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A survey of the field related to control of chaotic systems is presented. Several major
branches of research that are discussed are feed-forward (‘non-feedback’) control (based
on periodic excitation of the system), the ‘Ott–Grebogi–Yorke method’ (based on the
linearization of the Poincaré map), the ‘Pyragas method’ (based on a time-delayed
feedback), traditional for control-engineering methods including linear, nonlinear and
adaptive control. Other areas of research such as control of distributed (spatio-temporal
and delayed) systems, chaotic mixing are outlined. Applications to control of chaotic
mechanical systems are discussed.
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1. Introduction

The idea of controlling chaos in dynamical systems has come under detailed
investigation during the last decade (see Fradkov & Pogromsky 1998). Starting
with a few papers in 1990, the number of publications in peer-reviewed journals
exceeded to 2700 in 2000, with more than half published in 1997–2000. According
to the Science Citation Index, in 1997–2002, about 400 papers per year related
to control of chaos were published in peer-reviewed journals, see surveys
(Fradkov & Evans 2002, 2005; Andrievskii & Fradkov 2003, 2004), while in 2005
this amount exceeded 500. Authors of numerous papers have developed new
methods for control of nonlinear systems and demonstrated advantages of their
usage for both analysis of system dynamics and significant change of system
behaviour by small forcing.

The state-of-the-art of the field related to control of chaotic systems is
surveyed in this paper. Several major branches of research are discussed: the
feed-forward (‘non-feedback’) control (based on periodic excitation of the
system), the ‘Ott–Grebogi–Yorke (OGY) method’ (based on linearization of
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the Poincaré map), the ‘Pyragas method’ (based on a time-delayed feedback),
traditional for control-engineering methods of nonlinear and adaptive control.
Most attention is paid to the control of continuous-time chaotic systems.

A number of application examples in mechanics and mechanical engineering
are discussed, including control of pendulum systems, beams, plates, control of
stick–slip friction motion, control of vibroformers and control of
microcantilevers.
2. Methods of chaos control

Consider a continuous-time system with lumped parameters described in state
space by differential equations

_x ZFðx; uÞ; ð2:1Þ
where x is an n-dimensional vector of state variables; _xZdx=dt; and u is an
m-dimensional vector of inputs (control variables). A typical goal of controlling a
chaotic system is full or partial stabilization of an unstable trajectory (orbit)
x�ðtÞ of the unforced (uZ0) system. The trajectory x�ðtÞ may be either periodic
or chaotic (non-periodic). An important requirement is the restriction of the
control intensity; only small controls are of interest.

A specific feature of this problem is the possibility of achieving the goal by
means of an arbitrarily small control action. Other control goals like
synchronization (concordance or concurrent change of the states of two or
more systems) and chaotization (generation of a chaotic motion by means of
control) can also be achieved by small control in many cases.

More subtle objectives can also be specified and achieved by control, for
example, to modify a chaotic attractor of the free system in the sense of changing
some of its characteristics (Lyapunov exponents, entropy, fractal dimension), or
delay its occurrence, or change its locations, etc.
(a ) Feed-forward control by a periodic signal

The idea of feed-forward control (also called non-feedback or open-loop
control) is to change the behaviour of a nonlinear system by applying a properly
chosen input function or external excitation uðtÞ. The excitation can reflect
influence of some physical action, e.g. external force/field, or it can be some
parameter perturbation (modulation). Such an approach is attractive because of
its simplicity; no measurements or extra sensors are needed. It is especially
advantageous for ultrafast processes, e.g. at the molecular or atomic level where
no possibility of measuring system variables exists.

The possibility of transformation of periodic motion into chaotic motion
and vice versa by an external harmonic excitation was first studied in the
1980s in Moscow State University by Dudnik et al. (1983) and Kuznetsov et al.
(1985) for the Lorenz system and by Alekseev & Loskutov (1985, 1987) for a
fourth-order system describing dynamics of two interacting populations.
Matsumoto & Tsuda (1983) demonstrated the possibility of suppressing
chaos in a Belousov–Zhabotinsky reaction by adding a white noise disturbance.
These results were based on computer simulations. A first account of theoretical
Phil. Trans. R. Soc. A (2006)
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understanding of the phenomenon was given in Pettini (1988) and
Lima & Pettini (1990), where the so-called Duffing–Holmes oscillator,

€4Kc4Cb43 ZKa _4Cd cosðutÞ; ð2:2Þ
was studied by Melnikov’s method. The right-hand side of equation (2.2) was
considered as a small perturbation of the unperturbed Hamiltonian system. The
Melnikov function, related to the rate of change of the distance between stable
and unstable manifolds for small perturbations, was calculated analytically and
parameter values producing chaotic behaviour of the system were chosen.
Then additional excitation was introduced into the parameter of nonlinearity
b/bð1Ch cos UtÞ and the new Melnikov function was computed and studied
numerically. It was shown that if U is close to the frequency of the initial
excitation u, then chaos may be destroyed. Experimental confirmation was made
by a magneto-elastic device with two permanent magnets, an electromagnetic
shaker and an optical sensor. The results are surveyed in Lima & Pettini (1998)
where some open problems were also posed.

Recent investigations were aimed at better suppression of chaos with smaller
values of excitation amplitude and providing convergence of the system
trajectories to the desired periodic orbit (limit cycle). Belhaq & Houssni (1999)
considered the case of quasi-periodic excitation by reducing it to the periodic case
(see also Zhalnin 1999). Basios et al. (1999) studied the case of parametric noise
excitation by Melnikov analysis. Mirus & Sprott (1999) attempted to achieve
resonance of excitation with the frequency of the desired periodic excitation.
Since a chaotic attractor contains trajectories close to periodic orbits with
different periods, a proper choice should be made to minimize the amplitude of
excitation. A numerical illustration of the approach was given for a Lorenz
system and for a high-dimensional system of 32 diffusively coupled Lorenz
systems. Harmonic excitation was introduced via modulation of parameter r. In
Pisarchik & Corbalan (1999), stabilization of unstable periodic orbits (UPOs) by
means of periodic action with frequency much lower than the characteristic
frequency of the system has been studied.

In a number of papers, the choice of excitation function is based on tailoring it to
the system nonlinearity. Let the controlled system be described by equations

_x Z f ðxÞCBu; x2R
n; u2R

m: ð2:3Þ
Now let mZn and det Bs0. If the desired solution of the controlled system is
x�ðtÞ, then an intuitively reasonable choice of excitation is

u�ðtÞZBK1ð _x�ðtÞÞKf ðx�ðtÞÞ; ð2:4Þ
because x�ðtÞ will satisfy the equations of the excited system (see Hübler & Lusher
1989). The equation for the error eZxKx�ðtÞ is then _eZ f ðeCx�ðtÞÞKf ðx�ðtÞÞ. If
the linearized system with matrix AðtÞZvf ðx�ðtÞÞ=vx is uniformly stable in the
sense that AðtÞCAðtÞT%KlI for some l and for all tR0 then all solutions of (2.3)
and (2.4) will converge to x�ðtÞ. More general convergence conditions can be found
in Fradkov & Pogromsky (1998). In casem!n and B is singular, the same result is
valid under matching conditions: vector _x�ðtÞKf ðx�ðtÞÞ is in the span of the
columns of B. Then the control can be chosen to be u�ðtÞZBCð _x�ðtÞKf ðx�ðtÞÞÞ,
where BC is the pseudo-inverse matrix. Despite the fact that the uniform stability
Phil. Trans. R. Soc. A (2006)
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condition rules out chaotic (i.e. unstable) trajectories, it is claimed in a number of
papers that some local convergence to chaotic trajectories is observed, if the
instability regions are not dominating. Rajasekar et al. (1997) compared this
approach with other methods through a second-order system, e.g. describing the
so-called Murali–Lakshmanan–Chua electronic circuit and FitzHugh–Nagumo
equations describing propagation of nerve pulses in a neuronal membrane.
Ramesh & Narayanan (1999) investigated (numerically) different schemes of non-
feedback excitation in the presence of noise. In Hsu et al. (1997) andMettin (1998),
similar results for the discrete-time case were obtained.

The Melnikov method was applied by Chaćon (2001, 2002) to a general model
of a one-degree-of-freedom nonlinear oscillator with damping excited with
biharmonic forcing. The relation between damping strength and forcing
amplitudes guaranteeing either chaotic or periodic behaviour of the given
trajectory of the excited system was obtained. Since the Melnikov method leads
to intractable calculations for state dimensions greater than two, analytical
results are known only for systems with one degree of freedom. For higher
dimensions, computer simulations are used. The general problem of finding
analytic conditions for creation or suppression of chaos by feed-forward periodic
excitation of small or medium level still remains open.

In summary, a variety of open-loop methods have been proposed. Most of
these have been evaluated by simulation for special cases and model examples.
However, the general problem of finding sufficient conditions for creation or
suppression of chaos by feed-forward excitation still remains open.
(b ) Linearization of the Poincaré map (OGY method)

The explosion of interest in the control of chaotic systems was caused by Ott
et al. (1990). The two key ideas introduced in this paper were:

(i) To use a discrete system model based on linearization of the Poincaré map
for controller design.

(ii) To use the recurrent property of chaotic motions and apply control action
only at time instants when the motion returns to the neighbourhood of the
desired state or orbit.

The original version of the algorithm was described for discrete-time systems
(iterated maps) of dimension two and for continuous-time systems of dimension
three and required online computation of the eigenvectors and eigenvalues for the
Jacobian of the Poincaré map. Numerous extensions and interpretations have been
proposed by different authors in subsequent years and the method is commonly
referred to as the ‘OGY method’. The idea of the OGY method is as follows.

Let the controlled system be described by the state space equations (2.1).
Usually the variable u represents a changeable parameter of the system
rather than a standard ‘input’ control variable, but it makes no difference
from a control theory point of view. The task is to obtain the desired (goal)
trajectory x�ðtÞ which is a solution of (2.1) with uZ0. The goal trajectory
may be either periodic or chaotic: in both cases it is recurrent. Draw
a surface (Poincaré section)

S Z fx : sðxÞZ 0g ð2:5Þ
Phil. Trans. R. Soc. A (2006)
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through the given point x0Zx�ð0Þ transverse to the solution x�ðtÞ and
consider the map x1Pðx; uÞ where Pðx; uÞ is the point of first return to S of
the solution to (2.1) with constant input u starting from x. The map x1
Pðx; uÞ is called the controlled Poincaré map. It is well defined at least in
some vicinity of the point x0 owing to the recurrence property of x�ðtÞ. The
precise definition of the controlled Poincaré map requires some technicalities
(see Fradkov & Pogromsky 1998). Iterating the map, we may define a
discrete-time system

xkC1 ZPðxk ; ukÞ; ð2:6Þ

where xkZxðtkÞ; tk is the time of the kth crossing and uk is the value of uðtÞ
between tk and tkC1.

The next step of the control law design is to replace the initial system (2.1) by
the linearized discrete system

~xkC1 ZA~xk CBuk ; ð2:7Þ

where ~xkZxkKx0 and find a stabilizing controller, e.g. ukZCxk for (2.6). Finally,
the proposed control law is as follows:

uk Z
C ~xk ; if j~xk j%D;

0; otherwise:

(
ð2:8Þ

A key point of the method is to apply control only in some vicinity of the goal
trajectory by introducing an ‘outer’ deadzone. This has the effect of bounding
control action. Richter & Reinschke (1998) suggested determining the size and
shape of the region of control action by using a Lyapunov function, which makes
the mechanism of control more transparent.

Numerous simulations performed by different authors have confirmed the
efficiency of such an approach. Slow convergence is often reported, but this is the
price of achieving non-local stabilization of a nonlinear system by small control.

There are two important problems to solve for implementation of the OGY
method: lack of information about the system model and incomplete
measurements of the system state. The second difficulty can be overcome by
replacing the initial state vector x by the so-called delay coordinate vector
XðtÞZ ½yðtÞ; yðtKtÞ;.; yðtKðNK1ÞtÞ�T2R

n, where yZhðxÞ is the output (e.g.
one of the system coordinates) available for measurement and tO0 is the delay
time. Then the control law has the form

uk Z
Uðyk ; yk;1;.; yk;NK1Þ; if jyk;iKy�j%D; i Z 1;.;NK1;

0; otherwise;

(
ð2:9Þ

where yk;iZyðtkKitÞ.
A special case of algorithm (2.9) introduced by Hunt (1991) is termed

occasional proportional feedback (OPF). The OPF algorithm is used for
stabilization of the amplitude of a limit cycle and is based on measuring local
maxima (or minima) of the output yðtÞ The Poincaré section is given by (2.5)
Phil. Trans. R. Soc. A (2006)
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where sðxÞZðvh=vxÞFðx; 0Þ, which corresponds to _yZ0. If yk is the value of the
kth local maximum, then the OPF method employs a simple control law

uk Z
K ~yk ; if j~yk j%D;

0; otherwise;

(
ð2:10Þ

where ~ykZykKy� and y�Zhðx0Þ is the desired upper level of oscillation.
However, only partial justification of the proposed algorithms (2.9) and (2.10)

is available. The main problem is estimation of the accuracy of the linearized
Poincaré map in the delayed coordinates:

yk C/CaNK1yk;NK1 Z b1uk C/CbNK1ukKNK1: ð2:11Þ

To overcome the first problem—uncertainty of the linearized plant model—
Ott et al. (1990) and their followers (see survey papers by Grebogi et al. (1997),
Arecchi et al. (1998) and Boccaletti et al. (2000)) suggested estimation of
parameters in state space form (2.7). However, detailed methods for extracting
the parameters of the model (2.7) from the measured time-series are yet to be
presented. The problem is, of course, well known in identification theory and is
not straightforward, because identification in closed-loop under ‘good’ control
may prevent ‘good’ estimation.

In Fradkov & Guzenko (1997) and Fradkov et al. (2000), a justification of the
abovemethodwas given for the special casewhen yk;iZykKi, iZ1;.;n. In this case,
the outputs are measured and control action is changed only at the instants of
crossing the surface (see alsoFradkov&Pogromsky 1998). For controller design, an
input–output model (2.11) was used containing fewer coefficients than (2.7).
For estimation, the method of recursive goal inequalities due to Yakubovich was
used, introducing an additional inner deadzone to resolve the problemof estimation
in closed-loop. An inner deadzone combined with the outer deadzone of the OGY
method, provides robustness of the identification-based controlwith respect toboth
model errors and measurement errors. Obradovic & Lenz (1997) proved that the
OGY control approach to equilibrium point stabilization in the presence of
persistent, magnitude bounded process noise is actually optimal when the system
performance is measured by the lN-norm of the control signal.

Further modifications and extensions to the OGY method have been
recently proposed. Epureanu & Dowell (1997) use only data collected over a
single period of oscillation. An extension to a class of systems evolving in
manifolds has been given by Aston (1998). A multi-step version was studied by
Holzhuter & Klinker (1998). Epureanu & Dowell (1998) suggested a time-
varying control function uðtÞZcðtÞ�u instead of a constant between crossings
and cðtÞ is chosen to minimize control energy. Iterative refinement extending
the basin of attraction and reducing the transient time was proposed by
Aston & Bird (2000). Basins of attraction for the initial state and parameter
estimates were evaluated by Chanfreau & Lyyjynen (1999), while transient
behaviour was also investigated by Holzhuter & Klinker (2000). New
demonstrations of efficiency of the OGY method were obtained by computer
simulations for the Copel map, the Bloch wall, magnetic domain-wall system
and by physical experiments with bronze ribbon, glow discharge, non-
autonomous RL-diode circuit (see references in Fradkov & Evans (2002) and
Phil. Trans. R. Soc. A (2006)
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Andrievskii & Fradkov (2003)). The OPF method has been used for
stabilization of the frequency emission from a tunable lead–salt stripe geometry
infrared diode laser and implemented in an electronic chaos controller.

The OPF method has been applied and experimentally studied for a
mechanical oscillator with dry friction nonlinearity in Moon et al. (2003). In
this work, the control is affected by changing the normal force of the dry friction
element using a magnetic actuator. It is shown to exhibit both control of chaos,
i.e. the stabilization of UPOs in a strange attractor, and ‘anticontrol of chaos’
(use of feedback to drive a nonlinear system into a chaotic state near a periodic
motion). The addition of noise or dither onto periodic oscillations can often be
useful in engineering devices.
(c ) Delayed feedback

During recent years, there has been increasing interest in the method of time-
delayed feedback (Pyragas 1992). Pyragas, a Lithuanian physicist considered
stabilization of a t-periodic orbit of the nonlinear system (2.1) using a simple
control law

uðtÞZK ½xðtÞKxðtKtÞ�; ð2:12Þ
where K is the feedback gain and t is the time-delay. If t is equal to the period of
an open-loop periodic solution �xðtÞ of (2.1) (for uZ0) and the solution xðtÞ to the
closed-loop system (2.1), (2.12) starts from GZf�xðtÞg, then it will remain in G
for all tR0. A puzzling observation was made, however, that xðtÞ may converge
to G even if xð0Þ2� G.

The law (2.12) also applies to stabilization of forced periodic motions in system
(2.1) with a T-periodic right-hand side. In this case, t should be chosen equal to
T. The formulation of the method for stabilization of fixed points and periodic
solutions of discrete-time systems is straightforward.

An extended version of the Pyragas method has also been proposed with

uðtÞZK
XM
kZ0

rk ½yðtKktÞKyðtKðkC1ÞtÞ�; ð2:13Þ

where yðtÞZhðxðtÞÞ2R
1 is the observed output and rk, kZ1;.;M are tuning

parameters. For rkZrk ; jr j!1, and M/N the control law (2.13) becomes

uðtÞZK ½yðtÞKyðtKtÞ�CKruðtKtÞ: ð2:14Þ
Although algorithms (2.12)–(2.14) look simple, analytical study of the closed-
loop behaviour seems difficult. Until recently only numerical and experimental
results concerning the performance and limitations of the Pyragas method have
been available.

In Basso et al. (1997), the stability of a forced T-periodic solution of a Lurie
system (system represented as a feedback connection of a linear dynamical
system and a static nonlinearity) with a generalized Pyragas controller

uðtÞZGðpÞ½yðtÞKyðtKtÞ�; ð2:15Þ
where GðpÞ is a filter transfer function, was investigated. Using absolute stability
theory (Leonov et al. 1996), sufficient conditions on the transfer function of the
linear part of the controlled system and on the slope of the nonlinearity were
Phil. Trans. R. Soc. A (2006)
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obtained for a stabilizing GðpÞ. Extension to systems with a nonlinear nominal
part and a general framework based on classical frequency-domain tools are
presented in Basso et al. (1999).

Ushio (1996) established (for a class of discrete-time systems) a simple
necessary condition for stabilizability with a Pyragas controller (2.12): the
number of real eigenvalues of matrix A greater than one should not be odd, where
A is the matrix of the system model linearized near the desired fixed point. Proofs
for more general and continuous-time cases were given independently by Just et al.
(1997) and Nakajima (1997). The corresponding results for an extended control
law (2.13) were presented in Nakajima & Ueda (1998) and Konishi et al. (1999),
who applied Floquet theory to the system linearized near the desired periodic
solution. Using a similar approach, Just et al. (1999, 2000) gave a more detailed
analysis and established approximate bounds for a stabilizing gain K.

Schuster & Stemmler (1997) showed that for a scalar discrete-time system
ykC1Z f ðyk ; ukÞ a necessary condition for existence of a discrete version of the
stabilizing feedback (2.13) is l!1, where lZvf =vyð0; 0Þ, following from the
theorem of Giona (1991). They showed that the restriction l!1 can be overcome
by means of a periodic modulation of the gain K.

Recently, Pyragas (2001) suggested using the controller (2.14) with jK jO1. In
that case, the controller itself becomes unstable while stability of the overall
closed-loop system can still be preserved. In this case the previous limitations can
be significantly relaxed and, in particular, the ‘odd number’ limitation can be
removed. Necessary and sufficient conditions for stabilizability of discrete-time
systems via delayed feedback control are obtained by Zhu & Tian (2005).

The Pyragas method was extended to coupled (open flow) systems and
modified for systems with symmetries. It was also extended to include an
observer estimating the difference between the system state and the desired
unstable trajectory (fixed point; Konishi & Kokami 1998).

Reported applications include stabilization of coherent modes of lasers,
magneto-elastic systems (Hai et al. 1997; Hikihara et al. 1997) traffic models,
pulse-width modulation controlled buck converters and a paced excitable
oscillator described by the FitzHugh–Nagumo model widely used in physiology.

A drawback of the control law (2.12) is its sensitivity to parameter choice,
especially to the choice of the delay t. Apparently, if the system is T-periodic and
the goal is to stabilize a forced T-periodic solution, then the choice tZT is
mandatory. Alternatively, an heuristic trick is to simulate the unforced system
with initial condition xð0Þ until the current state xðtÞ approaches xðsÞ for some
s!t, i.e. until jxðtÞKxðsÞj!3. Then the choice tZ tKs will give a reasonable
estimate of a period and the vector xðtÞ will be an initial condition to start
control. However, such an approach often gives overly large values of the period.
Since chaotic attractors contain periodic solutions of different periods, an
important problem is to find and stabilize (with small control) the solution with
the smallest period. This problem remains open. Other attempts to estimate T
and develop adaptive versions of the Pyragas algorithm were made by Kittel
et al. (1995) and Chen & Yu (1999).

In Galvanetto (2002), some numerical techniques to control UPOs embedded
in chaotic attractors of a particular discontinuous mechanical system are
described. The control method is a continuous time-delayed feedback that
modifies the stability of the orbit but does not affect the orbit itself.
Phil. Trans. R. Soc. A (2006)
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(d ) Linear and nonlinear control

Many papers are devoted to the demonstration of the applicability of standard
control-engineering notions and techniques for the control of chaos. Indeed, in
many cases even simple proportional feedback can achieve the desired control
goal. For example, the so-called open-plus-closed-loop method (Jackson & Grosu
1995) applicable to models of the form _xðtÞZ f ðxðtÞÞCBu with dim xZdim u
employs a combination of proportional feedback with the so called ‘Hübler feed-
forward action’

uðtÞZBK1½ _x�ðtÞKf ðx�ðtÞÞKKðxKx�ðtÞÞ�; ð2:16Þ
which in some cases allows stabilization of the desired trajectory x�ðtÞ. Recent
results are summarized in Aquirre & Torres (2000).

Control by proportional pulses (impacts) was studied by Casas & Grebogi
(1997) and Chau (1997). Proportional feedback in the extended space ðx; uÞ
(i.e. dynamic feedback) was examined by Magnitskii & Sidorov (1998) and Zhao
et al. (1998).

The potential of dynamic feedback can be better exploited using an observer-
based framework that allows for systematic use of output feedback. A survey of
nonlinear observer techniques can be found in Nijmeijer & Mareels (1997) and for
certain particular designs (see Grassi & Mascolo 1997; Morgul & Solak 1997).
Linear high-gain observer-based control for global Lipschitz nonlinearities was
studied by Liao (1998).

Note that models of chaotic systems often do not satisfy a global Lipschitz
condition owing to the presence of polynomial nonlinearities x1x2, x

2, etc.
Although trajectories of chaotic systems are bounded, this is not necessarily the
case when the system is influenced by control. Therefore, special attention should
be paid to provide boundedness of the solutions by appropriate choice of controls.
Otherwise, the solution may escape in finite time and it does not make sense to
discuss stability and convergence issues. The possibility of escape in nonlinear
controlled systems is often overlooked in application papers.

A number of methods are based on continual reduction of some goal
(objective) function QðxðtÞ; tÞ. The current value QðxðtÞ; tÞ may reflect the
distance between the current state xðtÞ and the current point of the goal
trajectory x�ðtÞ, such as Qðx; tÞZ jxKx�ðtÞj2, or the distance between the current
state and the goal surface hðxÞZ0, such as QðxÞZ jhðxÞj2. For continuous-time
systems, the value QðxÞ does not depend directly on the control u and decreasing
the value of the speed _QðxÞZðvQ=vxÞFðx; uÞ can be posed as an immediate
control goal instead of decreasing QðxÞ. This is the basic idea of the speed-
gradient (SG) method (Fradkov 1979), where a change in the control u occurs
along the gradient in u of the speed _QðxÞ. This approach was first used for control
of chaotic systems in Fradkov (1994). Systematic exposition and further
references can be found in Fradkov & Pogromsky (1998). The general SG
algorithm has the form

u ZKJ½Vu
_Qðx; uÞ�; ð2:17Þ

where JðzÞ is vector-function forming an acute angle with its argument z. For
affine controlled systems _xZ f ðxÞCgðxÞu, the algorithm (2.17) simplifies to

u ZKJ½gðxÞTVQðxÞ�: ð2:18Þ
Phil. Trans. R. Soc. A (2006)
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For adaptive systems, SG algorithms in differential form are used where

_u ZKGVu
_Qðx; uÞ: ð2:19Þ

The SG method is based on a Lyapunov function V decreasing along
trajectories of the closed-loop system. The Lyapunov function is constructed
from the goal function V ðxÞZQðxÞ for finite form algorithms and V ðx; uÞZ
QðxÞC0:5ðuKu�ÞTGK1ðuKu�Þ for differential form algorithms, where u� is the
desired (ideal) value of the control variables (for differential form algorithms).

Tian (1999) used the method of macrovariables (earlier proposed by
A. Kolesnikov, see Krstic et al. 1995) for stabilization of an invariant goal
manifold hðxÞZ0 with small control. The method provides stabilization of
equilibrium, if the dynamics on the goal manifold (i.e. zero dynamics) are
asymptotically stable. Khovanov et al. (2000) proposed an SG-like energy-
optimal control algorithm for a periodically driven oscillator, moving it from a
chaotic attractor to a coexisting stable limit cycle.

For stabilization of a goal point or manifold, other methods of modern
nonlinear control theory have been used, e.g. feedback linearization, centre
manifold theory, backstepping iterative design, passivity-based design, variable
structure systems (VSS) design, absolute stability theory, HN control,
combination of Lyapunov and feedback linearization methods (see references in
Fradkov & Evans (2002) and Andrievskii & Fradkov (2003)). Note that VSS
algorithms for a switching surface hðxÞZ0 coincide with the SG algorithm for a
goal function QðxÞZ jhðxÞj.

In Ahmad & Harb (2003) and Ahmad et al. (2004), the problem of chaos
control of three types of fractional order systems using simple state feedback
gains is addressed. Electronic chaotic oscillators, mechanical ‘jerk’ systems and
the Chen system are investigated by assuming generalized fractional orders. The
static gains to place the eigenvalues of the system Jacobian matrices in a stable
region whose boundaries are determined by the orders of the fractional
derivatives are found. The effectiveness of the proposed controller in eliminating
the chaotic behaviour from the state trajectories is numerically demonstrated.
Some numerical investigation results are also presented and discussed in
Ahmad & Sprott (2003).

In Lenci & Rega (2003a), control method of the homoclinic bifurcation is
developed and applied to the nonlinear dynamics of the Helmholtz oscillator. The
method consists of choosing the shape of external and/or parametric periodic
excitations, which permits us to avoid, in an optimal manner, the transverse
intersection of the stable and unstable manifolds of the hilltop saddle. The
mathematical problem of optimization is investigated. This problem consists of
determining the theoretical optimal excitation that maximizes the distance
between stable and unstable manifolds for fixed excitation amplitude or
equivalently, the critical amplitude for homoclinic bifurcation. The effectiveness
of the proposed control is numerically studied with respect to the basin erosion
and escape phenomena—the most important and dangerous practical aspects of
the Helmholtz oscillator.

A fruitful direction is the use of frequency-domain methods for nonlinear
control (see Basso et al. 1999 and references therein). In particular, approximate
methods of harmonic balance for evaluation and prediction of chaotic modes are
used together with rigorous absolute stability theory. An interesting method
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within this framework employs a selective (‘washout’) filter, which damps all
signals with frequencies beyond some narrow range (see also Meucci et al. 1997).
If such a filter is included in the feedback loop of a chaotic system and the base
frequency of the filter coincides with the frequency of one of the existing unstable
periodic solutions, then it is plausible that the system will be in a periodic motion
rather than chaotic. This approach was applied to control of lasers.

In summary, the majority of nonlinear control approaches can be grouped into
two large classes: Lyapunov approaches (SG, passivity-based methods) and
compensation approaches (feedback linearization, geometric methods, etc.). The
relationship between these classes can be illustrated as follows. Let the control
goal be stabilization (to zero) of some output variable yZhðxÞ of the affine
system _xZ f ðxÞCgðxÞu zero level. Lyapunov (or SG) methods introduce a goal
function QðxÞZ jhðxÞj2 and gradually decrease its derivative _Q according to
the condition hTðvh=vxÞðfCguÞ!0, e.g. moving along the SG (antigradient
of _Q) using

u ZKggTðVhÞh:
With respect to the ‘small control’ requirement, it is necessary to choose the gain
gO0 sufficiently small.

On the other hand, the compensation approaches introduce an auxiliary
macrovariable aðxÞZ _yC9y with some 9O0 and immediately force it to zero
with the control:

u ZK
f TðVhÞC9h

gTðVhÞ :

Note that aZ0 if and only if _QZK29Q, i.e. compensation is equivalent to specify
a certain rate decrease of QðxÞ. As a result, any desired ‘instantaneous’
transient rate can be achieved at the cost of loss of flexibility and the ‘small
control’ property.

It is important to observe that generically, control based on change of some
system parameter (as in the OGY scheme) is equivalent to the control by change of
an additive force. Chen&Liu (2002a,b) have shown for a number of chaotic systems
that this equivalence between linear coordinate feedback and parametric feedback
can be established by an appropriate nonlinear coordinate transformation.

Analysis of published papers shows that those using the well-developed
machinery of modern linear and nonlinear control theory often do not take full
account of the special aspects of chaotic motions. This usually means that the
‘small control’ requirement is violated. On the other hand, the power of existing
control theory is not fully utilized in many papers with respect to the ‘small
control’ requirement. Frequently, only low-dimensional example models are
considered and unrealistic assumptions are imposed (e.g. it is assumed in some
papers that the number of controls is equal to the state dimension). Proper use of
modern control theory to handle realistic problems in the control of chaos is yet
to be undertaken.

(e ) Control of chaos in distributed systems

Among infinite-dimensional (distributed) systems, the main classes are
spatially extended (spatio-temporal) systems and retarded or delayed systems.
Methods for oscillation and chaos control in infinite-dimensional systems are
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mainly based upon ideas developed for finite-dimensional (lumped) systems.
Moreover, very often finite-dimensional models are used for control system
analysis and design.
(i) Spatio-temporal systems

Finite-dimensional models of spatially extended controlled systems are
obtained by spatial discretization of distributed models described by a partial
differential equation. Such simplified models consist of ordinary differential
equations describing separate space elements called cells, particles, compart-
ments, etc. In both cases, elements (cells) interact by means of links reflecting
spatial structure of the overall system (called array, lattice, etc.).

Numerous publications are devoted to study controlled reaction–diffusion
equations

vx

vt
Z 3DxCFðx; uÞ; ð2:20Þ

where xZxðr; tÞ is a function of space variables r2R3R
n and time t (possibly,

vector-valued), determining the state of a physical system, DZ
Pn

iZ1ðv2=vriÞ is
the Laplace operator, specifying diffusion type of space element interactions.
Boundary conditions can be specified as periodic (e.g. xða; tÞZxðb; tÞ for
RZ ½a;b�3R

1) or ‘no flow across the boundary’ conditions

vx

vr

� ����
rZa

Z
vx

vr

� ����
rZb

Z 0:

The standard approach to study equation (2.20) is discretized over the space R
by replacing the continuum R by a finite number of points (nodes) ri,
iZ1; 2;.;N . The dynamics of each state xi depends on both its internal
(local) dynamics Fðxi; uiÞ and interactions with neighbour nodes. For example, if
the space variable is one-dimensional ðr2½a;b�Þ and interactions are of the
diffusive type, then the space-discretized model has the form

_xi Z 3ðxiK1K2xi CxiC1ÞCFðxi; uiÞ; i Z 1; 2;.;NK1: ð2:21Þ
Additionally, we need to specify boundary conditions, e.g. periodic ðx0ZxN ðtÞÞ,
or ‘no-flow’ ðx0ðtÞZx1ðtÞ; xNK1ðtÞZxN ðtÞÞ. Some authors use models that are also
discretized in time and called coupled map or cellular automata models

xiðnC1ÞZ xiðnÞC3½xiK1ðnÞK2xiðnÞCxiC1ðnÞ�ChFðxiðnÞ; uiðnÞÞ;

i Z 1;.;NK1; n Z 0; 1; 2;.:
ð2:22Þ

In the models (2.20) and (2.22), one can see the control influencing the
dynamics of each cell corresponding to space-distributed (field) control. Another
class of problems (boundary control problems) arises when the right-hand sides
in (2.21) and (2.22) do not depend on the control, i.e. Fðx; uÞhFðxÞ, while
control enters only the equations of the boundary cells, e.g.

_x0 Z 3ðx1Kx 0ÞCF0ðx; uÞ ð2:23Þ
(for periodic boundary conditions). One may generalize the situation further to
consider space–non-homogeneous systems. For the one-dimensional case, they
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are described by the following model:

_xi ZFiðxi; xiK1; xiC1; uÞ; i Z 1; 2;.;NK1;

_x0 ZF0ðx0; x1; uÞ;
_xN ZFN ðxN ; xNK1; uÞ:

9>=
>; ð2:24Þ

Control goals can be straightforward extensions of the goals formulated for
lumped systems (see §2). In addition, specific goals can be posed that formalize
specific types of inter-relations between neighbour cells.

Among specific spatio-temporal control goals the following should be
mentioned.

(i) Stabilization of the given uniform (homogenous) or space-periodic field
(standing wave).

(ii) Stabilization of the given time-periodic motion (travelling wave).
(iii) Creation or suppression of a spiral wave (for space dimension not less than

two).
(iv) Creation or suppression of the given non-homogenous field (contrast or

dissipative structure, clusters, patterns).
(v) Control of self-organization or disorganization of systems.

The methods of the first works on spatio-temporal control of chaos are similar
to the finite-dimensional case: OGY/OPF, delayed feedback, etc. (see the survey
by Hu et al. 1995). In subsequent papers, other approaches were introduced and
investigated (mainly numerically).

Parmananda et al. (1997) considered one-dimensional array of NZ100 cells,
described by the logistic map ðFðx; uÞZ1Kax2CuÞ, where the value of the
parameter a ensured chaotic behaviour of each cell for uh0. It was shown by
numerical experiments that local feedback,

uiðnÞZg xiðnÞK
1

N C1

XN
jZ0

xjðnK1Þ
" #

; i Z 1; 2;.;NK1; ð2:25Þ

provides stability of the spatially uniform distribution xi hx�, iZ0; 1; 2;.;N for
sufficiently large gain gOg0. For g!g0, a non-uniform distribution is stabilized
consisting of several clusters of uniformity, each cell being periodically
oscillating. Similar behaviour has been observed with local feedback in error

uiðnÞZg½xiðnÞKx��; ð2:26Þ

as well as with so called global feedback depending on observable average values
of variables:

uiðnÞZK
g

N C1

XN
jZ0

½xjðnÞKxjðnK1Þ�; ð2:27Þ

or

uiðnÞZKg
1

N C1

XN
jZ0

xjðnÞKx�

" #
: ð2:28Þ
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The above results were justified theoretically (analytically) in Gade (1998).
Kocarev et al. (1997a) studied the case of pinning control for a one-dimensional
lattice of Lorenz systems, when control interacts only with every pth cell. The
attractivity of the spatially uniform (coherent) yet chaotic in time motion under
discrete-time control (2.26) with gZ1 applied to the first equation of the Lorenz
system was established. Similar results for a two-dimensional lattice of Lorenz
systems were obtained by Sinha & Gupte (1998) using integral feedback (called
‘adaptive’ by the authors). Analogous results were established for complex
Ginzburg–Landau equation (CGLE)

_A ZACð1C im1Þ
v2A

vr2
Kð1C im2ÞjAj2A; ð2:29Þ

see Montagne & Collet (1997) and for Swift–Hohenberg equation describing
dynamics of some types of semiconductor lasers (Bleich et al. 1997). Boccaletti
et al. (1999) examined CGLE with pinning control, applied only at a finite
number of points. The CGLE corresponds to a number of phenomena in laser
physics, hydrodynamics, chemical turbulence, etc. It can exhibit different forms
of complex behaviour, including Andronov–Hopf bifurcation, chaotic turbulent
modes, contrast structures, etc. Boccaletti et al. (1999) numerically determined
the maximum distance between nodes of control ensuring achievement of the
control goal. A similar result for boundary control was obtained by Xiao et al.
(2000).

Schuster & Stemmler (1997) have shown the possibility of stabilization of the
Kuramoto–Sivashinsky equation,

v4

vt
C4

v4

vr
C

v24

vr2
C

v44

vr4
Z u; ð2:30Þ

by periodic delayed velocity feedback,

u Z 3t
v4

vt
ðtKtÞ; ð2:31Þ

where t is time delay.
Pinning controls (local injections) were applied in Hu et al. (2000) to the

stabilization of the trivial solution ðxiðtÞh0Þ of coupled oscillator systems with
diffusion–gradient coupling

_xi Z f ðxiÞC
3

2
ðxiK1K2xi CxiC1ÞC

r

2
ðxiK1KxiC1ÞCui; ð2:32Þ

as well as to the CGLE evolving initially in a chaotic mode. Linear high-gain
feedback in each lth oscillator was employed. Stability analysis was performed
based on linearized models near the goal solution.

Minimal density of the local control nodes and the optimal allocation were
determined by Grigoriev et al. (1997) for a one-dimensional array of coupled
logistic systems: f ðxÞZaxð1KxÞ in (2.32) using linear feedback. A method of
stabilization of the space-homogenous solution of the reaction–diffusion equation
was proposed by Magnitskii & Sidorov (1999) for the case of the complex
Kuramoto–Suzuki equation. A method of chaos and spiral wave suppression by a
weak distributed perturbation for the Maxwell–Bloch equation with diffraction
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coupling was proposed by Wang & Xie (2000). Controlled synchronization in
spatio-temporal system was studied in Hu et al. (1997), Kocarev et al. (1997b),
Boccaletti et al. (1999, 2002), Fanceschini et al. (1999) and Blekhman (2000).

(f ) Other problems

We give a brief account of other directions of research related to control of chaos.

(i) Controllability

Although controllability of nonlinear systems is well studied, only a few
results are available on reachability of typical control goals by small control
(see Chen 1997; Alleyne 1998; Van de Vorst et al. 1998; Bollt 2000; Fradkov et al.
2000). A very general idea that the more a system is ‘unstable’ (chaotic,
turbulent) the ‘simpler’ or the ‘cheaper’, it is to achieve exact or approximate
controllability was illustrated by Lions (1997). Quantitative estimates were
obtained recently by Khryashchev (2004) who had shown that the time of
transportation between two points from a chaotic attractor depends logarithmi-
cally on the inverse control intensity (power) and, therefore, control with
arbitrarily small energy is possible.

(ii) Other control goals

Among the other control goals achieving the desired period (Fouladi &
Valdivia 1997), desired process dimension (Ravindra & Hagedorn 1998), desired
invariant measure (Gora & Boyarsky 1998; Antoniou & Bosco 2000; Bollt 2000),
desired Kolmogorov entropy (Park et al. 1999), and targeting (Paskota & Lee
1997) should be mentioned. A method for the so-called tracking chaos problem
(following a time-varying unstable orbit) proposed by Schwartz & Triandaf
(1992) was justified by the continuation method for solving equations (Schwartz
et al. 1997). Recent results are summarized in Schwartz & Triandaf (2000).

(iii) Identification

A number of papers are devoted to identification of chaotic systems. In most of
these, conventional identification schemes are used. It has been demonstrated
that the presence of chaos facilitates and improves parameter convergence
(Epureanu & Dowell 1997; Petrick & Wigdorowitz 1997; Tian & Gao 1998;
Poznyak et al. 1999; Huijberts et al. 2000; Maybhate & Amritkar 2000).

(iv) Chaos in control systems

Control of chaos should not be mixed up with chaos in control systems. Papers
in the latter field appear since the late 1970s and study conditions for chaotic
behaviour in conventional feedback control systems (Mackey & Glass 1977;
Baillieul et al. 1980; Mareels & Bitmead 1986). Some recent results of such kind
were reported for second-order systems (Alvarez et al. 1997), for high-order
systems with hysteresis (Postnikov 1998) and for mechanical control systems
(Enikov & Stepan 1998; Gray et al. 1998; Goodwine & Stepan 2000), to mention
a few. A fruitful observation was made that the presence of chaos may facilitate
control (Vincent & Yu 1991; Vincent 1997, see also Khryashchev 2004).
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3. Examples of controlling chaos in mechanics and mechanical
engineering

Chaos occurs widely in applied mechanical systems as mentioned in Kapitaniak
et al. (2000). A few recent examples are mentioned below.
(a ) Control of pendulums, beams, plates

A number of studies have been devoted to the control of chaos in systems of
one or more pendulums. Owing to the interesting and the readily observable
behaviour, pendulum systems have been used for numerical and experimental
demonstration of most existing methods of chaos control (see Lenci 1998; Kaart
et al. 1999; Thomas & Ambika 1999; Lenci & Rega 2000). Chaos suppression
and creation has been studied in standard mechanical structures like beams
(Bishop & Xu 1997; Heertjes & Van de Molengraft 2001), plates (Chen &
Cheng 1999), impact systems (Lenci & Rega 2000; Vincent & Mees 2000),
externally forced array of oscillators with nearest-neighbour visco-elastic
coupling (Barratt 1997). Vincent & Mees (2000) demonstrated that driving a
bouncing ball system into a chaotic mode might speed up its controlled
transition to a prescribed periodic orbit.

In Pereira-Pinto et al. (2004), the OGY method is applied to chaos control of
a simulated nonlinear pendulum based on an experimental apparatus. The
pendulum consists of an aluminium disc with a lumped mass that is connected
to a rotary motion sensor. A magnetic device provides an adjustable dissipation
of energy. A string–spring device provides torsional stiffness to the pendulum
and an electric motor excites the pendulum via the string–spring device
changing the string length. In the first stage of the control process, the close-
return method is employed to identify UPOs embedded in the chaotic attractor.
After that, the proposed semi-continuous control method is applied to stabilize
desirable orbits. Least-square fit methods are employed to estimate Jacobian
matrices and sensitivity vectors. These techniques are employed to stabilize
some of the identified UPOs, confirming the possibility of using such approaches
to control chaotic behaviour in mechanical systems using state space
reconstruction. Analysis related to the effect of noise in controlling chaos is of
concern. The stabilization of orbits related to noisy time-series is more complex
and an increased number of control stations tends to increase the robustness of
the control procedure. Results show situations where these techniques may be
used to control chaos in mechanical systems.
(b ) Control of friction

It is known that a low-velocity regime of mechanical systems may be
characterized by chaotic stick–slip motion caused by the interplay between
static and kinetic friction forces. From a practical point of view, one may wish
to control the system in such a way that the overall friction is reduced or
enhanced. The chaotic mode is eliminated and smooth sliding is achieved. Such
a control is of high technological importance for micromechanical devices, e.g.
in computer disk drives, where the early stages of motion and the stopping
process, which exhibit chaotic stick–slip, pose a real problem. Controlling
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frictional forces has been traditionally approached by chemical means, namely,
using lubricating liquids. A different approach, proposed by Elmer (1998) and
Rozman et al. (1998), is based on controlling the system mechanically. The goal
is twofold: (i) to achieve smooth sliding at low driving velocities, which
otherwise correspond to the stick–slip regime and (ii) to decrease the frictional
forces. Rozman et al. (1998) have tested their method for a model where in
addition to the macroscopic degree of freedom, i.e. the position of the sliding
block, an internal degree of freedom appears which describes the state of a
lubricant. Assuming that the four-dimensional state of the system can be
measured, they used the normal force as the controlling parameter and
linearization of Poincaré map with pole placement as the control method. The
disadvantage of the method of Rozman et al. (1998) is the necessity of
reconstructing the dynamics. This may be more or less difficult depending on
the details of the dynamics of the internal degrees of freedom at the friction
interface. Elmer (1998) proposed two different controlling methods to stabilize
unstable continuous-sliding states of a dry-friction oscillator. Both methods rely
on macroscopic equations of motion, and use the delayed-feedback mechanism
and elastic deformation as the feedback (output) variable. The control
parameter (input variable) is either the sliding velocity or the normal force.
It is shown that both methods are able to turn stick–slip motion into
continuous sliding. Velocity control is less robust than load control.

Three methods to avoid stick–slip motion in mechanical systems with friction
are proposed in Popp & Rudolph (2004). They are: (i) appropriate increase of
internal damping that compensates the negative damping induced by a friction
characteristic, which decreases with increasing sliding speed, (ii) external
excitation that breaks up the limit cycle, and (iii) passive vibration control by
fluctuating normal forces. These methods can also be used for control of chaotic
stick–slip motion.

Besides achieving the goals mentioned in the beginning, controlling friction
provides a better understanding of friction by measuring velocity-weakening
friction forces.
(c ) Control of chaos in the systems with impacts

The paper by de Souza & Caldas (2004) is devoted to control of chaotic orbits in
mechanical systems with impacts. By applying a small and precise perturbation on
an available control parameter the desired UPOs, embedded in the chaotic
invariant sets of mechanical systems with impacts, are stabilized. To obtain such
perturbation numerically, the authors introduce a transcendental map (impact
map) for the dynamical variables computed just after the impacts. Application
of the suggested method to an impact oscillator and to an impact-pair system
is demonstrated.

A model for rattling in single-stage gearbox systems with some backlash
consisting of two wheels with a sinusoidal driving is considered in de Souza et al.
(2004). A rich dynamical behaviour in such system for various control
parameters is observed. It is shown that an approach based only on increase of
the friction may not lead to the desired result of suppressing rattling, and a more
profound analysis is necessary.
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(d ) Control of spacecraft

In a number of applications, irregular vibrations of mechanical units arise from
rotation of unbalanced rotors, vibrations in appendages, etc. The control goal is
then the suppression of these undesirable vibrations. Problems of this kind are
often solved by the methods of linear control (see §2d ). In some cases, nonlinear
approaches are reported to be successful. For example, Meehan & Asokanthan
(2002a,b) designed the angular velocity stabilization algorithm for spinning
spacecraft using system energy as a Lyapunov (goal) function. A modification of
design based on the SG method enabling reduction of the required control torque
is presented in Fradkov & Andrievsky (2003) and Fradkov et al. (2004).

The plausibility of chaotic motion in gyrostats and methods of its control are
studied in Lanchares et al. (1998), Iñarrea & Lanchares (2000) and Ge & Lin
(2003). The gyrostat is a body with three rotational degrees of freedom and one
or more internal wheels. Studies of gyrostat dynamics and control are of practical
importance, because these models describe satellites performing angular spin
motion and dual-spin spacecraft such as satellites with wheel motors or spinning
satellites with stabilized platform.

Analysis, control and synchronization of the chaotic processes in a gyrostat
subjected to external perturbations were carried out by Ge & Lin (2003).
Consideration is given to the dynamics of a gyrostat having three wheels with
mutually orthogonal axes of rotation. The wheels are driven by electric motors.
It is assumed that a small sinusoidal ripple is superposed on the rotation moment
of one of the rotors. The current in the motor of one of the wheels can be varied,
thus creating a control action. The state vector of the system at hand consists of
the satellite angular spin rates in the axes of the vehicle state coordinates and
current in the control motor. The authors of Ge & Lin (2003) believe that studies
of chaotic motions in the gyrostat are of practical value, in particular, because it
can be used as a missile model. Anticontrol of the missile angular chaotic motion
at attack hinders intercept, because in this case, the trajectory of motion is
hardly predictable. Like Ge & Shiue (2002), this paper presents the results of
using various methods for analysis of uncontrollable motion of the plant.
Analysis demonstrated that angular motion of the gyrostat could become chaotic
with reduction of the frequency of external perturbation. The work proposed and
considered algorithms of adaptive and time-delayed feedback control to change
the nature of system oscillations, i.e. make motion periodic and not chaotic.
Additionally, consideration was given to the possibility of anticontrol of chaos by
an arbitrarily small control. With that end in view, it is proposed to use a small
constant or periodic control action. The paper then studies the synchronization
of chaotic processes in two aforementioned systems. Consideration was given to
synchronization with linear, sinusoidal, exponential and adaptive feedbacks. We
note that the paper presents no particular treatment of the problem of
synchronization for the systems under study.

The possibility of chaotic angular oscillations of the satellite and their
suppression were also studied in Ge et al. (1998), Tsui & Jones (2000) and
Chen & Liu (2000, 2002a,b). For example in Chen & Liu (2000, 2002a,b)
consideration is given to the motion of a satellite having constant magnetic
eigenfield under simultaneous action of the terrestrial gravity and magnetic
fields. For the satellite libration angle 4ðtÞ in the orbit plane, the following
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mathematical model was established under some assumptions:

C €4Cc _4C3u2
cðBKAÞsin 4 cos 4CmmiIr

K3ð2 sin 4 sin uctCcos 4 cos uctÞ
ZMcðtÞ; ð3:1Þ

where c is the coefficient of proper satellite damping, uc is the value of satellite
angular speed on the orbit, A and B are its main moments of inertia (BOA), mm

is the magnetic constant, I is the value of the satellite magnetic moment, r and i
are the orbit radius and inclination and McðtÞ is the value of the control moment.
On the basis of the Melnikov method and numerical analysis, the paper proved
that within some parameter domain the satellite angular motion is chaotic in the
absence of control (Mc h0). To obtain the desired process 4ðtÞ, the method of
feedback linearization was used to construct the law of generation of the control
moment Mc by output and the derivative. The feedback system was shown not
only to suppress chaotic oscillations, but also to provide the desired form of 4ðtÞ
(numerical examples of stabilization of the angle 4 and harmonic oscillations
with the given frequency were given). We note that solution seems rather trivial
from the point of view of the system theory: the control moment is chosen so as
to compensate the nonlinear—in the control error—term in the right-hand side of
(3.1) and introduce proportional and differential terms.

In Kuang et al. (2004), the multi-body dynamics of a satellite, modelled as a
central body with two hinge-connected deployable solar panel arrays is studied.
The possible chaotic behaviour of the deployed satellite under the action of
conservative forces is analytically investigated by the application of the Melnikov
integral. The numerical simulations show that the attitude chaotic motions of
the deployed satellite disturbed by the gravity-gradient torques are similar to
random motions or bounded non-periodic motions, and that the chaotic
dynamics are very sensitive to the initial conditions from the time-evolution
history of the variables of the attitude motions.

(e ) Control of vibroformers

It is known that the vibration-compaction of heated mixed paste in the
manufacturing of anodes for reduction cells is much more effective than
monotone compression. The vibration-compaction helps a good mixing of the
material, produces well-compacted anode blocks and, above all, tends to
eliminate air bubbles decreasing strength of the anodes. In Paskota (1998), a
method for vibroformer control is proposed. The vibroformer is considered as an
impact oscillator and is described by a version of the bouncing ball model. The
frequency of the vibroformer exciter rotation is used as a control variable. To
speed up changing the regime of the unit, targeting methods of Paskota & Lee
(1997) are applied.

(f ) Control of microcantilevers

Ashhab et al. (1999) studied the dynamics and control of a microcantilever
system that forms the basis for the operation of atomic force microscopes. The
cantilever is vibrated by a sinusoidal input, and its deflection is detected
optically. The forced dynamics analysed using the Melnikov method, which
reveals the region in the space of physical parameters where chaotic motion is
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possible. Then the Melnikov function in terms of the parameters of the
proportional and derivative controller was computed and parameters eliminating
chaos were designed.
(g ) Stabilization of ship oscillations

Roll motion of a flooded ship was considered in Mitsubori & Aihara (2002).
Large amount of water inside the hull gives rise to complicated coupled
oscillations of the ship and liquid in it, that are similar to the oscillations of
coupled oscillators. The picture becomes even more complicated because of the
quasi-periodic external perturbations. The model of fourth-order was used to
describe dynamics of roll in waves. In their preceding works, the authors relied on
the numerical and laboratory studies to demonstrate the feasibility of complex
chaotic oscillations of great amplitude. In Mitsubori & Aihara (2002), the
problem of reducing the system to regular small-amplitude oscillations is posed
and solved by the Pyragas method of time-delayed feedback. To this end, terms
proportional to the differences between current and delayed values of the angular
velocities of ship roll and inclination of water in it are introduced in the right-
hand sides of system equations. It was shown that the chaotic process can be
reduced to a small-amplitude periodic one by an appropriate choice of the delay
time and the feedback coefficients.
(h ) Suppression of chaotic oscillations of tachometer

Behaviour of a mechanical tachometer subjected to additional vibrations along
the rotation axis was studied in Ge & Shiue (2002). Vibrations of the base obey
the harmonic oscillations, A sin ut. Characteristics of the mathematical model
of the system were studied by various analytical and numerical methods.
Bifurcation diagrams demonstrating that the oscillations from periodic become
chaotic with growth in the vibration amplitude were constructed. To improve
system quality and eliminate chaotic phenomena, various methods of control
were considered such as introduction of an additional constant or periodic
moment, time-delayed feedback control, adaptive control, bang-bang control,
optimal control and introduction of additional pulse action. The paper presented
numerous graphs depicting the results of modelling the original and controlled
systems and demonstrating applicability of the proposed methods.
(i ) Chaotic dynamics of rate gyro in the linear feedback control loop

An analysis of stability and chaotic dynamics for a single-axis rate gyro
subjected to linear feedback control loops is given in Chen (2004). This rate gyro
is supposed to be mounted on a space vehicle, which undergoes an uncertain
angular velocity around its spin axis. The simultaneous acceleration occurs with
respect to the output axis. The stability of the nonlinear non-autonomous system
is investigated by Lyapunov stability and instability theorems. The stable
regions of the autonomous system are obtained in parametric diagrams. For the
non-autonomous case in which angular velocity oscillates near boundary of
stability, periodic, quasi-periodic and chaotic motions can appear.
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(j ) Chaos suppression in Duffing oscillator

The optimal numerical control of nonlinear dynamics and chaos is investigated
in Lenci & Rega (2003b) by means of a technique based on removal of the
relevant homo/heteroclinic bifurcations, to be obtained by modifying the shape
of the excitation. To highlight how the procedure works, the analysis is accom-
plished by referring to the Duffing equation, although the method is general and
holds, at least in principle, for whatever nonlinear system. It is shown that it is
possible to eliminate this bifurcation simply by adding a single superharmonic
correction to the basic harmonic excitation. The optimal solutions are deter-
mined in the two cases of symmetric (odd) and asymmetric (even) excitations,
and it is shown how they entail practical, though variable, effectiveness of control
in terms of confinement and regularization of system dynamics.
(k ) Control of chaos in robot-manipulator arm

The problems of suppressing or inducing chaotic dynamics in a model of robot
arms and mechanical manipulators are studied by Nakamura et al. (1997), Cao
et al. (2004) and others. For example, in Cao et al. (2004) it is assumed that the
unperturbed systems possess multiple non-transverse homoclinic and/or
heteroclinic orbits depending on the model parameters. Based on the Melnikov
method and numerical computations for the Melnikov integrals, fixed points, and
turning points, conditions for chaos suppression and generation are obtained.
(l ) Chaotic behaviour in optimal control in earthquake civil engineering

In Liolios & Boglou (2003), a nonlinear optimal control problem arising in
earthquake civil engineering is discussed. This problem concerns the elastoplastic
softening–fracturing unilateral contact between neighbouring buildings during
earthquakes when Coulomb friction is taken into account under second-order
instabilizing effects. Hence, the earthquake response of the adjacent structures
can appear as instabilities and chaotic behaviour. The problem formulation
presented here leads to a set of equations and inequalities, which is equivalent to
a dynamic hemi-variational inequality in the way introduced by Panagiotopou-
los. The numerical procedure is based on an incremental problem formulation
and on a double discretization, in space by the finite element method and in time
by the Wilson-v method. The generally non-convex constitutive contact laws are
piece-wise linearized, and in each time-step a non-convex linear complementarity
problem is solved with a reduced number of unknowns.
(m ) Chaos suppression in the milling process

Ball milling is considered in Ajaal et al. (2002). In a traditional ball mill, the
energy exchange between the tumbling balls themselves and the powder particles
tends to be chaotic. Chaotic ball motion and insufficient and uncontrolled
grinding of the powders characterize this process. In order to obtain a
homogeneous and reproducible product, a magnetic field is introduced to the
ball mill. It is shown that the control of the ball motion during the milling of
limestone leads to a reduction in grinding energy of 40% and a more
homogeneous product.
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(n ) Control of whirling motion under mechanical resonance

Inoue et al. (2003) studied the influence of a whirling motion on the electric
characteristics of a rotating electrical machine and proposed a method to control
the whirling motion under mechanical resonance. A torque-based control method
is proposed to suppress the whirling motion by controlling a torque. The control
input is determined based on a stability condition for a time-varying system that
is represented by a second-order vector differential equation with time-varying
coefficient matrices. The effectiveness of the control method is examined by both
simulation and experiment.

(o ) Control of mechanical system with clearance

Mata-Jimenez & Brogliato (2003) deal with analysis and control of a rigid-
body mechanical system with clearance. All the nonlinear non-smooth
characteristics of this system are treated as a rigid-body mechanical system
with unilateral constraints and impacts (dynamic backlash). The model is
therefore a hybrid dynamical system, mixing discrete events and continuous
states. The regulation and tracking capabilities of the proportional-derivative
(PD) scheme are investigated. Existence of a limit cycle for non-collocated PD
control is proved. A hybrid control is proposed, which may be used to track some
desired trajectories in conjunction with a PD input.
4. Conclusions

State-of-the-art of the field related to control of chaotic systems is briefly
surveyed and some examples for control of chaos in mechanical systems are
presented. The authors do not insist that chaos should be used in realistic
applications. The point of the paper is to show a variety of methods able either to
increase chaos or to eliminate it. These methods often achieve the goal with
smaller control power and were compared with traditional control-engineering
approaches, as is demonstrated in the problem of suppression of chaotic
behaviour of a spinning satellite.
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