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1. INTRODUCTION

Problems of nonlinear control have drawn receatly
significant attention. Among those of particular interest
are the problems of control of nonlinear oscillating and
vibrating systems arising in various applied areas of
mechanics, electronics, etc. Together with conventional
control goals (regulation and tracking) some specific
goals are of interest for oscillating systems, for example,
excitation (swinging) and synchronization (Mori et al.
1976; Furuta & Yamakita, 1991; Wiklund et al., 1993;
Akulenko, 1993; Chernousko ef al, 1980). However
general approaches for achieving these specific goals
have not been presented in the literature so far. Recently
it was suggested (Fradkov, 1994) to apply the speed
gradient method for these purposes.

The present paper is aimed to study in more details
problems of excitation (stabilization of energy-based
functionals  for  Hamiltonian systems)  and
synchronization (for Duffing’s system) by means of
speed-gradient (SG) approach. Besides the passivity of
the closed-loop system is established based on the link
between SG and passivity approaches studied in (Seron
etal, 1994).

The paper is organized as follows: the main ideas of the
SG and passivity approaches are briefly exposed in the
section 2 and 3 respectively. Section 4 is devoted to SG
control of Hamiltonian systems. Examples of the SG
control of pendulum and Duffing's system are worked out
in section 5 and 6.
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2. SPEED GRADIENT ALGORITHMS

Consider the controlled plant equation in the state space
form :

X=F(x,ut), 120 .1
where x eR* is a plant state vector,u € R™ is an input
vector, F(-):R*™*! 5 R" is continuously differentiable
in xu vector-function. Input variables may be of
arbitrary nature: real control action on the plant,
adjustable parameters, etc. Consider the problem of
finding the control law u(t)=Ulx(s),u(s): 0<s<t}, ensuring
the control aim: .

2, =0 whent— o, 2.2)

where @ is  some functional

0, = Qlx(s),u(s):0<ss1t].

objective

To design a speed-gradient algorithm for the typical case
0, = O(x(2),t) where Qfx,0)>0 is scalar smooth objective
function determine a function axx,u,f) as the speed of
change of O, along the trajectories of the system (2.1):
w(x,ut) = FT(x,u,t)V,Q. SG-algorithm changes the
control action along the gradient of afx,u,f) in u. Its

combined form looks as follows (Fradkov, 1979; Fomin
et al., 1981; Fradkov, 1990; Fradkov, 1991):

L -t Y =-TV, o0zu.0) @2.3)



where  w(x,u,r) satisfies pseudogradient condition
v v o@xu,)20,T=IT>0 ism*m gain matrix and
u. is a smooth bounded function. The equation (2.3) can
be rewritten in integral form:

u=‘-.y/(x, u,t)-T I(; V o(xus)ds. The main special
cases of (2.3) are SG-algorithm in differential form :

u=u.-I'V,o(xut) 2.9
and SG-algorithm in the finite form :

u=-y(x,ut), (2.5)
having in turn linear and relay versions:

u==I'V a(x,u,1), (2.5a)

u=-Tsign{V, o(x,u,n)}, (2.5b)

where components of vector sign{z} are signs of the
corresponding components of vector z.

The following stability theorem can be proved for SG-
system (2.1), (2.3) similarly to those of ( Fradkov, 1990;
Fradkov, 1991): ’

Theorem 1 (combined form). Assume that the right
hand sides of the system (2.1),(2.3) are smooth functions
in x,u which are bounded together with derivatives in
any region where the function Ofx,2) is bounded. Assume
that awfxut) is convex in v and -the following
stabilizability condition is valid: there exists

u. € R™ such that o(x,x.,1)s0 forall x eR" (2.6)
Then Q(x(1),9) is bounded along each trajectory of (2.1),
@.3).

Besides, if the asymprotic stabilizability condition is
valid: -

o(x,u,,1) S -p(Q(x,1)). 2.7
where o(Q) > 0 for 0>0, then the goal (2.2) is achieved
for all trajectories of (2.1), (2.4).

The previous condition can be weakened:

o(x,.u,.t)<-p(x), - (2.7a)
where p(x)20. In this case Qfx(?),#) is bounded along
each trajectory of (2.1), (2.3) and p(x)-> 0 as time
increases to infinity.

The proof of theorem is based on Lyapunov function
V(x,u,t)=O(x,0)+ u-u) T (u—u.) (2.8)

The combined form (2.3) is more convenient when
u.=0.In the case when it is difficult 10 find constant
"ideal” control w., satisfying (2.6) or 2.7, SG-
algorithms in finite form may be applied. Theorems
about stability of the finite SG algorithm can be found in
(Fradkov, 1990).

Moreover it can be shown that for the finite SG
algorithms the goal (2.2) is still achieved under
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weakened stabilizability conditions: for some bounded
u.(x,t) (2.6) is valid and there exist the sequence of
time instances &-«, k=1,2,... and the sequences of
nonnegative numbers {a};,{a}", such that

Orei = O S-p,0, +a, zpt =, a,/p>0 (2.9

=1
where O, = O(x(,).1,). Note also that Lyapunov

function for the case of finite algorithms is just the
objective function O¢x, ).

Note that for affine systems

x= f(x)+g(x)u (2.10)
speed gradient is just Lie derivative of o:

V.2=(V.0) g(x)=(L,0).

3. SPEED GRADIENT AND PASSIVITY

Applicability of the SG algorithms is connected with the
passivity of closed-loop system. Recall that the system

(2.1) is called passive with respect to output y =h(x) if
there exists smooth nonnegative function V(x) (storage
function), such that V(0)=0 and the following
dissipation inequality (DI) is valid:
'

[# @yas2v,-v, G
where V, and V, demote V(x(r)) and V(x(0))
respectively.
System is called output strict passive (OSP) if the strict
DI holds for some p>0:

[ ©ysaszy-vp+ [ ewee 62

DI in ifinitisemal form looks as follows:
V<yT (u®)- o7 (£)y(r) 63y

Suppose the free affine system (2.10) (for u=0) is
Lyapunov stable and Q(x) is its Lyapunov function, i.e.

(V.0 f(x)<0 3.4
Then for controlled system (2.10) we have
0=(V.0) f+(,0) gus(V,0) gu,
i.e. system (2.10) is passive with respect to output
y=g"V,Q which is just the speed gradient of the
storage function Q(x).



4. SPEED-GRADIENT ALGORITHMS FOR
HAMILTONIAN SYSTEMS

' Consider the controlled plant equations in the

generalized Hamiltonian form:
p=-V, H+B(p,qdu, 9=V H @.n

where p,geR" are generalized coordinates and
momenta; H=H(p,g) is Hamiltonian function (total
energy of the system); z=u(?) is input (generalized force),
B(p,q) is nonsingular n*n matrix function: det(B(p,g))=0.

Formalize the control aim as approaching the given
energy surface:

S={(p.q):H(p.,q)= H.} 4.2)
The objective (4.2) can be reformulated as

or written in the form (2.2), where x = (p,q)7, and

Q(x)=1/2(H(p,g)¢ H.)’ @4.4)
To build SG-algorithm calculate Q :

0= (H-H)H=(H- H)V,H)TB(xu (4.5

The differential SG-algorithm (2.4) can be represented in
the form:

=~y (H-H)BT ()V H 46

where >0 is the gain coefficient.

The finite forms (2.5a), (2.5b) look as follows :
u=-y(H-H)B" (x)V H @7

u=—psign{(H~ H)B (x)V K] 4.8

To analyze the behavior of systems with algorithms
(4.6)-(4.8) Theorems 1 can be used. It can be shown that
the differential algorithm (4.6) satisfies conditions of the
Theorem 1 with stabilizability condition in form (2.6)
for the constant u.=0. It follows from Theorem 1 that
H(p.g) is bounded along the trajectories of the system
(4.1), (4.6) together with Ofx). However the theorem
does not ensure achievement of the initial goal (4.3).
As a matter of fact the goal (4.3) is not achieved and
simulation demonstrates complex behavior of the system
(4.1),4.6).

Algorithms (4.7),(4.8) give better convergence. Taking,
eg u=—(H-H)B'(x)§ we obtain from (4.5)
0 =-2Q(¢"BB7§]. It means that the condition (2.7) is
not valid, because ¢ may vanish in some instants £ > 0,
#=1,2,... . However it follows from LaSalle*s invariance
principle that each trajectory of the system (4.1),(4.7)
converges either to the surface (4.2) (i.e. the goal (4.3) is
achieved) or to the equilibrium point ¢ =0 (stationary
point of H). The arguments similar to (Shanidi, 1994)
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validate that the dimension of the set of initial conditions
for which trajectories converge to the saddle points of &
is less than n2. On the other hand if the value of H in the
point of maximum or minimum is different of H., then
such a point also cannot be a limit point for @.1),4.7,
because in this case the stabilizability condition in the
difference form (2.9) is valid. Hence the goal (4.3) is
achieved for almost all initial conditions.

5. EXAMPLE }: CONTROL OF PENDULUM

Consider simple controlled pendulum equation

J-p+m-g-l-sing=u [69))
where @ is the angle of pendulum defined to be zero in
its lower position, # is the controlling torque; J, m, |
are the inertia, mass and length of the pendulum,
correspondingly; g is the gravity acceleration. The
pendulum energy is

H=1n2J-(p)’+m-g-1-(1-cos ) 5.2)

Consider the problem of swinging the pendulum up
to the magnitude with energy H.. The achievement of
the objective (4.3) for H. =0 means stabilization of
pendulum in the lower position, ie. supression of
oscillations, while for H. >2mgl it corresponds to the
permanent rotation.

SG-algorithms (4.6), (4.7) in the differential and finite
forms are .

= ~y(H~ H.)p (53)
u=-y(H-H.)p 54

Itcan be easily seen that the algorithm (5.3) satisfies
conditions of Theorem 1, the stabilizability condition
being valid in the form (2.6). Theorem 1 gives
boundedness of the energy, i.e. dp/dt is bounded.

The simulation results were obtained for the parameter
values m=lkg, I=lm, J=lkgm, de/dt())=0, u(0)=0.
System with algorithm (5.3) for ¢(0)=n/4 has oscillating
behavior with the magnitude far from the desired one. In
the contrary algorithm (5.4) swings the pendulum up to
the desired magnitude even for small initial conditions
#(0)=0.5 deg. for control gain y=0.1.

6 EXAMPLE 2: ADAPTIVE SYNCHRONIZATION OF
TWO DUFFING'S SYSTEMS

Consider controlled forced Duffing equation

X+ pi+px+x’=gqcosax+6, p>0 6.1
that has become a traditional example of oscillating
system with complex dynamics. In (6.1) & is the control
action. ,



As it has been shown in (Chen & Dong, 1993, b) when
some parameters of the Duffing equation re varied, the
solution trajectories of the equation display changes of
dynamic behavior.

We will consider the problem of controlling a chaotic
trajectories of the Duffing equation to one of periodic or
chaotic solutions of the reference Duffing system that has
desired dynamics.

By introducing X, = x,, equation (6.1) can be rewritten
as

{i‘ =R 6.2)

Xy =—pX, — X3 — px, +gcosax + 8’

The problem is to choose the control action 4 ensuring
that the trajectories of the system (6.2) tend to the
solutions of the reference model;

{fm e . 63)
Xom = =P Xim ~ Xim — PXapm + 4, COS X

where parameter g,, determines desired dynamics of the
reference model.

Chen and Dong (1993, b) proposed controller of the
following form to solve the above problem:

0=-K(x, = X, ) 43X, Xy, (X; = X, ), K>~ py. (6.4)
They showed that this control law ensures acheivement
of the goal fx, - x,[| >0 and jx,-x,,] >0 when
parameters of the system (6.2) concide to those of the
reference model: g =g,. When g =g, the goal is not
achieved for any fixed X. The SG method discussed
above can be employed to design adaptive control law for
this problem when some parameters of the controlled
system are unknown.

Let ¢ be an adjustable parameter in the system (6.2):
q =qq +u, where z is the adaptation variable. The law
can be designed by the SG method. The control aim can
be reformulated as finding &(¢) such that

Q(e(£)) - 0 when ¢ — o, 6.5)
~ where e = (x; - x,,,,X; = X,,,)7 is error vector, and
0e)=((K +p)et +¢f 12+63) 12 6.6)
1s the objective function.
Calculations give
V,0(e)=[0 cosatle=e,cosax . 6.7

Choosing [ =2, and w(x.u,t)=AV,Q(x), one can
obtain the SG-algorithm in combined form:

H
1= =t - Xap)c0s @ = 7 [ (3, ~ Ky )cosands, (6.8)
0
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A>0,r>0.

It can be seen that all conditions of the Theorem 1 are
satisfied. Indeed for u.=g, -g, we conclude that

O(e) = -pe3, or Q(e) = -pe), where p(e) = peZ >0 as
it required in the condition (2.7a). Therefore according
to Theorem 1 convergence p(e)— 0 is established.
Substructing (6.3) from (6.2) gives that &, —» 0 implies
€ —> const that in turn can be satisfied if ¢ — ¢, and

¢ —0. Thus we have established that the adaptive
controller (6.4), (6.8) drives the trajectories of the system
(6.2) to the periodic or chaotic solutions of the reference
system (6.5). It follows from the results of section 3 that
the overall system is passive with respect to output
Y= ez cosax.

It is worth mentioning that considered case is rather
simplified: we assumed that only one parameter of the
controlled system is unknown. This is not a restriction of
the SG algorithm and this assumtion was made in order
to help the reader to catch the main idea of the proposed
adaptive controller. It can be shown (Pogromsky, 1995)
that the SG adaptive control can be designed for the
Duffing’s system when all parameters (except for @) are
unknown (including the phase uncertainty).

Proposed adaptive controller can be utilized to promote
or eliminate chaos in controlled nonlinear oscillator.
Indeed, it does not matter which dinamics is observed in
oscillator before control is applied because ‘the control
law ensures convergence to the trajectory of the reference
system whose behavior can be specified by appropriate
choice of the parameter g,. Extensive computer
simulation demonstrates that the proposed algorithm
works duly and the choice of coefficients X, 7,2
determines the speed of convergence of the objective
function to zero.

7. CONCLUSION

The power of the speed-gradient approach has been
demonstrated previously for various problems of
stabilization and tracking. In this paper the speed-
gradient approach is extended to the oscillating
system using energy-based objective functions.
Theoretical results establish stability of the closed-loop
systems and simulations show good transcient processes.
It is shown also that SG system possesses passivity

properties
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