
through the relation Sp T*FTT*GT = SpFG.

All the arguments which follow hold for both the real and the complex cases, unless the contrary is
stiputated. Both the spaces & (RI) and F(CY will be denoted by the same symbol #,. Consider the con-
vex cone X of the positive definite forms and its closure in the space #,, the cone of nonnegative forms
%. It is known that the extremal generators [8] of the cone K are the forms of rank 1 with matrices of the
form P, = xx. The following properties are easily verified:

1. (F, P = (Fz, z).

2. (P, Py = {x,y).

3. FER=VGER (F,Gr=0.

3a. FeX\ {0} <= VGEK (F,G> >0

3b.FEK = VGER\ {0} (F.G)>0.
Property 3 states that the cone K is selfconjugate. t It is easy to stale in terms of the space &, the con-
vexity criterion of the set @(X) introduced in Paragraph 1.

Suppose that Fy(x), ..., F(x) are quadratic (Hermitian) forms on the space R (€Y and that X is a
subset of R? (respectively C). Suppose that ¥ :X — REK is the map defined by the formula ¢(x)
= (F4(x}, ..., Fix)) €RK, Denote by X the set {P, :x€ X} and by L the linear hull of the forms Fy,...,Fy.

THEOREM 10. The set ¢{X) is convex if and only if the set PrLf( is convex, where Pry ig the or-
thogonal projection onto the subspace L =& . .

Proof. Suppose initially that the forms Fy, ..., Fi are orthonormal, i.e., (F;, Fj} = 6j;. Then if
X§X, the form Pry (P,) € L has in the basis Fy, ..., Fy the coordinates (Py, Fj) = Fj(x), i=LlL.. .k, Le,
the sets Pry X and $(X) simply coincide (up to an isomorphism of the Euclidean spaces L and R%).

Suppose now that the forms Fy, ..., F| are linearly independent, This case is reduced to the first
case by a nonsingular linear transformation on the space L which orthonormalizes the forms Fy,..., Fk.
Moreover, the convexity of the set (X} is preserved.

. In the general case, let Fy, ..., Fi; be a basis for the subspace L. Since the remaining forms are
linearly generated by Fi1. ..., Fiz, the convexity of ¢(X) is equivalent to the convexity of the set

_—

tWe denote the trace of the matrix A by SpA, By A* we denote the transposed complex conjugate of the
matrix A; if A is real, A* will be its transpose.
1The cone M* = {F :(F, G) = 0 V G€ M} will be called the cone conjugate to the cone M,
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{F“(x), ++.+ Fiz{x), x€ X}, which in turn is equivalent to the convexity of the projection of the set ¥ oy

{F:F = Z agFig. g €RY = L, as was to be proved.

apmi

Remark. The whole space R (C™) or the unit sphere in it is often taken as the set X,

COROLLARY. The set ¢(X) is convex if the inverse image of all possible straight lines from the '.
projection of the forms of the type P,, x€ X on the subspace I, are linearly related (these preimages apq |
cross sections of the set of forms of the type Py, x€ X with subspaces of dimension n{n + 1)/(2—m) in the 1
real case and n? = m in the complex case). :

THEOREM 11. (Hausdorff [9], and see also [10].) For all Hermitian forms Fy(x), Fy(x), the image'
of the unit sphere in the complex pre-Hilbert space H under the map X —~ (Fy(x), Fy(x)) €R? is a convex gef.

Proof. We note that it suffices to prove the theorem under the assumption that H is two dimengigny]
In fact, let z,, z,€ (X) in the general case, and then there are points x;€H, j = 1, 2, such that [Ilel =1 and
zj = qp(xj), i =1, 2. Without loss in generality, we may assume that x; and x, are linearly independent,
Consider the restriction ¢ of the map ¢ to the unit sphere X; in the two-dimensional space spanned by x,
and x,. If the set ¢(X,} is convex, i.e., if it contains the whole interval between the points z; and z,, they
the set ¢(X) also is convex, since (X} = ¢ Xy

Consider now the space &, of Hermitian forms on the two-dimensional complex space G, (dim sr',-zﬂ
The matrix of the form F € &, will be written in the form g

F a, +a, b,+ib,)
(b("‘“ibz @, —a,

where a,, ay, by, b, are real numbers, The coefficients of the forms of the type P, are numbers satisfying"
the equation af — af = b} + b}, while the condition [x]| = 1 is equivalent to 2a; = 1. Thus the set of formg §
of the type Py, [lx[ = 1 is isometric to a two-dimensional sphere lying in a three-dimensional subspace,
The preimage of a straight line from the projection onto the two-dimensional subspace of R? is a three- |
dimensional plane. But two three-dimensional planes in R must intersect along a two-dimensional plane,
and the intersection of a two-dimensional plane with a sphere is always linearly connected. An application -
of the Corollary to Theorem 10 completes the proof,

THEOREM 12 [7]. For any three Hermitian forms Fy(x), Fy(x), T3(x} on the complex linear space X,
the sel @(X) is convex, '

Proof, Just as in the proof of Theorem 11, it sulfices to consider the case of forms on the two-di-
mensional space C?, Since the cone of nonnegative forms in . is strictly convex, because every one of its
generators is extremal, the set {Px, %€ C% is the boundary of the convex sct. Therefore the intersection
of the set {Px, x€ C%} with a two-dimensional plane is the boundary of some convex set in the plane and
therefore is always linearly connected, An application of the Corollary to Theorem 10 completes the proof,

THEOREM 13. (Dines [11].) For any two guadratic formg F(x), Fy{x) on the real linear space X, the
set p(X) is convex.

Proof, As in Theorem 11, it is sufficient to consider forms on the two-dimensional space R% In
the three dimensional space &,, the set of forms of the type Py, x€R?is the gurface of a right circular
cone. The intersection of the surface of the cone with any two-dimensional plane is the boundary of a con-

vex set in the plane, and is therefore linearly connected, An application of the Corollary to Theorem 10
now completes the proof.

Theorems 11-13 enable us to establish the advantage of the S-procedure for m = 1 in both the real
and the complex case, and for m = 2 in the complex case,

THEOREM 14. Letm = 1 and let Gy(x) be a quadratic (Hermitian) form on the linear space X, where
the form is not nonpositive. Then (0.1) implies (0.2) for any quadratic (Hermitian) form ¥(x).

THEOREM 15, Letm = 1 and let G(x) be an indefinite quadratic (Hermitian) form on the linear space {
X. Then (1.1) implies (1.2) for any quadratic (Hermitian) form F(x).

THEOREM 16. Let m = 1 and let the real (complex) linear space X be [inite dimensional. Then the
S-procedure for the inequality F(x) > 0 under the constraint G(x) = 0 or G{x} = 0 is favorable for any quad-
ratic (Hermitian) forms F(x), G(x).

|F
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THEOREM 17, Let Gy(x), G;(x) be Hermitian forms on the complex linear space X. Then the S~
e(m:_t}w—inequality F(x) = 0 with the regular constraints Gy(x}) = 0, Gy(x) = 0, or Gi(x} = 0, Gp(x)
g, or Gi(x) = 0, Gy{x} = 0 is favorable for any Hermitlan form F(x) on X.
W

THEOREM 18, Letm = 2 and let Gy(x), G,(x) be Hermitian forms on the finite dimensional complex
e S —
space X. Then the S-procedure for the inequality F(x) > 0 is favorable for any Hermitian form F(x),

Theorems 14-18 are direct consequences of Theorems 1, 2, and 11-13. Propositions resembling
Theorems 14-16 have been obtained by several authors independently [2, 4, 11, 12]. Theorem 17 is proved
by a different method in [7]. ‘

It follows from Theorem 10 that the convexity of ¢(X) under the map X — (Gy(x), ..., Gp(x), F{x) is
not determined by the forms F(x), Gy(x), ..., Gy(x) themselves, but by the subspace they span in &,. Thus
Theorems 17 and 18 can be strengthened.

THEOREM 17'. Let the Hermitian forms G(x), ..., Gy (x) on the complex linear space X belong to
some three-dimensional subspace L = & (Xj and satisfy (1.7} (respectively (1.8)). Then (0.1) implies (0.2)
qrespectively (1.1) implies (1.2)) for any Hermitian form F(x) from the same subspace L.

THEOREM 18'. Let the Hermitian forms Gy{x), ..., Gy (x) on the space C™ belong to some three-
dimensional subspace L = % (C"). Then (1.3) implies (1.4) {or (1.5) implies (1.6)) for any Hermitian form
F(x) from the same subspace L,

COROLLARY, The S-procedure is favorable if F(x), Gi(%), ..., Gp(x) are real Hermitian forms on
c* ().

To prove the corollary, one need only apply Theorems 17' and 18' to the three—dimensional subspace
of real Hermitian forms on CZ,

From the theorems proved in this paragraph we get the duality theorems for a series of nonconvex
problems in quadratic programming, as well as other corollaries on the advantage of the S-procedure, as
in Paragraph 2. We note that the proofs of Theorems 11-13 make it clear that, when k > 2 in the real case,
and when k > 3 in the complex case, the set of points z € RK of the form z = (Fix), ..., F®), x€X is usu-
ally not convex. In fact, let X be a two-dimensional linear space. Then both in the real and the complex
case, the set {X) is the image of the surface of some strictly convex cone under a nonsingular linear trans-
formation, and therefore it is not convex, if there are at least three (four) linearly independent quadratic
(Hermitian) forms among the set Fy(x), ..., Fy (x).

{4. The Space of Forms and the Advantage Condition

for the S-Procedure

We now try to put into the language of the space of forms & .the conditions which express the for-
mulation of the S-procedure. Moreover, we limit ourselves to the case of the inequality F(x) = 0 with reg-
ular constraints Gy(x) = 0, ..., Gp(x) = 0 or Gy(x) = 0, ..., Gp(x) = 0. If nothing is stated to the contrary,
the arguments apply to both the real and the complex case,

Conditions (0.1) and (1.1) can be rewritten in the following form:

F,PO20  for (G, P>>0, j=1...., m, (4.1)
F,P>20  for (G, PY=0, j=1,.... m 4.2)
Now counsider (0.2) and (1.2). Denote by R the set {AeF . A= TF — Z TjGj' Ty >0, T = 0,j=1,...,mh

j=t
The set R is a convex cone. Condition (0.2) can be rewritten in the form R N K = ¢, This in turn can be
rewritten, by (1.7), as

RNEK = {0}, 4.3)
where R (s the closure of the cone R:R = {AES“,: A=rT1F— 2 TjGj, 'rj =0,i=0,1,..., m}.
j=t

LEMMA 4, If K, and K, are closed convex cones in the finite dimensional linear space L, then

KN K, # (0} < Int K" N Int (—K,") = ¢, (4.4)



Proof. The condition K, 0 K, = {0} is equivalent to the condition (K; N Kyp)* = L, But for the clme;'
cones Ky and K,, the following equalityf holds: (K; N Kp)* = K¥ + K¥, and the condition Kf + K¥ = Lip .,
turn is equivalent to the fact that the cone K} + K¥ can be separated from zero by a hyperplane, i.e, , th
exists a nonzero linear functional £€ L*, such that f(x) = 0 for x€ K¥, and f(x) = 0 for x€ —K¥, But the
necessary and sufficient condition for the separability of the cones Kf and —K¥ is the condition IntK# n Iy
“(—K#} = ¢ {{13], p. 308), as was required to be proved, b

Now apply Lemma 4 to condition (4.3), We get that {4.3) is equivalent to the condition that there

i.sh

nonnegative form P such that P€Int (-R¥) = {A: (A, F) <0, (A, G} =0, j=1,..., m}, i.e., for any noy,
negative form P such that (P, G} >0, j = 1,..., m, we have (P, F) = 0, But on any set M, we have
inf{P, Fy = inf{P, ¥). TFinally, (0.2) can be written in the form
PEM PEM

(F,Py=0 for PER and<G, P>=0, j=1,..., m. 45
Similarly (1.2) can be written as

(F,PY=0 for P6FK and (G, P>=0, j=41,..., m. (4.

Thus the 8-procedure problem has been reduced to the following. Let the linear functional F(P)
= (F, P) be given on the set of forms &,. It is known that F(P) = 0 on a set of forms of rank 1, where the
forms do not make an obtuse angle with any of the forms Gy, ..., Gy, We are required to find the condi-
tion that F(P) = 0 for any nonnegative form P not making an obtuse angle with any of the forms Gy, .. .,Gm.'

To apply this theory in automatic control theory, as well as in other situations, it is significant that
the form F{x) involved in the hypotheses is not known beforehand. So there is a lot of interest in the prob-

lem of finding forms Gy, ..., Gyy, such that (0.1) and (0.2} (or that (1.1) and (1.2)) are equivalent for any
form Fex,. :

THEOREM 19, For (0.1) and (0.2) to be equivalent for any form F €& ,, it is necessary and sufficient
that the forms Gy, ..., G, satisfy the following condition (E):

(E} The extremal generators of the set M = K n {A:(Gj, A= 0, j=1,..., m}vanish for the forms

of rank 1 in this set,
Proof. Suppose any nonnegative form P which does not make an obtuse angle with any of the forms

Gj be represented in the form P =82t cvSPxS, ag =0, PXSE M, and let it satisfy condition (0.1),i.e., (F,Px)
= 0 for any P, € M. Thea (F, P) = }] ag (F, Px) = 0.
8=t .

Conversely, suppose that some form P € M cannot be decomposed into forms of rank 1 from M, i.e.,
P, does not belong to the convex cone M; (easily seen to be closed), spanned by the forms of rank 1 from
M. Then the separability thecorem implies that there is a linear functional F(A) = (F, A) such that (F, A)
= 0 for A€ My and (F, Py <0, i,e., (0.1) holds for F, while (0.2) does not, which contradicts the hypothesis
of the theorem.

The case where the constraints are equalities is done in a completely paraltel way.,

THEOREM 20. For (1.1) and (1.2} to be equivalent for any form F€&,, it is necessary and sufficient
that the forms Gy, ..., Gy, satisfy the following condition (E":

(E") The extremal generators of the set M' = K n {A: er, Ay =0, j =1, ..., m}vanish for the forms
of rank 1 in this set,

The condition (E') is weaker than the condition (E), and verification of the condition (E)} can be re-
duced to several verifications of (E"),

THEOREM 21. If the forms Gy, ..., Gy, satisfy (E), then they also satisfy (E",

tIf Ky and K, are convex cones, then K, + K, denotes the convex cone {x€ L: x = Xp + Xy, i€ Ky, x,€ Kz}
The cone is considered to be endowed with the topology induced from the smallest subspace of L containing
the cone,

256



Proof. Suppose the form P€ M'. Because M'< M, we get P€ M. By (E) the form P can be rep-
resented in the form P = 2 @gPyy, Where Py € M, It suffices to prove that if ag >0, then Py € M,
i
suppose this is false, i.e., Px € M\ M'. This means that (Pxg, G = 0 for j =1, ..., m and for some
tndex jgr (Pxge Gj?) > 0 holds. Thus {P, Gjo} = Z ag > Pys. Gy >0, i.e., PEM'. The contradiction proves

the theorem.

THEQREM 22. If the condition (E') holds [or forms G; — £:Q; for some Q; €K and for all g; = 0,
e i I i j
j= ..., m, then (E) holds for the forms Gj, j=1,...,m,

Proof, We must show that any form P¢¥, such that {P, Gj) =0, j=1, ..., m, is representable in

the form P =Z @gPxy. ag = 0, (Gj, Pgg’ = 0. It suffices to show this for P€K, because the set of forms

f the type Py (satisfying the condition {G;, P = 0), as well as its convex hull, is a closed convex cone.
o YPe ryx jr Txg

If PEK, then (P, Q;) >0 and (Gj—an-, F) = 0 for g = <GJ" P/Qj, P) = 0. By (EY), P = Z g Py, Where
(Gj_anj, sz) = (. Therefore (Gj, Pxg) = 0, as was required to be proved. =

As an example of an application of the results obtained above, let us consider the question of the ad-
vantage of the S-procedure for quadratic (Hermitian) forms acting on a two-dimensional space,

THEOREM 23, Let G(x), ..., Gp(x} be quadratic forms in two real variables. When m = 2, (0.1}
and (0.2) are equivalent for any quadratic forms F(x) € &, if and only if the following inequality holds:

a, b, ' , by ¢ 2 c |’ 4.7)

, <
by by b, ¢,

a; ¢y

a b,

where Gj(x) = x*(b )x, J=1,2,x= (x, Xy). When m = 3, the corresponding conditlon is that 4.7 hold

5 Cj
for each pair of the forms G,(x), ..., G (%)

Proof, The set M = {A:(Gj, A) = 0, j = 1, 2} is the intersection of two subspaces, a dihedral angle
in the three-dimensional spacegr,. All the boundary points of the cone K = % are extremal, Therefore
the intersection of the cone K with the dihedral angle is the convex hull of its two forms of rank 1 if and
only tf the edge of the angle does not intersect the interior of the cone. But the edge of the angle is the
siraight line defined by the vector product of the forms @ and Gy considered as three-dimensional vectors,
Thus (E) is equivalent to the satisfaction of {4.7). When m = 3, the set M is a polyhedral angle, and (E) is
then equivalent to the condition that none of its edges belongs to the cone K, i.e., (4.7) holds for each pair
of forms Gjy, Gjp, 1 = j; <jy = m.}

Remark. Condition (4.7) is easily formulated in terms of the set of zeros of the forms G, and G,.
This means that the pair of lines Gy(x) = 0 and the pair of lines Gy(x) = 0 occur sequentially in the plane,

and not alternately. It is easy to see that when such a distribution of zeros occurs, F(x} = 0 for Gj(x) =0,
=1, 2 implies that either F(x) = 0 for Gy(x) = 0, or F(x}) = 0 for Gy(x) = 0, and we can take cither 7, = 0
or T, = 0 in (0,2), i.e., the two constraints are reduced in essence to one.
The following is proved in the same way,
THEOREM 24. Let Gy(x), ..., Gp(x) be Hermitian forms on the space C* When m = 3, (0.1) and
(0.2) are equivalent for any Hermitian form F(x) if and only if the following inequality holds:
a; b’ b &' b o a; by e f? ay b ¢ .
ay by b .|b by oy +la: &' e 1 lay 8" ¢, >0, (4.8)
A by by ey ag by e az by ey
where
a; by +ib,”

G,-(:c)=x‘( ):c i=1,23 z€C,

b —ib’ ;
When m >3, the corresponding condition is that the inequality holds for any three of the forms Gy(x), ...,
Gy {x).

11t suffices to check the inequality for pairs of forms orthogonal to the edges of the cone M dual to the con-
vex cone spanned by the forms Gy, ..., Gp.
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COBOLLARY. If Gy(x), ..., Gp(x) are real Hermitian forms on C? satisfying (1.7), then (0.1) im-
plies (0.2) for any (not necessarily real) form F(x).

It Is easy to obtain the following theorem from the formulations of (0.1) and (0.2) in the form {4.1),
(4.5); this theorem completes our investigation of the problem for quadratic forms on two-dimensional
spaces.

THEOREM 25. Suppose that (4.7) does not hold for the quadratic forms Gy(x), Gyix) on RZ. Let G,
be a positive form orthogonal to G and G,: it exists by Theorem 23, Then for (0.1) to imply (0.2) for a
given form F(x), it is necessary and sufficient that the inequality {F, Gy = 0 hold, which is equivalent to
the inequality

a, by a, b ¢
Qs b, ez ;0, (4-9
az b a b ¢

where

. fob e B ,(a b) -
Gi(z)y=2z (b,c,-)z' =12 F=¢x - z, T

To conclude this paragraph, we note that the question of an effective verification procedure for (E)
and (E" remains open.

§5. Several Generalizations

Let us consider one of the possible generalizationg of the construction studied in Paragraphs 3 and 4
Denote by &, the linear hull of the set of p linearly independent real functions {Q«S( . )}g=1 selected from
P

some set Xp. Each function F€ &, can be uniquely represented in the form F(x) = Z foag(x), and there-

8 -}
fore the real linear space &, is canonically isomorphic to the Euclidean space of sets of coefficients {fs}g;
This isomorphism induces on &,, in a natural way, the structure of a Euclidean space with the inner prod.
P

uct {F, G) = 2 f3Es. We will no longer differentiate between the function F and the set {fs}g=1 of its coef-

[k

ficients.
For each point y€ X, consider the function 6, defined by the set of coefficients {ogwE_(. In other

words, the function 6y is specified by the relation 8y(x) = Z ay(Y)g(x). Then for any function F €., we

have

Fly) = <F, 8. {65.1)

Consider the convex cone K in the space ¥ ,, where K is spanned by the set of functions of the form &y,

y€X, i.e., K= .)E’{éy, y€X]}, and as well the cone K* ol nonnegative functions K* = {FeF,:F(x) = 0 vxE
Relation (5.1) shows that K* is the cone dual to the cone K. If the cone K is closed, then the converse rela
tion is true: K = (K*)*, :

Example 1, Let the set X be the Euclidean space R" of vectors x = (xq, ..., X}, and let the basis
functions be the quadratic functions aij(x} = xjxj, 1= it =j=n. Itis obvious that ¥, wherep = n(n + 1/f
is the space of all quadratic forms in n variables, the functions of the form &, are the forms of rank 1, and
the cone K = K* is the cone of nonnegative forms, i.e., we have the construction of Paragraphs 3 and 4.

Let us now try to generalize the results of Paragraphs 3 and 4 for the case of arbitrary basis functiod
{”s(')}gﬂ- Consider the question of the convexity of the image of the set X; = X de novo, where the map
¢: X — RK is defined by

plz) = (Fy(z, ..., Fu(z)) €R", (5.2)
Feg, j=1...k
Denote by X, the set {6y, ve X}, and by L the linear hull of the set of functions {Fj}!i(=1'

THEOREM 26. The set ¢{X) is convex if and only if the set Pry X, is convex, where Pry, is the or-
thogonal projection on the subspace L in F,




Proof, Suppose initially that <Fi- Fi) = 6;;, 1, j=1,...,% Then for each x€ X, the vector PrLéxG L
and has the coordinates {F]}l.‘=l in the basis of the functions {(631' FJ-)}%‘=1. But {6y, Fj) = Fjx), j=1,...,k
and the sets PrL}'(l and cp(Xﬂ' simply coincide (up to an isomorphism of one-dimensional Euclidean spaces).
The general case is reduced to the one already considered by a non!?ingular linear transformation on the
space L, the transformation also orthogonalizing the functions {Fj}i. .

As an example of the application of Theorem 26, let us investigaie the convexity of the set @(X,) for
geveral classes of forms of degree four in two real variables. The set X; = X in these examples will be
the whote space RZ,

Example 2. Consider the set of symmetric forms of degree four in two variables, i.e., functions of
the form F(x) = fx] + Lxix? + fx3x? + f,x,x3 + f;x§. The set of all such forms is a three-dimen-
stonal linear space &, with basis functions a;(x) = x§ + x}, @, = x%,(x} + x), @3(x) = (x;x)%. Introduce
the new variables

w=z'+z} v=za. (5.3

Equation (5.3) is soluble for xy, x, if and only if u and v satisfy the inequality u? = 4v?, After the
change of variables, we have quadratic forms of the type F(u, v) = fu? + fouv + (f;—2f,)v?. But the argu-
ments u and v are related by u?-4v? = 0, Therefore if the coordinates of the points of the space &, in the
basis of the functions h

@ (2, v} =u? di{u, v) = ov, &(u, v) =v (5.4)

are denoted by y;, y,, ¥, then the set X is the intersection of the surface of the right circular cone i3
=y}, y; = 0 with the half-space y, — 4y, (Fig. 2).

Simple geometrical arguments show that to verify the convexity of the set @RY under the mapping
¢:R? — R? defined by Lhe given forms F, and F,, it suffices to calculate the vector product H of the forms
Fy and F, as vectors in g7,. If the coordinates of the vector H satisfy the inequalities Yi—4y3 =0,y =0,
Vi¥s = y% (these define a convex cone M), then the set @R? is not convex, while in the apposite case the set
@R? is convex. It is equally easy to find the conditions which must be imposed on the symmetric form Fy
such that when these conditions are [ullilled the set ¢R? is convex for any symmetric form F,. These con-
ditions are that (F;, HY = 0 for any form HEM, i.e,, H¢ Int M* or HE Int M*, where M* is the cone dual to
M,

Example 3. Consider the set of even forms of degree four in two variables, They can be represented
in the form F(u, v) = fiu? + fuv + fiv?, where u = x, v = x§. The variables u and v can take values in the
range given by the inequalities u = 0, v = 0. If we use the basis functions {5.4) as in the previous example,
then the coordinates y,, y,, y; of the points of the set X will satisfy y;y; = y%, ¥; = 0. Here too, just as in
the previous example, the set X is the intersection of the surface of the cone with a half-gpace, and there-
fore the convexity condition for ¢(R? is similar to that of Example 1.

Example 4. Consider the class of forms of the type
F(z) = fixi* + fax’zy + forPxs® — farixs® + flxst (5.5)
Each form of this class can be written as follows: F(u, v) = f,u? + fuv + (f, + 2f)v?, where

— 2 2
“EE I (5.6)
U= I3,

Since (5.6) is soluble with respect to x, and Xy for any u and v, the set X in this case will be the whole sur-
face of a right circular cone in R® (the basis functions are again as {n (5.4)). The projection of the surface
on any plane in R® is a convex set, and Theorem 26 implieg that the set oR? is convex for all forms F, and
F, of the type (5.5). We note that the forms themselves of type {5.5) are not, in general convex functions,
even after the change of variables (5.6),

We now attack the conditions for a favorable S-procedure, restricting ourselves, as in Paragraph 4,
to considering the conditions (0.1) and (0.2} (or {1.1) and (1.2)), and we assume that the functions Giov oy Gy
satisfy (1.7} (or (1.8)). It is easy to rewrite the two conditions (0.1) and (1.1) in terms of the space &, viz,

For=0 for G, 85=2=0,j=1,....m, (5.7}
Fobp =0 for G, 80 =0,j=1,..., m. (5.8)
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Uh Introduce the set

. Rﬂ{AG.‘?’,:A=t“FwZ‘T,G,>O, r,-?(),j=0,...,m}. 1
= 5
If we use (1.7), then we can rewrite (0.2} in the form

RN K+ {0}. 6.9 Sff

" By Lemmad, (5.9) is equivalent toInt {—R*} NIntK = ¢, i.e., there is no func.

/ tion A€Int K such that (A, F) <0 and {A, Gj) >0,j=1,...,m, By repeatingth,

92 Fiz. 2 arguments of Paragraph4, we obtain that {0.2) canbe rewritten as follows:
ig.

(F,Py=0 for PERand (G, Py =0, j=1,...,m {5.10)
Similarly, (1.2) becomes ot
P, Py=0 for PERand(G;, Py =0,j=1,..., m .11 P
. e

Thus the formulation of (0.1), (0.2), (1.1}, and (1.2) is unchanged from Paragraph 4. Nevertheless,
(E) and (E") must be formulated somewhat differently. The reason for this is hidden in the fact that the cone
K is now not compactly generated in general (see Remark 2 after Proposition 4}, and the cone K may nof be
closed,

THEQOREM 27. For (0.1) and (0.2) to be equivalent for any function F €&, it is necessary and suf-

ficient that the functions Gy, ..., Gm satisfy the following condition (E): "
(E) The set M = K 0 {A:(G}j, Ay=0, j=1,..., m} coincides with the closed convex cone spanned by |t
the functions of the type 6, € M, i

Proof., Suppose (E) holds. We now prove that (0.1) implies (0.2), for any F€F,. We have to show
that (F, P) = 0 for any P€ M. Condition (E) means that each function P¢ M can be arbitrarily closely ap-
proximated by functions of the form P, = Z Agbxg, where Ag = 0, GXSE M, s=1,..., r. Therefore ;

s=1

Fr—-m "

(F, Py=lim¢F, P>=lim Za,w, 8, >=0,

Conversely, suppose some function Py€ M does not lie in the closed convex cone M, spanned by the functions
of the type 6, € M. Then the separability theorem implies that there exists a linear functional Fy(4) = (Fy, &)
in the space 9, such that {Fg, A) = 0 for A€M, and {Fy, Pp <0, i.e,, for the function F; we have that (0.1)
holds, but (0.2) does not, and this contradicts the hypothesis of the theorem.

A similar theorem holds for constraints in the form of equalities.

THEOREM 28, For (1.1) and (1.2) to be equivalent for any function F €%, it is necessary and suf-
ficient that the functions Gy, ..., Gy, satisfy the following condition (E":

(E') The set M' =K N {A:(Gj, A =0, j=1,..., m}colncides with the closed convex cone spanned
by the functions of the type 6, € M.

We remark that (E) does not imply (E") in general.

Example 5, Suppose X = R1, Consider the set of real quadratic polynomials yx) = 1, o,x) = X,
aylx) = <. The cone K in the three-dimensional space of these polynomials with coordinates yy, ¥a, ¥s is
specified by the inequalities y,y; = yi y, = 0. It is easy to convince onesell that the function G(x) = x satis-

fies (E) but does not satisfy (E").

The above approach is related to the S-procedure in that the change of variahles x — &y transforms
ail the functions of &, into linear functions simultaneously. Moreover, all troubles from the nonlinearity
and nonconvexity are pushed into the set K, and the problem is reduced to the study of the geometry of this
set and its intersections with subspaces and half-spaces in &,.

Let us now go on to give a short exposition of another approach to the S-procedure problem. In cob-
trast to the reduction described above for the problem of finite dimensional nonlinear programming, we
shall now consider it as an infinite dimensional linear programming problem. Let us assume that the set
X is compact in R, and that Gy, Gy, ..., Gy are continuous real functions on X,
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Fix x€ X, The inequality F{x) — Z"rj(}j(x) is linear in the vector 7 = (T4 evvs Tm) €R™M, Therefore

2) meang that a certain system of linje-a:r inequalities is consistent, There are as many inequalities in
is 8ystem as there are points in the compact space X, i,e,, in general there are infinitely many of each,
us (0.2) can be understood as the condition for the existence of admissible solutions to the infinite dimen-
nal linear programming problem (with a fictitious zero objective function). Let us rewrite the problem
standard form;
] (‘l:') — inf
Gr—feKy
16Ky

(5.12)

Here T is the space R™, Y = C(X) is the space of continuous functions on X, G is the linear operator

m T to Y given by (G1)(x) = — E'erj {x), K is the positive octant in RM, Ky is the cone of nonnegative

ctions in C(X}, 0(.) is the zerog-llinear functional on R™, and f€ C(X) is the function defined byf(x) = —F(x).
e dual problem for (5.12) is given by (see [6]):
M (f) — sup
—Gue Ky,
BEKy
Here T = R™, Y* = [C(X)]* = V(X) is the space of [inite Borel measures on X, K;* is the positive
hetant in RM, K%« the cone of finite measures on X, G*:Y* — T* (s the operator adjoint to G, and g (f)
- ff(x)dp. Since the objective functional in (5.12) is zero, then (5.12) and (6.13) satisfy the duality relation.
Therefore (0.2) is equivalent to the finiteness of the optimal value for (5.13), which in turn (since (5.13) is
temogeneous) s equivalent to p(f) = 0 for —G*p € K4+ and p €K%« This condition can be rewritten in the

form:

(5.13)

J'F(a:)dp;z() (5.14)

for any finite measure p satisfying

JG,—(x)duBO, i=1,...,m, {5.15)
X

We now note that (0.1) is equivalent to the satisfaction of (5.14) for measures satisfying (5.15) and con-
centrated at a point, Denote the measure concentrated at the point x€ X by 6., and denote the form bilinear
io [ and p, ﬁ f)du, by {f, 4). Then (0.1) and (0.2} finally take the form:

X
Foupy =0 for {C,wr=0, j=1,...,m, (5.16)

Fap 20 for <CLpuy=0, j=1,....m for p=20, z€X,
oo =0 for (Cou> =0, j=1,...,m forany measure U. &.17

Moreover, (1.1} and (1.2) can be rewritten in a similar way.

Consider the space of finite measures V(X) with the cone of measures mep & lying inside it. Further,
consider the cone K = .4 n{u: (Gj, )y =0, £=1,..., mk Itis the intersection of .# with a finite number

of half-spaces in V(X), The continuous linear functional (F, -} is nonnegative on K {f and only if it is non-
m+i

Begative on the extremal generators of K, which are known to be the measures of the type Z agbys, g = 0.

sl

Thus we have the following theorem.
THEOREM 238. For (0.1) to imply (0.2), it is necessary and sufficient that for any x4 € X and any
l'l:(-l m+1
@ =0, 5=1,....m + 1 the condition }" agF(xg) = 0 hold for }' gy 20, j=1,..., m.

A similar theorem holds when the constraints are equalities,

THEOREM 30. For (1.1) to imply (1i2), it isnecessary and sufficient that for any Xg € X and for any
[ — m4

m+1
Uez0,8=1, ..., m+ 1 the conditionzasF(xs) = 0 hold for Zas(}j(xs) =0,j=1, ..., m+ 1,

3] remt
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Application of Theorems 29 and 30 to the case where F, Gy, ..., Gy

are guadratic or Hermitian forms makes it possible to establish the fol-
lowing algebrale facts, by using the results of paragraph 3.

COROLLARY 1. Let F and G be quadratic forms on R“:’;atisfying
{0.1) and (1.7). Then for any x4, ..., XN€ RN, the inequalityz Fixg) = 0
N
holds for }', G(xg) = 0.

COROLLARY 2. Let Fy, G;, G, be Hermitian forms on C" satisfying
N

gl

(0.1) and (1.7). Then for A0Y Xy, ey xNE C", the inequalityz Fixg)z 0
N
holds for 2 Gy(xg) = 0 and Z Gylxg) = 0.

gomi LEAY

gl

§6. Counter Examples

In this paragraph we collect together several examples of functions for which the S-procedure is un-
favorable, They show that this or that condition is essential in the theorems of the preceding paragraphs.

Example 1. Let G{x) be a quadratic form on the space R" which is nonpositive but is not negative
definite (G = 0 but not G < 0), We now construct a quadratic form F(x) for which (0.1) does not imply (0.2) !
and (1.1) does not imply (1.2). By a nonsingular transformation, G(x) can be reduced to the form x*Gx,

A0 C .
where G = (0 0 ) , A <0. Consider the form Fy(x) = x*Fxx, wheref F; = (g 0). The condition (0,1) for
the form G(x) coincides with (1.1) and holds for the form Fy(x). On the other hand, the form Fj(x)— T7G{x)

—1d4 C
C”[’ 0 ) , and if C = 0 it is an alternating matrix for any real 7.

This example shows the necessity for the conditions (1.7) and (1.8) in Theorems 14 and 15. A similar
example is easily constructed for Hermitian forms.

has the matrix F;—1G = (

Example 2, Let G(x) be an Hermitian form on the infinite dimensional Hilbert space H, but not a
form which acts on a finite dimensional subspace (i.e., its rank is infinite}). Then there is an Hermitian
F(x) such that for the forms G(x), F{x)} condition (1.3) is valid, but (1.4) is not. Moreover, if the symmetric
operator G corresponding to the form G(x) is bounded, and if the form G(x) takes positive values, then the
operator F corresponding to the form F(x) may be assumed to be hounded. If G is completley continuous
then F too can be assumed to be completely continuous.

The construction of the required form F(x) is based on the following theorem (see [10], p. 117).

THEOREM 31. If A is a normal operator on H, then the closure of the set of complex numbers of the
type (Ax, x5, |Ix]| = 1 coincides with the convex hull of the spectrum of the operator A.

Let us now describe the construction when the spectrum of the operator G is discrete. When there
is a continuous component inthe spectrum, the argument is similar, The operator F may also be assumed
to have a (real} discrete spectrum and eigenvectors identical with those of the operator G, Consider the

+The blocks of the matrix Fj have the same orders as the corresponding blocks in the matrix G.

262



—[ operator A = G + iF. It is normal, and so Theorem 31, together with the results of paragraph 2, clearly
imply that for the construction of the required example there mustbe imaginary parts in its eigenvall_x_es for
specified real parts, so that the set P = {az:0 >0, z = (4x, %), ||x || = 1} does not intersect the set §
={z:Rez =0, Imz = 0} but may be strictly separated from it by a vertical line. It can be assumed that G
nas at least one negative eigenvalue Ay, * and a countable set {\ J°_; of eigenvalues of the one sign, Sup-
pose A > 0, k=1,2,,,.. Then we draw an arbitrary line I = {z:Imz — TRez = 0} in the complex plane,
where 7 >0, and we take the corresponding eigenvalues My, k=0, 1, ... of the operator F so that the point
2y = Mg + iug lies on the line I, while B/Nc tends to T from above as k — = (Fig. 3a). If all the A <0, then
the numbers pp, k=1, 2, ,,. are chosen so that the sequence {uk/).k} contains a subsequence which tends
to K — = (Fig. 3b). It is easy to see that in both cases the set P satisfies the necessary requirements, The
numbers i are constructed in a similar manner in the case where the operator G is bounded or completely

continuous,
This example shows that the condition that the domain of deflinition of F(x) and G(x) be finite dimen-

sional in Theorem 16 is necessary in the usual sense, and that it may not be replaced, generally speaking,
by conditions on the continuity or the complete continuity of the operators G and F,

Example 3. Suppose m = 2 and that the quadratic forms G;(x), G,(x) are of rank 2 on the space R!
| and have the form Gy(x) = x} — x} G,(x) = xt ~ x}, x = (x;, %, X3, %) In sSome basis. ¥ Consider the quadratic
- form F(x) = xf + x§ + (X3 + Xg) + X,(x3 — %;). The forms T (x), Gi(x}, Gy(x) satisfy (0.1) since Gi{x) = 0,
Gy(x) = 0 imply that F(x) = x} + x% - Ix;|(|x5 + x| + |x;— %]y = x} + x§ — 2|x,]Ixs] = 0. Nevertheless the S-
 procedure for F(x) = 0 with the constraints G,(x) = 0, Gy(x) = 0 is unfavorable for the given case, In fact,
from the nonnegativity of the principal minors of first and second orders of the matrix of the form F(x)
~ TGy (%) — 7,Gy(x) it follows that 7y = 7, = 1/2. But F(x) — [Gi(x) + G,(x)]/2 = —1 for x = (1.1 — 1.0}, i.e.,
the forms F(x), G{(x}), Gy(x) do not satisfy even condition (0.2).

Example 4. Let X = R® = {(xy, xo, x9}Gy(0) = x{ ~ 3x] — x}, Gy(x) = 2x%, — x}, F(x) = x2— 9x + x;(x,
—3xy). Direct verification shows that F(x) = 0 for Gi(x) = G(x) = 0, but it is obvious that F(x) is not a
linear combination ol the forms Gy(x) and Gy(x).

Example 5. Let m = 1, and suppose that the functions (%), G(x) are forms of degree four in two

variables, Consider the forms F(x) = —xix} + xx,(x} + x§), G(x) = x}x} + xpp(x + xB. If G(x) = 0, then
x%p = 0, and it follows from the inequality 2xX, = xf + x% that F(x) = xlxz(xf + x%— %4Xq), L.e., (0.1) and
(1.1) hold, But F(x) — 7G(x) = ~xxj(1 + 1) + x;x,(x} + x} (1 — 7 and the requirement F(x) — 7G(x) = 0, for

example, lead to the inconsistent inequalities v = 3, 7 = 1/3 for X = &%, 1l.e., {0.2) and (1.2) do not hold,

It is easy to show that in this example the set pR? consists of two sectors of the plane, and these are
located as in Fig. 4.

The author is deeply grateful to V, A, Yakubovich for his support and interest, and to A, M. Vershik
for his stimulating discussions,
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