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ABSTRACT. An overview of nonlinear continuous-time adaptive control is given
focusing on evolution of control objectives from conventional regulation and
tracking towards synchronizing and modifying complex system dynamics: periodic
or chaotic oscillations. The unified framework for such presentation employs
the concept of the speed-gradient. The schemes of control and adaptation
algorithms are given as well as stability condition.
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1. INTRODUCTION

The importance of taking into account the plant
nonlinearity when adaptive control design has been
demonstrated recently in robotics (Ortega, Spong,
1989), in power systems (Vesely, Mudroncik, 1991),
in chemical and biotechnology {Bastin, 1992). Some
attempts were also taken to use the concept of
adaptive control for investigating the systems
with complex nonlinear (e.g. chaotic) dynamics
(Hibler, 1989; Vassiliadis, 1994), having more
applications in physics, biology, communications,
etc.

The development of nonlinear adaptive control
(NAC) theory is also stimulated by recent progress
in general nonlinear control theory (see, e.g.
Isidori, 1989). However the existing NAC theory is
still far from completeness. Therefore it worth
trying to track main  tendencies of its
development. The evolution of such concepts and
approaches in NAC as feedback linearization,
compensation, Lyapunov and passivity approaches
was briefly exposed in Fradkov, Hill (1993) (see
also surveys by Kokotovic, Kanellakopoulos, Morse,
1991; Praly et al,1991; Fradkov, 1990).

The present paper is focused on the role and
evolution of the control goal which is (together
with the plant model) the main component of the
control problem. Both the conventional goals
(regulation, tracking) are considered, but also
some new ones (swinging, synchronizing) which are
typical for control of oscillating systems. It is
shown that the general "speed-gradient" framework
that has been widely used for treating the
conventional problems of nonlinear adaptive
control (see Fradkov, 1991; Stotsky, Fradkov,
1992) is also applicable to the control of
nonlinear oscillations. Examples of speed-gradient
control of periodic and chaotic oscillations are
given extending some previous results obtained by
other methods. The main results are formulated for
continuous-time case.

The paper is organized as follows. In Section 2
the general adaptive control problem statement is
given. The speed-gradient approach is briefly
described in Section 3. Section 4 is devoted to
the adaptive synchronization of periodic and
chaotic motions. In Section 4 the problem of
swinging control is considered.

2. THE FORMULATION
OF THE ADAPTIVE CONTROL PROBLEM

Consider the continuous-time version of general
adaptive control problem statement suggested by
V.A.Yakubovich (1968) (see also Fomin, Fradkov,
Yakubovich,1981). Given the plant state equations

% =F(x,u,tE), y =G(x,u,tE), t20, (2.1)

where x¢ Rn, uGRm, y€Rl are vectors of the plant
state , input and output , correspondingly;

EEECRn is vector of unknown parameters which is
from a priori known set £ . The control objective
is given as

le & for t t, (2.2)

where Qt= Qt[x(s) , u(s) ; 0Ossst] 2 0 is the
objective functional.

The problem is to find the two level control
algorithm

u{t)= U {y(s),u(s)B(s); 0 s s st], (2.3)

8(t)= Ot[y(S),U(S),O(S); 0<s=st], (2.4)

ensuring the aim (2.2) in system (2.1),(2.3),(2.4)
for any E€Z. Here O(t) is a vector of adjustable
parameters, Q , U, 6t are nonaticipative
operators. The first level of the algorithm (2.3)
is called the main Joop control law. Algorithm
(2.4) is called adaptation law.

The above general problem encompasses different
more specific problems, arising for special
choices of plant equations (2.1) and the objective
functional in (2.2). For example choice

Q= le—xall; (or Q= uy-y‘u; ) (2.5)

where P=P'>0 is positive definite nxn- (or Ixl)
matrix, corresponds to state (output) regulation
problem. More generally, the choice
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Q.= Ix-x (12 (or Q.= Hy-y ()17 ) (2.6)

corresponds to the state
signal x (t) ( or y (t)).

(output)tracking for

Note that the vector-function x*(t)( or yx(t))

can either be given explicitly or appear as a
solution of some auxillary equations. Those
equations are often reffered to as reference
equations or reference model because it specifies
the behavior of the adaptive system. For example,
the reference model can be of the form

%,=F (x b, ¥,=6 (x,.t) (2.7)

The reference model can also appear implicitly as
a set of parameters, e.g. when the objective
functional is given in the form

t
: 2
Q.= [ iF (0

(2.8)

3. SPEED GRADIENT ALGORITHMS

A lot of existing NAC algorithms can be analyzed
and designed in the following framework. Suppose
the main loop (2.3) is already chosen where
UL[...] is memoryless operator and substitute

(2.3) into (2.1). The obtained dynamic equations

x=F(x,0,t), t20 (3.1)

(dependence on £ is omitted for simplicity)
represent some controlled plant with new input
vector 8. Now the achieving the control goal

QL40 for tow (3.2)

for the plant (3.1) can be ‘regarded as an

independent control problem.

To solve this problem introduce function ©(x,6,t)
as a speed of changing Q, along trajectories of
(3.1). Particularily for functional
Q,=Q(x(t),t) we have ©(x,0,0=(v_0) F(x,0,t). Then

we can build the speed-gradient algorithm in its
most general, so called combined form looking as
follows (Andrievsky et al,1988):

memoryless

d

ac (3.3)

[0+(x,0,8)=-17 u(x,8,t)

where y( ) satisfies
wTVuwZO and I'=I''>0 is mxm gain matrix. The

pseudogradient condition

equation (3.3) can be rewritten in integral form
. t
6=-p(x,0,t)-Tf v Q_ds

The main special cases of (3.3) are SG-algorithm
in differential form

d -
50 = -1Yex0t (3.4)

and SG-algorithm in the finite form
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B=-p(x,8,t) (3.5)

The typical forms of algorithm
and relay ones:

(3.5) are linear

¢]

i

- IV 0(x0t), (3.5a)

6 = - Tsign{V w(x,0,t)} (3.5b)

where components of vector sign{z} are signs of
the corresponding components of vector z. The

following stability theorems for SG-system
(3.1),(3.3) can be proved. (see e.g. (Fradkov,
1990).

Theorem 1 (combined form). Assume that the right
hand sides of the system (3.1),(3.3) are smooth
functions in x,0 which are bounded together with
derivatives in any region where the function
Q(x,t) is bounded. Assume also that «(x0,t) is
convex in O and the following stabilizability
condition is valid:

there exists G*ER"' such that

W(x,8,,t)50. (3.6)

for all xeR". Then Q(x,t) is bounded along
each trajectory of (3.1),(3.3).
Besides, if the asymptotic stabilizability
condition is valid

w(x,0,,t)s-e(Q(x.1)) (3.7)

Q>0, then the goal (3.2) is
(3.1), (3.4).

where p(Q)>0 for
achieved for all trajectories of

The proof of the theorem is based on Lyapunov
function

V(x,0,£)=Q(x,t)+(27)" ' 10-0 i? (3.8)

In the case when it is difficult to find constant
"jdeal" control 6,, satisfying (3.6) or (3.7),

SG-algorithms in finite form may be applied. Their
applicability conditions are as follows.

Theorem 2 (finite form). Assume that function
Q(x,t) is smooth and the right hand side of the
system (3.1) is smooth function in x,0 , bounded
together with its derivatives in any region where
function Q(x,t) is bounded. Assume that equation
(3.5) is solvable for € for any =x€R and a
solution of system (3.1),(3.5) (e.g. Filippo,y
solution) exists locally for any initiai x(0)€R’.
Assume also that o(x,8,t) is convex in & and
satisfies stabilizability condition (3.6).
Then Q(xt) is bounded along each trajectory of
(3.1),(3.5).

Besides, if the asymptotic stabilizability
condition (3.7) and the following strong
pseudogradient condition
T, 8
¥’ _0(x,0)2819 u(x,0)I (3.9)

are valid for some p>0, 6>0, then the goal (3.2)
is achieved for all trajectories of (3.1), (3.5).




Remark. It can be shown that the goal (3.2) is
still achieved under weakened stabilizability
conditions: for some bounded 6,(xt) the

inequality (3.6) is valid as well as the following
stabilizability condition in integral form:

there exist the sequence of time instances tk-'m ,

k=1,2,... and the sequences of nonnegative numbers
., P, such that

Qku' ka-kakwk' kzip‘(:w, “k/pu_'o (3.10)

where Qk=Q(x(tk),tk).

Note also that Lyapunov function proving the
theorem 2 is just the objective function Q(x,t).
More statements of the SG-algorithm properties can
be found in (Fradkov, 1990). Choosing various
types of plant equations, input and output vectors
various objective functionals and vector-funtions
¥(x,6,t) , one can obtain different structures of
control algorithms in specific problems. For
system stability analysis the theorems 1,2 can be
used (as well as the other statements, see Fradkov
(1990) for studying the properties of SG
algorithms in the presence of disturbances). This
is the essence of speed gradient method.

In adaptive control problems the SG-method can be
used both for the main loop and for adaptation
algorithm design. In the latter problem the
equation (3.1) represents the generalized
controlled plant , obtained by substitution the
main loop control law into the plant equation. In
this case the inputs of the plant are adjustable
parameters (controller parameters , the parameters
of adjustable model etc.). Different applications
of SG-method to regulation and tracking algorithms
design can be found in (Andrievsky et al 1988;
Stotsky, Fradkov, 1992). Consider some
applications of SG-method to adaptive control of
oscillations.
4. MODEL REFERENCE CONTROL
AND SYNCHRONIZING OSCILLATIONS

The problem of (two or more) oscillating processes
synchronization has a variety of applications in
mechanics, biology, electronics, etc. (Lindsey,
1972; Blechman, 1988). It is formulated as follows
(Blechman, 1971):

Given equations of N interacting subsystems

n
* e ) .
xl=F‘(x1,...x",u,t), X ERi ,i=l..r  (4.1)
and connection system equation
. m
u=U(x1,...xn,u,t), u €R , (4.2)

find conditions of existence and stability of
T-periodic solutions x_(t), u(t) of (4.1), (4.2).

The adaptive synchronization problem can be posed
as follows. Given equations

XTF (XX WEE), Flr (4.3)

find the equation of the control algorithm

u=U(xl,...xN,6,t)) (4.4)

and adaptation algorithm

0=8(x ,...X,,0,t) (4.5)
ensuring the control goal
lIx, (t)- X, (t) 158 for ©t, (4.6)°

The problem (4.3)-(4.6) looks very much like the
general adaptive control problem of Section 2, if
the notation is introduced x=(x 1,...xN)ER , n=2ni

and the objective Ql=llx(t)—7(t)llm. The difference
is that x(t)T, and Q, in (4.3)-(4.6) are not

given a priori Moreover, the periodicity of‘ x(t)
also is not necessary. The complete reduction to
the problem of Section 2 can be performed for

special case: adaptive synchronization with
reference model In this case

x(t) is a solution of conventional system (4.1),
(4.2) playing a role of reference model However
the existing MRAC methods cannot be applied
directly because they usually require asymptotic
stability of reference model, while oscillating
systems correspond to the boundary of stability
region and chaotic systems are Jocally unstable
(see Wiggins, 1988).

For cpecial case of linear controlled plant the
high-gain adaptive stabilizer was suggested by
Helmke et al (1991). Kazakov, Shirokov (1992)
studied the identification-based adaptive
phase-locked loop design. The synchronization
algorithm for two chaotic systems (drive and
response) was suggested by Carrol, Pecora (1991).
Their idea is to replace the part of the response
system state variables by the corresponding state
variables of the drive system. The synchronization
model is as follows: .

&=f|(v,u), &:fz(v,w) (drive) (4.7)

\)’:fl(v',w'), fw':fz(v,w') (response) (4.8)

Kosarev et al(1993) gave the general convergence
(synchronization) conditions for scheme with
linear synchronizing signal:

x=F(x) (drive) (4.9)
x=f(x)+K(X-X) (response) (4.10)

Kosarev et al showed that the distance between
solutions of the systems (4.9) and (4.10) is small
provided K>0 is sufficiently large.

In fact both the scheme (4.7),(4.8) and the scheme
{(4.9),(4.10) are special cases of the system

x=£(X), x=f(x)+g(x)u, (4.11)

where u=U(x,X) is the control/synchronization
signal to be determined (In case of (4.7),(4.8) we
may assign x=(v,w)}, g(x)=1, u=f év,w')—f Lv',w')).

Note that the known applications of
Pecora-Carrol's method (Rossler system
(Pecora-Carrol, 1991), Chua's cirquit (Murali,
Lakshmanan, 1992), Lorenz equation (Cuomo et
al,1993)) have function fz(v,w) linear in v.
Hence the convergence of the synchronized

trajectories in this scheme (as well as in the
scheme (4.9),{4.10) ) can be established by means
of speedggradjent _method (Theorem 2 with
Qt=llv—v’|| or Qt=llx-x 1¥). Using other objectives
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leads to the extended convergence conditions.

Note also that if the right-hand sides of
(4.7),(4.8) (or functions £(.), £(.) in
(4.9),(4.10) ) differ in finite number of
parameters then the adaptive control scheme of
section 2 applies (see also example in section 5).

5. CONTROL OF CHAOTIC OSCILLATIONS.

After the first publications in control of chaos
the class of available control goals extended
significantly. The following types of the control
goals for oscillating systems can be mentioned:

- swinging oscillations (transition from rest
position to periodic or almost periodic
oscillations);

- transition from periodic to chaotic motions;

- transition from chaotic to periodic motions;

- suppressing oscillations (transition from
oscillations to the rest position.

The simple kind of control was suggested by
Hiibler(1989), Hiibler, Luscher(1989). It
corresponds in (4.11) to the control law

u=K{E(R)-£(%,0,6,) K Ix-£(X,0,E0)]  (5.1)

for K=1. It is just the control counterpart of
synchronization law (4.7), (4.8) by Pecora, Carrol
(1991). For appropriate value of K the feedback
disconnects and the law (5.1) determines the open
lJoop system. It means that the signal (5.1) can
be obtained without any measurement, by means of
numerical integration, (Hiibler, 1993).

Another kind of open loop control is excitation by
external periodic force. It is known that such an
excitation is able to both stabilize (synchronize)
the system and ‘“chaotize" it (Leonov,b1986;
Neimark, Landa, 1987; Wiggins, 1988). However the
feedback laws, e.g. SG-laws, are more robust to
the disturbances and hence allow for achievement
of more complicated aims.

To demonstrate application of SG-algorithms
consider the simple 2nd order system: Duffing
equation:

ee . 3 -

YutPY *P Y, Y= § cos wt (5.2)

As it is known (see, e.g. Chen,Dong,1993) the
dynamic behavior of solutions of (5.2) is
different for different £ (e.g., for p=0.4,

p1=-1.1, w=1.8, £=0.62 - periodic; £=1.8 and §=2.1

- chaotic, §£=2.3 - periodic). Introduce the
controlled plant

Y +py +p,Y = £,C0S Wt + u {5.3)
where Eo is unknown parameter and the main loop
control law

u=6cos Wt +u (5.4)
where © is adjustable parameter, u is the bias
signal
The control goal y(t)-y,(t}»0 when t+® can be
reformulated in form (3.2) where x=(y,§{) and Qt(x)
= (x-x,)TP(xx,), P=PT>0 - 2x2-matrix.

Calculating the speed-gradient Voét gives
VOQt = [0 cos wt:] P e, e=x-X, .

All the conditions of the theorem 1 are valid
except for the stabilizability condition (3.7). To

satisfy (3.7), choose G:—K(y—y*)wa—yi and take
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P=PT>0 as a solution of Lyapunov equation

T__ _»T = 0 1
PA+AP =-R, where R=R >0 , A ~(Kip } -p
It follows from the theorem 1 that the control
goal (3.2) is achieved, if the adaptation law is
taken in PI form

t
e(t)=-yoé(t)coswt—yljo 8(s)(cosws)ds, (5.5)

where 8(t)=eTPb, b=[0,1] .

More details can be found in (Fradkov, Pogromsky,
1994). Note that as in the case of synchronization
there are some results on modifying dynamic
behavior of the chaotic systems using linear
proportional feedback {see (Chen,Dong,1993),
(Hartley, Mossayebi 1992), (Murali, Lakshmanan,
1993). These results also can be derived and
extended using speed-gradient approach.

Other existing approaches to control of chaos are
based upon harmonic balance (Genesio et ail,1993)
and bifurcation analysis (Wang, Abed, 1993).

6. SPEED-GRADIENT ALGORITHMS
FOR HAMILTONIAN SYSTEMS

The convenient mathematical description for
oscillating system is Hamiltonian form. It allows
for explicit describing surfaces of constant
energy where unforced motions stay. The
Hamiltonian form of controlled plant equations is
as follows:

.  3H - _aH
P=-3gq *tbu, a=35, (6.1)

where p,q€R” are generalized coordinates and
impulses; H=H(p,q) is Hamiltonian fu'x;.lcu'on {total
energy of the system); u=u(t)€R is input
(generalized force); b is n x m input matrix.
Introduce the control goal as approaching the
given energy surface:

s ={(p.q):Hpa) = H, } (6.2)
The control goal can be formulated as

H(p(t),q(t)) - H, when t o, (6.3)

or in the form (3.2), where x=(p.q), and

alx) = 3 [ H(pa) - K,1° (6.4)

To build SG-algorithm calculate Q :

.

_ o H
Q = (H-H,) 5o~ bu (6.5)

The differential SG-algorithm (3.4) can Dbe
represented in the form:

u=-7v(HH)D & (6.6)

where 7 >0 - gain coefficient.
The finite forms (3.5a), (3.5b) look as follows :

u=-7(H-H)Db g (6.7)
u = -7 sign [(H-H,) b" q ] (6.8)



To analyze the behavior of systems with algorithms
(6.6)-(6.8) theorems 1, 2 can be used. It can be
easily seen that the differential algorithm (6.6)
satisfies conditions of the theorem 1 with
stabilizability condition in form (3.6) for the
constant u,® 0. It follows from theorem 1 that

H(p,q9) is bounded along the trajectories of the
system (6.1), (6.6) together with Q(x). However
the theorem does not ensure achievement of the
inijtial goal (6.3). As a matter of fact the goal
(6.3) is not achieved by the system (6.1),(6.6),
demonstrating complex behavior (see Fradkov,
Guzenko 1994).

The better convergence give algorithms (6.7),
(6.8). Taking, e.g. u,= - (H-H,) b’ q  we obtain
from (6.5) (')=-ZVQ(:1TbbT Q)®. It means . that

condition (3.7) is not valid, because Q may
vanish in some instants t >0, «=1,2,... However

the stabilizability condition is valid in the
averaged (integral) sense (3.10) and the goal
(6.3) is achieved according to the remark to
theorem 2 , if rank b=m.

The important feature of control algorithm is its
ability to achieve arbitrarily large level of
objective function with arbitrarily small level of
control action. It looks like the ability of the
seesaw to be swung up by small pushes and can be
called swinging property. The remark to the
theorem 2 implies that any Hamiltonian system
admits swinging control. The simulation results
for pendulum (Fradkov, Guzenko, 1994) confirm
swinging properties of the algorithm (6.7).

The above approach applies for the case of more
complicated desired system behavior. For systems
with several degrees of freedom composed from
several subsystems the objective function can be
taken in the form :

_ _ *x. 2 _
Q= (X’(HI Hl) .o . ap(!{p Hp)

where H‘ is an energy of i-th subsystem; @z 0 is
weighting coefficient.

7. CONCLUSIONS

The speed-gradient scheme of nonlinear adaptive
control can provide systems with various
properties, including synchronized and chaotic
behavior. To extend the applicability of the
approach some more sophisticated objectives may be
used, e.g. energy, enthropy, Hausdorff dimension,
etc. The further extension may consist in
weakening matching conditions utilising, e.g. the
results of Kanellokopoulos et al(1992) or
Druzhinina, Fradkov (1994).

An important property of "good" control of
oscillations is one of "swinging", that means
achievability of arbirtary value of objective
function by means of arbitrary small (law gain)
control It was shown that SG-algorithms provide
swinging in Hamiltonian systems.

Notice, finally, that for discrete-time system the
speed-gradient should be replaced by the usual
gradient. The general convergence results for
algorithms of Ott et al (1990), Nitsche,
Dressler, (1992), Chen, Dong (1992) can be
obtained on this waym that will be demonstrated
elsewhere.
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