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Abstract

The method of parallel feedforward compensator
(”shunt”) developed earlier for adaptive control of linear
plants is extended to a class of nonlinear minimum phase
plants. The new design of shunt output feedback adaptive
controllers achieves global stability of the system solving
the regulation and tracking problems. The total order of
the auxillary filters is reduced by half compared to exist-
ing results. The performance of the proposed adaptive
controller is illustrated by example of controlling chaotic
trajectories of Duffing equation to the periodic orbits.

1 Introduction

The problem of adaptive control using plant output mea-
surements attached attention of researchers for more than
two decades (see [2, 18, 19]). Among different existing
approaches 1t is necessary to mention ”augmented error
signal” [17, 5], high-gain or variable structure observers
([21, 15]). Recently a new approach based on parallel
feedforward compensators (shunts) drew much attention
because it provided relatively simple adaptive control laws
for high order plants. Shunt is an auxillary linear system
which looks like a by-pass augmenting the plant and 1s im-
plemented as a feedback in the controller. A special ses-
sion was devoted to this approach at 13th IFAC Congress
(see Preprints of 13th IFAC World Congress, Volume K,
session 3b-11).

The method of shunt was extended to nonlinear plants
in [3, 14], where the inverse of some stabilizing feedback
was suggested to use as a shunt. However to apply the
method of [3] it is necessary to find some stabilizing con-
troller which itself is not an easy task. An alternative ver-
sion of shunt for nonlinear plants was proposed in [8]. It
was shown that it provided asymptotic output feedback
stabilization and tracking for arbitrary minimum phase
plants in normal form with known gain under some mild
technical restrictions. However the adaptive controller
in [8] includes a number of linear filters of total order

l-(2r — 2), where r is relative degree of the plant, [ is
number of unknown parameters.

The purpose of the present paper is to propose the
shunt adaptive contoller of reduced order. It is shown in
section 2 that the wide class of nonlinear minimum-phase
plants having relative degree r can be passified and there-
fore stabilized by shunt of order » — 1. The total order of
filters is reduced by half compared to [8]. This result gives
possibility of simple adaptive controllers design for regu-
lation and tracking problems considered in the following
sections.

2 Stabilization of SISO

minimum-phase plants

Consider nonlinear affine in control plant model
&= f(x)+ glx)u, y=h(z), (2.1)

where £ € R” is state vector, u € R' is input, y € R! is
output, f, ¢, h are smooth functions such that f(0) = 0,
h(0) = 0, i.e. origin # = 0 is equilibrium of free system

The problem is to stabilize the system (2.1) by means
of dynamic output feedback

U= U(y,$u), Ty = X(yaxu) ) (22)

ensuring boundedness of all the trajectories of (2.1), (2.2)
and achievement of the goal

(2.3)

z(t) — 0, x4(t) — 0, when ¢ — oo.

where 2, € R™* is controller state vector.

Recall that the plant (2.1) is said to have relative de-
gree 7 at the open set D C R”?, if for all x € D the
following conditions are satisfied

LyLih(x) =0, k=0,1,...
Ly L™ h(z) # 0,

=2

bl

(2.4)

where Lyt(z) = >0, g—wgoi(x) stands for the derivative

xr

of function ¥(z) along vector field ¢(x) (Lie derivative,



see [13]). If system (2.1) has relative degree r in the open
set D, then there exists smooth nonsingular coordinate
change z = ®(z) , » € D, such that system (2.1) model
has in new coordinates so called Isidori’s normal form
ZI'Z'IZZ'_|_1 s i: 1,...,7“—1

Zr = a(z) + b(z)u ,
Z=q(z), y==,

bl

(2.5)

where a(z) = L;h(q)_l(z)), b(z) = LgL;_lh(CI)_l(z)), z=
(Zr41,---,2n) € R"™". The subsystem

S = gol2) | (2.6)
where qo(Z) = ¢(0,...,0,Z) describes the motions of
(2.1) consistent with y(¢) = 0, it is called zero dynam-
ics of (2.1). System (2.1) is called weakly minimum phase
(resp.minimum phase, exponentially minimum phase), if
zero dynamics (2.6) are Lyapunov stable (resp. asymp-
totically stable, exponentially stable).

Let us consider functions a(z) which include not only
directly measured quantities but also any linear functions
of ' i=1...r—1, ie.

a(z) = ao(y) + A(p)y, a(0) =0

where A(p) is polynomial of degree v — 1, p = d/dt is
operator of time differentiation.

(2.7)

Introduce shunt system (parallel feedforward compen-
sator) as follows

(p+ 1)T_177 = ke(pe + 1)T_2(b(z)u + ao(y)) , (2.8)

where 7 is auxillary variable, & > 0, € > 0 and consider
augmented plant model described by equations (2.1), (2.8)
and output equation

Ya=y+7, (2.9)

It is to be noted that after change of control variable w =
b(z)u equations of augmented plant (2.5),(2.8) may be
rewritten in form

Py =ao(y) + Alp)y+ 7,
7=q(2),
(p+ 1)T_17] = ke(ep+ 1)T_2(U—I— ang(y)) .

The first equation of (2.10) after adding to both sides the
term

(2.10)

Hp)y=@+1)'y-p"y, degH(p)=r—1

reads as follows

(p+1)y=aoly) + Ap)y +7 , (2.11)

where fi(p) = A(p) + H(p), degfi(p) =r—1

Therefore the augmented output y, satisfies equation

(p+1)'ya = Alp)y + G(p)(ao(y) +7) , (2.12)

where G(p) = 1+ ke(ep + 1)"=?(p+ 1) is polynomial of
degree 7 — 1 with leading coefficient go = ke"~% . Since

(p+1)(ep+1)"~2 is Hurwitz polynomial, it can be shown
[10], that there exist number kg > 0 and function eg(x) >
0 such that G(p) is Hurwitz polynomial for £ > kg, 0 <
€ < €p(k). Pick up such « and ¢ and introduce function
a(t) satisfying differential equation

G(pya(t) = Alp)y,

Now we are in position to formulate the main result
of this section.

a(0) =0 (2.13)

Theorem 1 Let the system (2.1) have relative degree r
in any bounded set and its normal form (2.5) satisfies the
following assumptions:

Al. Punction a(z) has the form (2.7) and is locally
Lipschitz.

A2. Function b(z) is available for measurement, i.e.
b(z) = b(y), and b(y) # 0 for ally € R*.

A3. FPunction q(z) is locally Lipschitz and plant (2.1)
1s exponentially minimum phase.

AY. Punction q(z) can be represented in the form

q(2) = q(2,Z) = (2) + (£, 7) 7,

where ||q1(2,2)|| < Co(1+ ||Z]]) for ||Z]]| < a, Co >0 .
Then there exist numbers k > 0, ¢g > 0 such that

for any bounded set Dy of wnitial conditions there exists

positive nonincreasing function Ko(e) such that for any €

s 0 < e< e system (2.1), (2.8), (2.9) closed by feedback

ult) =~ U+ a0) + ()
where a(t) is the output of the filter (2.13),

is asymptotically stable for K > Ky(e) , its trajectories
are bounded and the goal (2.3) is achieved.

(2.14)

It follows from Theorem 1 that the plant (2.1)

with relative degree r satisfying Al-A4 can be
asymptotically stabilized by dynamic output feedback
(2.8),(2.9),(2.13),(2.14).
Proof: Suppose with no loss of generality that system
(2.1) already has normal form (2.5). Fix open bounded set
Do C R™7~1 of initial conditions of system (2.5), (2.8),
(2.9), (2.14).

It is clear that y, is output of linear system
(p+1)"ya = G(p)(ao(y) +a +7)

with new input ag(y) + @ + u. This system is minimum-
phase and has relative degree 1. Therefore it can be
represented in special coordinate basis with state vector
W= (Ya,€), €€ R in normal form, similar to (2.5):

(2.15)

Ja = diya +d€ + go(ao + T +7)
§=GE+TYa
where G is (r — 1) x (r — 1) matrix, d ,7 € R"~! and
det(AI — G) = G(A)/go [20, 21]. Finally, represent the

second equation of plant (2.10) in form

(2.16)

Z=q(2) + (3, %)%, (2.17)



where £ = (z1,...,% ) = Sw, S is r X r constant matrix;
q1(%,%) is smooth function, continuous in Z = 0, w =
(Yq,€&) . Introduce also state vector of the whole system
w = (m, ?) .

Pick up initial conditions wy = (y4(0),£(0),Z(0)) in
system (2.16), (2.17) from the compact set D correspond-
ing to above defined set Dy. To prove asymptotic stability
of system (2.14), (2.16), (2.17) use Lyapunov function of
form

Vitw) = pln(1 4+ Vo) +€7PET 2, (218)
where g > 0, Vy(Z) is Lyapunov function establishing
exponential stability of zero dynamics (2.6); P = PT >
0is (r = 1) x (r — 1) positive definite matrix satisfying
PG+ GTP = —21,_1, I,_; is identity matrix. Function
Vo(Z) satisfies quadratic type inequalities [16, 11]

Pl < Vo () < pollF1P, (IVVa(@)I] < pslll

VVo(2)" 0(2) < —pollZ]]? (2.19)

with some positive pg ,..., p3.

Apparently function (2.18) is positive definite and
proper, i.e. set D = {w o WVi(w) < VO} is com-
pact for all V5 > 0 . Choose Vy such that D > D
and calculate derivative of function (2.18) along trajecto-
ries of (2.16),(2.17) using assumption A4 written in form

||ql(§,,.z_)||2 < Co(1 + Vy(7)) for some Cy > 0 (see [8]).
Then Vi(w) < A+ B+ C |, where

W — mplER L psCollSI-IE -l
1+ Vo(z) 1+ Vo(2)
— 1€ = Jyal? |
B = —IEl? +21I€ll - lyal (I1PFI + 1d]]) —
—(11Pgll+ 1111wl
C = 22y + 1+ (|PgI+ (ID1)? — 200 K].

The quantity A is a quadratic form of variables

[IZ1]/+/(1 + Vu(Z)) and ||w||. Therefore it is negative def-
inite if 4ppg > (pp3CollS]])?, i-e.

p< 4P0/(P300||5||)2 :

The quantity B is already nonpositive, and ' becomes
nonpositive for K > Ky , where Ko = [2d1 + 1+ (||Pg]|+
||d||)?]/2g0. Obviously, Ko depend on e and function
Ky(e) can be made nonincreasing.

We have proved that V;(w) < 0 for w € D and, there-
fore all the trajectories of system are bounded. Decreas-
ing 1, if necessary, one may ensure that V3 (w) < —é||w]||?
for some 6 > 0. Therefore function [|w(t)||? is integrable
and in view of boundedness of trajectories, using Barbalat
lemma, we have y,(t) — 0, £(t) — 0, Z(t) — 0, when
t — oo . This in turn yields y(t) — 0, y®(t) =0, k =
0,1,...,7—1, that proves theorem. n

(2.20)

Remark 1. Assumption A4 overbounds quadratically
the rate of growth in 7 of right hand side of the last equa-
tion (2.5). However the knowledge of this bound is not

required for control algorithm. Note also that stabiliza-
tion is global in case when functions ¢1(z) and a(z) are
bounded since in this case parameter p of Lyapunov func-
tion (2.18) can be chosen from (2.20) independently of
initial conditions.

Remark 2. The proposed controller is not adaptive
and contains design parameters: gain K and parameters
of shunt x, €. Note that shunt parameters do not depend
on parameters of the plant. Moreover for » = 2, 3 one
may take £ = 1 as it seen from Hurwitz criterion for G(p).

Remark 3. Extension of Theorem 1 to MIMO plants is
straightforward when the plant (2.1) has uniform relative
degree (r,r,...,7).

Remark 4. Tt follows from the proof of Theorem 1 that
the control law

w=—[by)] " [Kya +a(t) + ao(y) + v(1)]

with new input v(¢) ensures semiglobal output strict pas-
sivity [9] of the system (2.5),(2.8),(2.13),(2.21) with stor-
age function (2.18).

(2.21)

3 Adaptive stabilization of

minimum-phase plants

Although the proposed controller does not need much
apriori information about controlled plant, the required
information may be further reduced by means of tuning
gain K. Adaptation algorithm can be derived by speed-
gradient method [7, 6], taking Lyapunov function (2.18)
of nonadaptive system as the goal function:

(3.1)

where 79 > 0. Standard arguments based on Lyapunov
function

K =7yy?,

Va(w, K) = Vi(w) + govy L (K — Ko)”

show that all the trajectories of system (2.1), (2.8), (2.13),
(2.14), (3.1) are bounded and the control objective (2.3)
is achieved.

If additional structural information about plant non-
linearity a(z) is available then it may be taken into ac-
count when choosing the adequate structure of controller.
Suppose for example that a(z) has the following form

l

a(z) = ao(y) + APy + Y _ biai(y) ,

i=1

(3.2)

where a;(y) are known (measured) functions, 6; are un-
known constant coefficients. Then the structure of adap-
tive controller can be taken as follows:

b(y)

where éZ are estimates of unknown parameters ¢; and func-
tions a(t),a;(t) are the outputs of [ + 1 identical filters:

Kya + ao(y) +a(t) + Z g;a(t)| , (3.3)

G(pa(t) = A(p)y,

Glp)a;(t)=a(y®)) i=1,...,1. (3.4)



After applying speed-gradient method with objective
function (2.18) the following adaptation algorithms are
obtained

K =

Yo¥s s Y0 >0, (3.5)

f;, = ~yiya6i(t) , v >0,i=1,...,1.
Theorem 2 . Let the conditions of Theorem 1 be valid
and plant model (2.5) have structure (3.2). Then there
exist values of parameters k , € such that algorithm (2.8),
(2.9), (3.3)-(3.5) ensures boundedness of the trajectories
and achievement of the goal (2.3).

Proof of the theorem is standard. It is based on Lya-
punov function

l
Va(w, K,0) = Va(w, K) + g0 3 77 (6: — 6;)"  (3.6)

i=1

Remark 1. Functions ¢;(-) in (3.2) may depend also
on time and include not only directly measured quantities
but also their derivatives up to the order of relative degree
of filters (3.4), i.e. up to r — 1. Therefore any linear
function of () | i =1,...,r =1, multiplied by unknown
parameters may be added to (3.2).

4 Time-varying plants and track-
ing
All the above designs apply to the time-variant plant if

the plant model can be transformed to the normal form,
similar to (2.5):

'éi:zi-l—la i:l,...,?”—l,
Zr = a(z,t) + b(z,Du , (4.1)
7=q(z,1) .

Assumptions A1-A4 should be replaced by the following
ones:

Al. Punction a(z,t) is smooth and locally bounded
together with first partial derwatives uniformly in t > 0;
and a(0,...,0,Z,4) =0 .

A2, b(z,t) = b(y,t) and there exists & > 0 such that
[b(y, )| > & for all y,t .

A3. Function ¢(z,1) is smooth, ¢(0,0) = 0 and system
7=4q(0,...,0,%,1) is exponentially stable, i.e. there exists
Lyapunov function Vy(Z,t), satisfying standard quadratic-
type inequalities [16, 11].

AY. Function q(z,t) can be represented in the form

Q('ga?at) = (JO(Zt) + ql('gagat)'g 3

where [lay(5,%, )| < Ca(1+ [IZl]) for [IF] <, ¢ 0.

Theorems 1,2 hold true for plant (4.1) under assump-
tions A7-A4. Tt allows to solve problem of tracking where
the goal (2.3) is replaced by the goal

e(t) =0 as t — o0,

(4.2)

where e(t) = y(t)—ya(t) , ya(t) is desired trajectory of the
plant output. To reduce this problem to the previous one
just take z; = e(?) in (4.1). Then the highest derivative of
command signal y(¢) will appear in the second equation
of (4.1), while augmented error will be e,(t) = y(t) —
ya(t) + n(t) -

All proposed algorithms apply with obvious changes
and Theorems 1,2 hold true (i.e. the goal (4.2) is achieved)
if the command signal y4(¢) is bounded for ¢ > 0 together

with its derivatives yglk)(t) Ck=1,... 7

5 Example: Adaptive control of
Duffing equation

To illustrate the proposed design consider the controlled
forced Duffing equation

§(t) + ary(t) + azy(t) — asy®(t) =
= aqcos wt+ bu(?) (5.1)
that has become a traditional example of oscillating sys-
tem with complex dynamics. In (5.1) u(t) € R! is control
action, y(t) € R! is plant output, aj,as,as,as are
unknown parameters.

Denoting z1(¢) = y(t), »2(t) = y(t), rewrite (5.1) in
normal form (2.5):

#1(t) = wa(t),
Ta(t) = alwy, 22, 1) + bu(?).
where
a(zy, 29,1) = —ar1x2(t) — aseq(t) + Clgl‘?(t) + a4 cos wt
Obviously in this case » = 2 and there is no zero-

dynamics. Introduce the shunt filter
(p+ )nt) =eb-u(?) . (5.2)

Assuming b = 1 the augmented output y,(¢t) = y(¢) +
+n(t) satisfies the following equation

(P + Dya(t) = aly, 9,1) + G(p)ut) + H(p)y ,

where H(p) = 2p+ 1 is polynomial of degree 1 and G(p) =
1+ e€e(p+1) is Hurwitz polynomial for all € > 0.

To obtain the adaptive control law recall that a(y, ¥,1)
has the form (3.2)

4
a(y,9,1) = O1g(t) + Y _ biai(y,1).
i=2

where #; are unknown parameters.
Choose control action as

u(t) = —K - ya(t) —a(t) — Z 6;a(1) | (5.3)



Figure 1: Plant phase plot
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Figure 2: Reference model phase plot

and adaptation algorithm as
K(t) =
(1) =

where @(t), @;(t) are outputs of the following filters

AR (5.4)

Pyya(t)al(t)a 1= 1a2a3a4a

)

e
=~

K3

(ep+e+1)a(t) = (2p+ 1)y,

(ep+ e+ 1)a(t) = —py(t),

(ep+ e+ 1)as(t) = —y(2), (5.5)
(ep+ e+ 1)as(t) = y°(1),

(ep+ € + Day(t) = cos wt.

The convergence of the error y, to zero follows from the
Theorem 2. To solve the tracking problem output y(t)
should be replaced by the error e(t) = y(t)—yaq(t) and y, ()
should be replaced by e, = e + 7 . Also additional filter
for the derivative of reference signal should be introduced
as follows

(ep+ e+ D7l = (p+ D2alt),  (5:6)
and its output F,(¢) should be subtracted from the right-
hand side of control law (5.3).

Simulation results are shown at Figures 1-5. Uncon-
trolled plant has parameters a; = 0.4, as = —1.1, ag =
1.0, as = 1.8, b =1, w = 1.8, corresponding to chaotic be-
havior (Fig.1). Command signal is generated by the refer-
ence model also described by equation (5.1). Tt has stable
limit cycle (Fig.2) for parameter values a1, = 0.6, agm =
—1.3, agm = 1.1, a4y, = 0.6, b, = 1, w = 1.8. Param-
eters of filters are: ¢ = 0.02 and adaptation gains are
vo =7 = 5.0. Transients of plant and model are shown at

2.5

0 10 20
y

Figure 3: Outputs of the plant and reference model vs
time

30] ju

20
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Figure 4: Control action

Fig.3; control action is drawn at Fig.4, typical time history
of adjustable parameters can be seen at Fig.5. One may
see from the pictures that tracking error approaches zero
after a few seconds, while the limit values of adjustable
parameters may differ from the true plant parameter val-
ues. Such kind of behavior is typical for adaptive systems
with implicit reference models [1].

6 Conclusion

The proposed controllers can be used in various applica-
tion problems (control of robots, oscillatory and chaotic
systems, etc.). The results of the paper extend passifica-
tion approach [9] to nonlinear systems with arbitrary rela-
tive degree. Compared to results of [8] our new algorithm
not only reduces filters order but also avoids discontinu-
ities of control law. Note that the algorithm (3.1) is just
special case of the so called Byrnes-Willems controller [4]
or universal stabilizers [12] which was studied still earlier

0 10 20
t
8,1
-5
65
-10

Figure 5: Adjustable parameters vs time



(see [6]).
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