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INTRODUCTION

We consider the system of differential equationst

dI/dt:111+Bll+_f([), !/:L"‘_z:Y O<£<Qov’ (0.1)
u=C*y, 0.2)
dC/dt=F(y), | (0.3)

where x, u, y, f. A, B, L, C are real vectors and matrices of ordersn, m, I, n, n Xn, n xm, n x 1, I Xm,
respectively, and F{y) is a continuous matrix function.

Equations (0.1)-(0.3) arise in the theory of automatic equations in the mathematical description of s
system of adaptive stability. In this connection, Egs. (0.1) describe the dynamics of a controlled target in a
lincar approximation [u = u(t) is the vector of inputs or "controls,"y = y(t) is the vector of observable inputs,
x = x(t) is the "state" vector of the target, f(t) is the "perturbation™ vector], and Egs. (0.2)-(0.3) assign the
radaptive™ linear control. We will assume that the matrices A, B, L (target parameters) do not change with
time (the target is stationary). The existence of the "contour of adaptation” (0.3) is stipulated so that in a
series of practical problems (cf., e.g., [1, 2]) the target parameters and the perturbations f(t) are unknowns
of the designer of the system; under this, the usual stability system with "rigid" feedback, described by Egs.
{0.1)-(0.2) under C (t) = const, cannot be stable under all possible values of the parameters. We will give a
precise definition of adaptivity of a system of the form (0.1)-(0.3), following the common formulation of the
problem of the design of an adaptive system [3].

IetA=A(), B=B({¢), L= I:(E), ft) = fg (t), £ =Z, where ¢ is the abstract vector of all unknown target
parameters and the characteristics of the perturbations, and £ is the known set of possible values of .

Definition 1, The stability system (0.1)-(0.3) ts sald to be adaptive in the set = if for every x(0), C(0)and,
for all t== , the solutlon (x(t), C(t)) of the system of differential equations (0.1)-(0.3) is definad forallt = 0
and satisfies the conditions: T L

O lmx(t) = 0;

[ & 2]

(II) thera exists a finite limit l‘imC(t).

The problem of the design of an adaptive stability system consists of defining the function F(y), inde-
pendent of ¢&Z , so that conditions (I) and (II) are satisfied.

In the present paper, a solution {s proposed for the stated problem.

Let G be a matrix of order ! x m, and A a complex variable. Let us Introduce the notation: x;(A) =
L*(O[Aln — A 'B(),

tBelow, flnite-dimensional vectors will be identified with column matrices of the appropriate order. The
asterisk ia the symbol of the Hermitian conjugate (for real matrices this is the conjugate transpose). We
denote by I« I the equivalent vector or matrix norm, and by I, the n x n identity matrix. The diagonal matrix
with elements 1y, . . . , T On the main dlagonal s denoted by diag{ry, ..., Tm}.
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8 (M) =det[AL.—.1(2) ], gy (A) =8(A)det G?y (1), Dy=Tim AG*¢: (7).

The princ'ipal result of the paper is contained in the following theorem.

THEOREM 1. Let the adaptive contour (0.3) be described by the equation

de,'dt = — [g;g] Py, j=1,....m, (0.4)

in which Pj = Pj' > 0 is an arbitrary positive definite ! X I matrix, and g; {s an !-<dimensional vector. Let G
be an I X m matrix with columas gj. 1= 1, ...,m. The system (0.1), (0.2), (0.4) is adaptive in the set =
if for every ¢ ==, the following conditions are satisfied:

1) @A) is a Hurwitzian polynomial;

2) the matrix T¢Dg is symmetric and positive definite under some T = diag{7y, ..., Tm}, Tj = T (£) >0,
j=1,...,m;

3) [ 1 et < . .
PO
In the proof of Theorem 1 the problem of the existence of a Lyapunov function of the formt
Vi, C)=a*Hoz + 3, (e — ) H, (e — ) ' (0.5)
-

with properties:
(A) Vy;x,C)> 0forx=0,C =C%
B) Vi(x,C) < 0forx =0, f(t) =0

for the system (0.1)-(0.3) for every ¢ €Z. Here Hy = Hq = Hy(£) is a matrix of order n X n; Hj = Hj‘ =Hj(¢) isa
matrix of order I x [, Cj, cg(ﬁ). j=1,...,m are the columns of the | X m matrices C, C°(§), respectively;
Vi, C) is the derivative og the function VE x, C) by virtue of the system (0.1)-(0.3).

THEOREM 2. For the existence of a function of the form (0.5) with properties (A), (B) for the system
(0.1)-(0.3) and for every ¢ =2 it is sufficient, and if Xt (A) = 0 and the rank of B(¢) is equal to m for eve: v
¢ <E then it is also necessary, that the adaptive contour be described by the relations (0.4), in which Iy =
Pj’ > 0 is an arbitrary positive definite  x [ matrix, and the X m matrix G with columns g, . . . , g, is such

that for every ¢ =2 conditions 1, 2 of Theorem 1 are satisfied.

The proof of Theorems 1, 2 is deduced in §2. The central moment of the proof is the application of a
theorem on the determination of the conditions of the matrix Inequalities (1.1)-(1.3) (Theorem 3), the proof of
which Is dealt with in §1, In turn, the proof of Theorem 3 rests on the frequency conditions for the existence
of solutions of other matrix inequalities, appearing first in the analyses of the stability of nonlinear control
systems [4, 5] and are well known under the name of the Yakubovich —Kalman lemma (cf., e.g., [6]).

It should be noted that similar problems are considered (without rigorous mathematical formulation) in
the theory of nonrandom, self-adjusting systems (BSNS) with a standard pattern (2, 7-10]. The idea of the
application for the design of the adaptive contour of the Lyapunov function of the form (0.5) was taken by the
author from well known and very significant works [2, 7]. However, the results of [2, 7-10], and also a series
of other works on BSNS theory relate only to the case m =1 (scalar control) and L = [, (target state accessible
to observation), In addition, the methods of the deslgn of adaptive algorithms, following from the results of
(2, 7-10], are based on the determination of the matrix Hy in (0.5) from the relation HA, + AJH, = —Q, where
Ay=A + B[C%*L*, and Q = Q* > 0 is a given matrix. In additfon, the matrix Ay must be known. The method,
proposed hers, does not require the determination of the matrix Ay, including at the same time all the algo-
rithms which can be obtalned by means of a Lyapunov function of the form (0.5). Fli..!!r, the proposed alge:.
rithms, in contrast to those of [2, 7-10], do not require the integration of the differentinl equation of ti.c
rgtandard pattera,” which simplifies the model.

A problem similar to that stated Is considered in [11], where, however, u(t) Is a step function and the
algorithms of control and adaptivity work in discrete time and have a form different from (0.2}, (0.3).

tBelow we will omit the Index ¢ everywhere, where this does not cause confusion,
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s1. CONDITIONS FOR THE EXISTENCE OF SOLUTIONS OF THE
FUNDAMENTAL MATRIX INEQUALITIES

We consider the following algebralc problem. The complex matrices A, B, L, G, R of orders n % n,
aXxm,axl/ Ilxm, nXn, respectively (m =aq, I =n), wheref R = R* > 0. It is necessary to find condltions
for the existeace of an Hermitiann X n matrix H = H* > 0 and a complex I X m matrix C such that

HA(C) - 4% (G) H-+R<O, ’ a.1)
HB=LG a.2)

where .
. A(C) = A+DBC*L*, 1.3)

The case when all the matrices A, B, L, G, R are real will be called the real case. Let us introduce the
notation 6{A) = det (Al = A), x(A) = L*QAly ~A)B, 6@, C) =det[Alp — A )], x(A, C) = L*(Alp —-AcCHB,
o(d) = 60)detG*x(d), D = }irn AG*x(A). It is possible to show that (cf. Lemma 1) ¢(A) is a polynomial of degree’

a — m. invariant relative to the substitution of (A, C) and X (A, C) for 6(A) and X(\). ItisobviousthatD=G* L*B,
and therefore the m x m matrix D is also invariant relative to this substitution. It is easy to verify the follow-
ing identities:

S(h, €)=5(2) det [In—C*%(2)]. t.4)
x (b, €) =1 (1) [[neCx (1] @.5)

As usual, we will say that a polynomial is Hurwitzian if all its zero lie in the open left half-plane, The solu-
tion of the stated problem is given by the following theorem.

THEOREM 1. Tor the existence of the matrices H = H* > 0 and C, satisfying (1.1)-(.3) and real in the
real case, it is sufficient, and if the rank of B is equal to m then it is necessary, that the polynomial ¢(A) be
Hurwitzian and the matrix D be Hermitian and positive definite.

Before turnihg to the proof of Theorem 1, we prove an auxiliary assertion.
LEMMA 1, Let a(A) = (AIn — A)15(A). Letp, q be arbitrary n x m matrices and Z(}) = p*a(A)q.

Then det Z(A) = cS(A)m'1 -g(»), where o(A) is a polynomial of degree not greater than n — m with highest
term \"~-Mdetp*q. In addition, o(A) does not change under the substitution of A +qr* for A, where r is an
arbitrary n x m matrix.

Proof. Trom the proof of Lemma 4 [12], it follows that o()\) = det ®(A), where

() =

My— A+ qp* — qu
r* 0
Let o(A) = ggA® + . . . + oA + 0pe Then ap i is equal to the sum of those principal minors of order m + k of the

matrix &(0), whose expansion consists of exactly k elements of the left upper block. It follows that gk =0
for k < m. Further, .

In_‘q d »
* Ol= et p*q.

I,—2"'(1—qp*) —q“_
o 0 = det

Onem = limo (AYA"™™ = limdet
Y~m Asco

The second assertion of the lemma follows from the substitution A —A + gr*, which is equivalent to the addi-
tlon to the first n columns of the matrix &()\) its last m columns, multiplied by the corresponding elements
of the matrix r. Obviously, the polynomial det &(2) does not change in this connection,

COROLLARY. The polynomial ¢(A} = S(MG*x (M) = G*L*[(Aln — A)-15(\)1B, defined above, has as its
highest term An-MdetG*L*B and does not change under the feedback transformation A —~A(C) = A + BC*L*.
(The last assertion can be deduced directly from (1.4), (1.5).]

LEMMA 2. Any k-th order minor of the matrix Z(A), Introduced in Lemma 1, divides into 6(7\)“'1. and
the quotient is a polynomial of degree not greater than n — k with coefficients in An-K equal to the corresponding
minor of the matrix p*q. . )

fHere and later, the notationR =0 R > 0) means that the matrix R is nonnegative (positive definite), l.e.,
Xx*Rx = 0 (x*Rx > 0 for x = 0),
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Proof. The matrix Z'(d) of the indicated minor has the form Z'(A) = eff.(?\)ez, where e;, e, are constant
matrices of order m X k. Therefore, T'(A) = afa(A)a,, where uy, a, are matrices of order n x k. If we apply
Lemma 1 to the matrix T'(A), we obtain the required statenrent.

LEMMA 3. Let the polynomial P, (A) have the form P¢(d) = ARG o)+ R:(A), where Q3(8) = N+

K

ne—m—1 k=d
qeeNeXak, Rg( = S+ ric(e)AK, and gl (e) = O(e), ri(e) = O(¢) for ¢ — 0.
m n—m-—1{
In addition, let the polynomials Q(A) = ¥ qAK, R(A) = qpAR~@ + Ny MK be Hurwitzian. Then the
k=0 k=0

polynomial P¢(A) is Hurwitzian for all sufficiently small & > 0.

Proof. It is easy to verify that n — m zeros of the polynomial P, () converge to the m zeros of the poly~
nomial € — 0, and the remaining R(A) = lim P, () zeros diverge to infinity. We make the substitution eX =4
e»0 {
m n—m-—1{ .
and set Sg(u) = 2 ™Pg(u /€). Then Sg(p) =uB™ ¥ (i + q{{(e))l,xk % (gt rfc(s))uken'm‘l‘. Therefore
n=0 k=0

n — m zeros of the polynomial S¢(u) converge to zero for ¢ — 0, and the remaining m zeros converge to the
zeros of Q(u) with rate of convergence of order O(e). Consequently, the m zeros A{, eees A Of the polynomial
- Pg@) at € — 0 bearing in mind Aj = pi/e +0), i =1, ... um are the zeros of Q{u). Thus, the zeros of the
polynomial Pg(A) will lie in the left half-plane if the zeros of Q(N and R(\) lie there. This nroves Lemma 3.

Remark 1. An assertion similar to Lemma 3 appears in [13].

Remark 2. The conditjon of Hurwitzian for the polynomials Q(A) and R(A) is "almost® necessary. Namely,
in order that P, ()) be Hurwitzian for all sufficiently small ¢ > 0, {t is necessary that Q(A) and R (») not have
zeros ia the right half-plane (this follows from the proof of the lemma).

LEMMA 4. .Let ¢(w), w = R! be a complex m x m matrix satisfying for cvery x # 0, w & R! the in-
equality Rex*&(w) > 0. Then | Aargdet $(w)| = mm, where Aarg ¢(w) Is regarded as the increment of the ar~
gument of the complex-valued function ¥(w) (¥(w) = 0) under w, changing from —w= to +=, ie., the quantity
lim [arg y(w) ~ arg ¢({—w)].

Wt

Proof. lLet Aj(w), xj{w), 1=1,..., m be the eigenvalues and eigenvectors of the matrix & (w) (it is
possible to have coincidence among these). Then Re Aj(w) = Re xH (@)@ (W)Xi(w) / Ixj()i? > 0 foralli=1,..., m,

w e R!. Hence Aj{w) = 0 and consequently det ®(w) = ﬁ A(w) = 0 for every w € R!. Thus, fAarg Aj(w)l = w,

ja=i
so that | Aargdet ¢(w) = Y lAargAj(w)! = mn, completing the proof.
i=1
The following lemma is a rephrasing of one of the versions of the Yakubovich —Kalman lemma [14].

LEMMA 5. Let A;, R, B, Q be matrices of ordersn Xn, n Xn, 0 Xm, n xm, respectively, where
R =R* > 0 and the rank of B equals m. We setf

IT(A) =2Re Q*(Al,—Ao) "' B—B*[Al,— Ao)*'R[M ,— 4] ~'B. 1.6)
For the existence of an n x n matrix H = H* > 0, satisfying the relation.
HA,+ AH + R<0, HB=Q .7
and real in the real case, it is necessary and sufficient that the conditions:
a) det (Al —Ag) isa Hurwltzlar'x polynomial;
b) M) > 0, Yo e RY '

"

¢) lime?nduw) > 0

W-»00

be fulfilled.

Proof. The sufficlency of the conditions a), b), ¢) Is demonstrated fn Theorem 4 [14]. The necessity of
condition a) follows from the fact that when (1.7) is fulfilled HAy + AgH < 0, l.e., the system dx/dt = Agx is

tBy Re I', where Il Is an arbltrary square complex matrix, we denote the Hermitlan matrix (1 + H“)/ 2,
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asymptotically stable. Flnally, the valldity of b) and c¢) when (1.7) and“a) are satlsfied is also proved {n Theo-
rem 4 [14]). ’ ‘ :

Proof of Theorem 1. We first prove the sufficiency of the conditions of the theorem. We note that, from
the conditton G*L*B = D > 0, the rank of the matrix B is equal to m (since the rank of a product of matrices
is not less than the rank of each of the components). It is therefore possible to use Lemma 5, by virtue of
which it is sufficient to find an ! x m matrix C, such that the conditions a), b), c) of the lemma will be ful-
filled for Ay =A + BCyL*, Q = LG. We show that as such a matrix it {s possible to take Cy = —~%G, where the
number » > 0 is sufficlently large. (It is obvious that in the real case C, will be real.) For brevity, we in-
troduce the notation 8,(A) = 6(A, =%G), X5 (N} = x(A, =%G), A=A — «BC*L*. To verify condition a) we use
the identity (1.4}, fro:n which it follows that o

) = 2 aot L0 1, 4 Gra )] .8

where a (A) = x(A\)6(A). By expanding the determvinant on the right side of (1.8), we obtain

m 5 (A)™ § 1m—-l 8 (A
Bu(3) — W[ O 4o X o 2D +q>m(x)],
where @A), . . . , ¥m=t1(A), om () =detG*a(?) are the coefficients of the characteristic polynomial of the

matrix G*a(}). By Lemma 2, @A) = é(A)k"d)k(A). where ¢ (M) is a polynomial of degree n — k whose leading
coefficient yy is equal to the sum of the principal minors of order k of the matrix G*L*B (k=1,. .., m). Thus

L=, 00, It ® oy
e[+ ()T (o) 4+ () (et o (E))] e v, a9

where (A, %) is a polynomial of degree not greater than n — m with coefficients of order O(1 /«) as n — =,
Applying Lemma 3 with e =1/n, we find that the polynomial 6,,(A) is Hurwitzian for sufficlently large = if

m~—1
the polynomials Q(A) = A 4 h}% z/,k}\k, R(A) = ¥m(A) are Hurwitzian. But Q(A) and R (7) are Hurwitzlan since

Q@) = det (\Iy, + G*L*B) =det (A\l;y + D), and R(A) = ¢(A). Consequently, condition a) is fulfilled for » > w
for any v > 0.
Proceeding to the verification of condition b), we rewrite this in the form
2 Re G * 4y (i0)> B* (— iwl, — %)™ (iol, — A,)~'B. (1.10)

Since the polynomial ¢(A) is invariant, for every « the equality detG*y, (A) = (M) / 64, (2) is valid. Under the
conditions of the theorem, the polynomial ¢(A) Is Hurwitzlan, from which it follows that detG*y. (iw) # 0,
vw = R!. Thus, for every w € R! the identity . ) s

Re G*1a(io) =[G*1.(i0) ]* Re [G*x«(10) ] 'G*1u(i),
is valld, so that (1.10) is equivalent to the inequality
2 Ro (G (t) ™! > [x2 (10) 6] ' B* (1wl — A ™" R (el — A~ BIG* 1 (l) . @iy

But [G‘xx(m-l = wlp + [G‘x(lw)]4. and therefore it Is sufficlent to prove that Re [G*x(iw)] ™ and the right
side of (1.11) are bounded for w € R!. Since detG*x(iw) = ¢(lw) / 6(w) = 0 for w &R!, the matrix [G*x(w)]~
is bounded under varlations in w on any finlte Interval. We show that for every Re [G*x({lw)]~! there exists a
flnite limit w — t«. By the condition of the Theorem D=D*>>0, where D=G*L*B, so that !

Re{G*y ({w)]~* = Re fw [{uG*x (fo)]~' = Re lo [D“i +0 (-(%-)]
=t0[D~ — (D7) +0(1) = 0(1) for w— % oo.

We must still show boundedness for w — £+« of the right side of Eq. (1.11), wfllch we denote by ¥y (w). For
X > X; the matrix function \Px( -) I8 continuous and, consequently, i3 bounded on every finite interw}al. We show
that for ga_ch X there exists a finite limit .‘ixil“q’,.(w) . Let B,=(Al,—A.)-'B. Then B,=DB/A+0(1/|A|?)for

A = =, and (t follows that LiinnB,.[GnL-B‘,]-I=B[G-LaB]-l. Therefore there exists a finite limit
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lim ¥y (0) = lim [B:,,,LG]_‘BZQRB;@[G*L‘BM]"=[B'LG]“B“RB[G*L"B]“.

@-++oo

exists. Thus, condition b) of Lemma 5 is satisfied under » > x, for any vy > ny > 0.

Finally, the validity of condition ¢) under sufficiently large  follows from the easily verifiable relations
lim w?0f (iw) = ~2Re G*L*A, B — B*RB = — 2Re G*L*AB — B*RB + 2%[G*L*B]%. The sufficiency of the conditions

o+

of the theorem is proved. We now demonstrate their necessity.

Let the relations (1.1)-(1.3) be satisfied for some Hy=Hg > 0 and Cy. It follows from Lemma 5 that the
polynomial &,(A) = det [Al; — A (Cy)] is Hurwitzian and Re G*xo(lw) > 0 for any w = R!, where Xo(A) = L*(AI, —
A (C)I'B. Due to the invariance of the polynomial ¢(A) )

(A) =6o(A) det G*xo(h). : 1.12)
Computing from both sides of (1.12) the increase in the argument!under A = iw, where w varied from —= to +oe,
we have Aarg p(iv) = nr + AargdetG*yy(iw). By Lemma 4, Aarge(iw) =2 (n — m)r. But ¢()) is a polynomial of
degree n — m with leading coefficient AD-MdetD, where D = G*L*B (cf. Lemma 1). Therefore tAarg ofiw)l =
(@ — m)w, from which we obtain Aarg g(iw) = (n — m)r and consequently @(A) is Hurwitzian and detD > 0. It
remains to show that D = D* > 0. By Lemma 5, (}lm szeG*x‘,(lw) = lim Re [iwG*L*B — G*L*A CyB+01/
> @rom

Twl)] =¢£im iw[D — D*] — ReG*L*A (Cy)B > 0, so that D = D*. We now note that the relations (1.1), (1.2) ob-

viously cease to be fulfilled if in these we change A (Cq) to A(Cy) — Iy, »n > 0. By again applying Lemma 5, we
-obtain that ~G*L*A (C()B + wD >0 for any » > 0. Thus D = 0, which completes the proof of the theorem,

A special case of the thaprem we have proved (for m = 1) is considered in [15].

COROLLARY {15]. LetA,B,L,G,R be complex matrices and vectors of orders n x o, o, nXx], [,
n x n, respectively, where R =R* = 0, B = 0. We represent the vector function y(A) = L*(\I — A)"!B in the
form x(A) = a(A) /6(A), where 5(A) = det (Mg — A). [In this connection, a(A) is a vector of polynomials of degree
not greater than n — 1.] For the exlstence of an n x n matrix H = H* > 0 and an Idimensional vector C, satis-
fying the relations (1.1)-(1.3) and real in the real case, it is necessary and sufficient that the polynomial
@(A) = G*a (A) be Hurwitzian and of degree n — 1 with positive leading coefficient. .

§ 2. PROOF OF THEOREMS 1, 2

As was already stated, the Lyapunov function constructed in Theorem 2 is used in the proof of Theorem 1.
Therefore, we first prove Theorem 2.

Proof. For every t <= let the matrices C°, H; = H?, J=0,1,...,m,exist such that the function (0.5)
possesses properties (A), (B). It follows from (A) that Hy>0,j=0,1,...,m. We write out the expression
for Vg(x, C) under f:(t) = 0

kiid

Vet 0= 2008, (454 5 niu) 2.3 (6 — ) 1,00, ey

where bj, cjy, c!, Fj/) § =1,..., m) are the columns of the matrices B, C,CO F(y), respectively. Equation
(2.1) can be rewritten in the form

Vi(2,0) = 2% (H Ay + ALH,) 2 + 2 3 (e — )" LHF () + (2 Hob ) g, @.2)
p-

where Ay = A + B[C%*L*. Since the right side of (2.2) is linearly dependent on C, condition (B) is equivalent
" to the relations

HoA, + A4gH, <0, @.3)
HF(y)+ (z*Hob))y==0, =1, ..., m. d 2.4)

We will change the vector x so thaty = L*x = const = 0 [the existence of such an x follows from the condition
x(A) ® 0], From (2.4) it is obvious that x*Hgbj = const, and it follows that for some ! -dimensional vectors gJ,
.3=1,...,m the equallties Hoby = Igj are valid. Thus, the adaptation algorithm must be given by the relation
(0.4), lawhich Py=H;*, y=1,...,m. Inaddition, for any matrices C°, H, Inequallty (2.3) and the relations

Hobj =I1g, j=1,...,m, whlqh after Introducing the‘l X m matrlx G =lgy, ..., gyt have the form

> ' B HB=LG - @.5)
] . .
Xt .



must be valikl. The necessity of the conditions of the theorem now follow from Theorem 3 (it i3 necessary to
set R =0, 7 =1In). ’

Conversely, let the adaptation algorithm have the form (".4). By Theorem 3 (for the real case and R = 0)
for any ¢ =% matrices C?, Hy = Hy > 0 exist which satisfy relation (2.3) and relation (2.5) with the change of
G to Grg. Setting Hj = Tij‘l' j=1,...,m, we determine a function Vix, C) of the form (0.5). The con-
structed functlon V&, C) satisfies condition (A) (since Hy>0,j= 0.1,... 'm)and condition (B) [by @.4)].
Theorem 2 is proved. .

'
i

Remark 1. From the proof of the theorem it is clear that the derivative of the constructed function (0.5),
by virtue of the system (0.1), (0.2), (0.4), has the form, for fg ty=0 .
: Vi(z, €) =—12*Q:z, 2.6)

where Q¢ = QE > 0 is a positive definite n X n matrix.

Remark 2. For m = 1 the polynomial ¢(}), involved in the statement of the theorem, has the form oAy =
g*a (M), where a(A) = x(N6(A) is the ratio of the I x 1 target matrix and g be an /-dimensional vector. The con-
ditions of the theorem in this case are equivalent to the condition that ¢(A) be a Hurwitzian polynomfial with
positive leading coefficient. ’

Proof of Theorem 1, By Theorem 2, for any ¢ == matrices c® =%, Hj =Hj{), j = 0,1,...,m

exist such that the functlon Vg(x, C) = x*Hx + :Y"‘_ €y - c?)*Hj (cj - c;) possesses the properties (A), (B). Taking
=1
Remark 1 to Theorem 2 into account, we see that the derivative of the function Ve x, C) by virtue of the system
(0.1), (0.2), (0.4) can be written in the form
Vi(2(1), C(1)) S—z*(1) Quz(t) +2*(8) Hole (1),

where Q¢ = Qf > 0 is some n X n matrix. Consequently, numbers »; > 0. w, > 0 (depending, in general, on £)
exist such that Vyxt),Ct)) = g IX % + wollx(t) - if ). Integrating the inequality obtained over the limits
. t

from zero to t > 0 and using the notation pi = \ Ix(s)i*ds, o = ‘ NE@E)2dt, we have
0 0

1,01 — %401 M — Vi (£ (0), C(0)) < — Vi (2(2), C(1)) <0, 2.7
from which with the help of an obvious bound we obtain that pp =< nny / g + w/Vg X0y, C{U)} / ;. Thus, the

©

magnitude of p2 = § Rx(t)llzdt is finite. It follows from (2.7) that Vf (x{t), C¢)) = Vg (x(0), C(0)) + o, l.e., the

solution of the system of differential equations (0.1), (0.2), (0.4) is bounded and continuous on the interval
{0, »). Further, the right sides of Eqs. (0.4) are quadratic forms of the vector x. Therefore, there exists
a finite limit lim C(t), l.e., condition (I) of Definition 1 is fulfilled. To verify condition (I), we note that for

any t = 0 the equality

[}

BOF =2 [ (914e(s) + BC* () L*2(9) + £ ds + = OO @.8)
is valld. Since the Integral in the right side of (2.8) is absolutely convergent, the limit 5[:2 Ix@)i? = u exists.
But'z Bx )2t < =, and therefqre u = 0 and the adaptive design of the system is proved.*

Remark 1. It is possible to show [by using (2.7)] that for any t = 0 the inequality
Vil (1), C) << V(2 (0), C(0)) + 3 < n?/ (fny), 2.9)

is valid, glving a bound on the maximum devlation of the phase coordinate of the system (0.1), (0.2), (0.4)
during the whole adaptive process.

Remark 2. Theorems 2 and 3 for the case m =1 are proved in [15].
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