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Abstract-Motivated by N. Krasovskii’s characterisation of ex-
ponential stability, the concept of exponential passivity is intro-
duced. It is shown that to make a nonlinear system with factoris-
able high-frequency gain matrix exponentially passive via either
state or output feedback, exponential minimum phaseness and
invertibility conditions are necessary and sufficient. These condi-
tions also guarantee exponential output feedback stabilisability.
This result extends previous results concerning linear systems.
© 1988 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

In a series of papers by Byrnes and Isidori (1984,
1985, 1991), significant results were obtained ex-
tending to nonlinear systems some cornerstone
concepts of linear control theory: normal forms,
stabilisability, zero dynamics, minimum phaseness.
The connection of these concepts with another fun-
damental property, namely passivity (dissipativity),
was studied in Byrnes et al. (1991). In particular, it
was shown in Byrnes et al. (1991) that an affine
system possesses the property of state feedback
passivity (meaning the existence of smooth state
feedback rendering the system passive) if and only if
it is weakly minimum phase and invertible. The
case of strict passivity was also investigated in
Byrnes et al. (1991), for which a similar result is
valid with weak minimum phaseness replaced by
minimum phaseness. The above-mentioned results
establish clear and useful links between some of the
main concepts of nonlinear control theory as well
as generalising some known results for linear sys-
tems (Saberi et al., 1990).

However, these known results are related only to
the case of state feedback passivity. In view of the
“Input-output” nature of the passivity concept
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itself, it seems useful to establish relations between
output feedback counterparts of stabilisability and
passivity. The present paper aims at establishing
such relations. A concept of exponential passivity
plays a major role; this property bounds energy
storage and dissipation functions quadratically.

When investigating nonlinear systems, an impor-
tant role is played by semiglobal versions of system
properties, i.e. properties valid in every given com-
pact region of the system state space. The reason is
twofold. On the one hand, achieving globality usu-
ally requires bounding the growth of nonlinearities
in excessively restrictive ways from a theoretical
point of view. On the other hand, good perfor-
mance of the system in any bounded region is often
quite satisfactory from a practical point of view.

To establish the main result of the paper,
a semiglobally defined (i.e. depending on initial
conditions) feedback law is used. Therefore semi-
global versions of the corresponding passivity
properties are to be defined first.

In Section 2 exponential passivity and other re-
lated concepts are introduced. The necessary “ex-
ponential” version of the nonlinear Kalman-
Yakubovich lemma (see Moylan, 1974; Hill and
Moylan, 1976; Byrnes et al., 1991) is also given.

The equivalence results of output feedback ex-
ponential passivity and exponential minimum
phaseness plus invertibility is proven in Section 3 for
the class of affine systems having globally defined
normal form and factorisable high-frequency gain.

A side result is that state and output versions of
feedback exponential passivity coincide for the
above mentioned class of systems. To establish
passivity and stabilisability of the closed-loop sys-
tem, high gain arguments are used.

In Section 4, the interrelations between the
obtained result (which can be considered as a non-
linear version of feedback Kalman-Yakubovich
lemma) and its linear prototypes (Fradkov, 1974,
1976) are discussed.

For the reader’s convenience we reproduce in
Appendix the necessary result from Fradkov (1974,
1976) for the case m = 1, with the proof being a
slightly modified version of Fradkov (1974).
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2. DEFINITIONS

Consider the nonlinear time-invariant affine in
the control system

X = f(x) + g(x)u,
y = h(x),

where x e R", ue R™, y € R"™; f(x), g(x) are C'-vec-
tor fields and h(x) is a C* vector-function.

The set of admissible inputs is assumed to be
all locally square integrable R™-valued functions
Z,.(R™). We assume the outputs in .#,.(R™).

(2.1)

Definition 1 (Byrnes et al., 1991; Willems, 1972).
System (2.1) is C" strictly passive if there exists
a C", r = 0, nonnegative function V(0) =0, and
a positive-definite function S(x) such that for all
ue L. (RMmandalit >0

1

V{x(@) - V(x(0) = j y(@ u(r)de

0

— J. S(x()dr. (2.2)
0

This equality expresses an abstract energy balance
for system (2.1). For linear systems, the interesting
storage functions, V, and dissipation functions, S,
are quadratic (Willems, 1972). It is of interest to
study the class of nonlinear systems which are close
to this situation in the sense that some (V, S) are
quadratically bounded.

Definition 2. A strictly passive system (2.1) is called
C’-exponentially passive if there exist positive num-
bers «;, 2,, a3 such that the following inequalities
hold:

ax]? < V(x) < aylx]?, (2.3)
o3]x|* < S(x) 24)
for any x(r)-solution to equation (2.1).
The motivation of Definition 2 comes from
a classicial result due to Krasovskii (1959).
Lemma 1. For exponential stability of the system
Z=F(z), zeR" (2.5)
with C'-smooth right-hand side, i.e. the inequality
[z@) ] < C(llz(0) ) exp( — &2) (2.6)

holds for some ¢ > 0, some continuous function
C(') such that C(0) = 0, C(r) > O for r > 0 and any
solution z(¢) to equation (2.3), it is necessary and
sufficient that there exist a C!-smooth function
V(z) and positive numbers a;, ..., x,, satisfying

quadratic type inequalities

nlzl? < V@) <aslz)? 2.7
V()< — sz’ (2.8)
IVV (@) < gzl (29)

where V(z) = VV(2)TF(z).

It is then easily seen that an exponentially pas-
sive system for u(t) = 0 is exponentially stable. The
following lemma can be derived which provides one
more version of “nonlinear Kalman—Yakubovich
Lemma™ (see Moylan, 1974; Hill and Moylan,
1976).

Lemma 2. System (2.1) is C"-exponentially passive,
r > 1, if and only if there exists a C'-function V(x)
and positive numbers oy, o, %5 such that equation
(2.3) is valid as well as the following relations:

VV(x)f(x) < —asllx|? (2.10)
VV(x) g(x) = h(x)". (2.11)

We will need the following definition of a local form
of passivity similar to one given in Pota and
Moylan (1990).

Definition 3. System (2.1) is called C'-strictly pas-
sive in the region Q — R", if there exist nonnegative
C'-function ¥V:Q —» R and positive-definite C’-
function S:Q — R, such that inequality (2.2) is valid
forallt > 0 and all u(-) € L,,(R™ which ensure that
x(tyeQforany 1:0 <t <t

If, moreover, the inequalities (2.3) and (2.4) are
valid then system (2.1) is called C"-exponentially
passive in the region Q.

Definition 4. System (2.1) is called C™-output feed-
back exponentially passive, if there exists C"-smooth
output feedback

u=a(y) + B(y)v, (2.12)
where v € R™ is a new input such that the closed-

loop systems (2.1), (2.12) is exponentially passive.

Definition 5. System (2.1} is called C"-output feed-
back exponentially stabilisable if there exists C'-
smooth output feedback

u = oy (2.13)
such that the closed-loop system (2.1), (2.13) is ex-
ponentially stable.

We are also interested in formulating (see also
Byrnes et al, 1991) a state-feedback version of
Definition 3.
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Definition 6. System (2.1) is called C'-state-feedback
exponentially passive, if there exists C”-smooth state
feedback

u=a(x) + B(x)v (2.14)

such that the closed-loop system (2.1), (2.14) is C'-
exponentially passive.

Definition 7. System (2.1) is called C’-semiglobally
output feedback exponentially passive if for any
compact set Q€ R" there exists C"-smooth feed-
back

u = og(y) + Ba(yv, (2.15)

such that the closed-loop system

X = fa(x) + ga(x)v,
y = h(x),

where fo(x) =f(x) + g(x)aa(h(x)), galx) = g(x)
Balh(x)), is C"-exponentially passive in the region Q,
and Vg (x) = Vq,(x), for x € Q; nQ, where V{x) is
a storage function ensuring passivity in Q.

To formulate minimum phaseness properties, we
need the notion of zero dynamics. Our results relate
only to the systems in canonic (normal) form.
Hence we will formulate the necessary properties
only for the systems in normal form. General defini-
tions can be found in Byrnes and Isidori (1991) and
Isidori (1989).

Suppose system (2.1) has normal form in some
neighbourhood of the origin:

(2.16)

Z=q(z, y),

(2.17)
y=alz,y) + b(z, yu,

where z € R"™™. (Conditions under which system
(2.1) can be converted into form (2.17) by smooth
coordinate change, can be found in Byrnes and
Isidori (1991) and Isidori (1989).)

The equation

i =g(z,0) (2.18)

provides the zero dynamics of system (2.1). System
(2.17) is called locally invertible (or having local
relative degree (1, 1, ..., 1) if its high-frequency gain
m x m-matrix b(0, 0) is nonsingular.

Finally, system (2.17) is called exponentially min-
imum phase, if there exist a C!-smooth function
Vo(z) and positive numbers ay, ..., a4, satisfying
quadratic type inequalities:

alz))? < Volz) < ap 213, (2.19)
VVo(@)'q(z,0) < —asliz]?, (2.20)
IVVo(2)l| < aqllz]l. 221)

From Lemma 1 we see that an exponentially min-
imum phase system has exponentially stable zero

dynamics. For linear systems, exponential min-
imum phaseness reduces to being minimum phase.

Normal forms and all the related concepts can
also be defined globally (see Byrnes and Isidori,
1991; Isidori, 1989). Particularly, system (2.17) is
called invertible, if matrix b(z, y) is nonsingular for
any z, y.

3. MAIN RESULTS

Theorem 1. Suppose system (2.1) has globally de-
fined normal form (2.17) with factorised high-fre-
quency gain

b(z, y) = bo(2)by(y), (3.1

where by(z), b;(y) are smooth m x m-matrices,
bo(z) = by(z)" > 0, and b,(y) is invertible.
Then the following statements are equivalent:

1. System (2.17) is C"-semiglobally output feedback
exponentially passive (r > 1).

2. System (2.17) is C'-state feedback exponentially
passive (r > 1)

3. System (2.17) is exponentially minimum phase.

If any of the statements (1), (2) or (3) is valid, then
for any compact set Q of initial conditions the
system (2.17) is output-feedback exponentially
stabilisable by means of feedback

u= —[b:(»1 ' [bo(0) 'al0, y) + xy1 (32)

where y > yq is a scalar gain.

Proof of Theorem 1. Equivalence of (2) and (3) is
proved similarly to Theorem 4.7 (Byrnes et al.,
1991), using Lemma 2 instead of the standard non-
linear version of Kalman—Yakubovich lemma.

(1)=(3): Note that given compact set Q, there
exists feedback (2.15), rendering system (2.17) expo-
nentially passive with storage function V(z, y),
which can be chosen independently of Q, ie.,
Vq = V over any compact Q. In view of Lemma 2,
for y = 0 the foliowing inequality holds:

V.V(z,0)'q(z,0) < — 23]z,

assuring, together with equation (2.3), the exponen-
tial minimum phaseness of (2.17). Function V (z, 0)
is a Lyapunov function for zero dynamics.

(3) =(1). In view of condition (3), the equation

Z=4(z,0) (3.3)

describing zero dynamics of system (2.17) is expo-
nentially stable, i.e, there exists C'-smooth func-
tion Vo(z) satisfying quadratic type inequalities
(2.7Y42.9). Choose storage function candidate of
form

Viz, y)=Vo(2) +3y'[bo()] 'y (34)
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and take output feedback as
u= —[by(»)] '[bo(0)""a(0, y) + xy]
+ b1 to, 3.5)

for y # 0and u = Ofor y = 0, where vis a new input
and the number y is to be determined. Note that
feedback (3.5) is well defined since det b, (y) # 0 due
to invertibility of system (2.17). The properties
(2.19)42.21) of V¢(z) and smoothness and boun-
dedness of bg(z), bo(z)”' on any compact subset
of R*"™™ imply inequalities (2.3) in the definition
of exponential passivity. To verify relations (2.10)-
(2.11) of Lemma 2, consider the equations of the
closed-loop system (2.17), (3.5):

Z=4q(z, y),
y = a(z, y) — bo(2) [bo(0) " 'a(0, y) + xy]1 (3.6)
+ bg(2)v.

Comparing this with system (2.1), it is convenient to
definef,(z, y) and g,(z, y) for the closed-loop system
(3.6) as follows:

q(z, ) ]
a(z, y) — bo(2) [bo(0) "' a(0, y) + xul |’

0
gylz, y) = [bo(z)]
Condition (2.11) holds since

VV(z, 1) g,(z. ) = y"[bo(2)] ™ bo(2) = y".

To verify equation (2.10), note that

fx(z, y) = [

VV (2, y)" fi(z ¥)
= V¥4l 0) + VYo' la(z ) 46z, 0)
+ 59700 28D )71 gz, )
z

+y"[bo(2)]1™ " alz, y)
— ¥ bo(0) " a(0, ) — xll yII%. (3.7

We now aim to fix some compact set Q = R" ™ x
R™ and determine number yq > 0 such that the
right-hand side of equation (3.7) is nonpositive as
X > Xa- Using smoothness of the right-hand side of
equations (3.6), and invertibility of equation (2.17)
we have for (z, y) e Q

la(z, ) — q(z, O)I < Cqlyl,
Ibo(2)™ 'a(z, y) — bo(0) ™! a(0, y) || < Calizll,
Ibo(2) ™Il < Cs,  |10bo(2)/0z]| < C4,
lg(z, Yl < Cs

for some positive constants C,, C,, ..., Cs. Taking
into account exponential minimum phaseness,

we have
VWV, < —aslz|® + Croullyl-lzll + Callylliz)
+3CICCslyl> — xIyl?
= —o3fz)? = (x -3 CiCCy) |y
+ (Crog + G}yl 2]

Hence, choosing y, to satisfy the inequality

: 2
fa 22 +3CICCs + ~(Cioa+ G (38)

we just obtain

VWV, ) fdz 0 < —(@a/2) Uzl® + [y1?)

for x > yxq. So, statement (1) is proven.

To prove the statement about exponential
stabilisability, note that an exponentially passive
system with zero input is exponentially stable. [

Remark 1. It is easy to show that, if the global
Lipschitz condition for the right-hand side of (2.17)
and uniform positivity of by(z), i.e., bo(z) > ul > 0
are imposed, then the achieved output feedback
exponential passivity becomes global.

Remark 2. The passifying control law can be taken
in simplified form

u=y[by(W1 'y +[b;(1] 'v (39)

(instead of equation (3.5)) which has the advantage
that for b, () constant, the law (3.9) is linear.

However, the lower bound yg, for gain y ensuring
passivity of the closed-loop system (2.17), (3.9)
in this case increases. Indeed, the right-hand side
of the inequality (3.8) in this case should be en-
larged by the quantity C;C; where Cq is the
Lipschitz constant of a(z, y) with respect to y at
the set Q.

4. COMPARISON WITH THE CASE OF
LINEAR SYSTEMS

An unexpected consequence of the result ob-
tained above is that under conditions of Theorem 1
(i.e. for normal form systems with factorisable high-
frequency gain matrix) there is a close relationship
between output feedback and state feedback ex-
ponential passivity.

An explanation of this phenomenon lies in the
study of the nature of the exponential passive prop-
erty itself implying the “strong” stability of zero
dynamics. Indeed, many arguments can be invoked
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to show that exponential passivity and exponential
stability are the natural counterparts of strict pas-
sivity and asymptotic stability of linear systems. As
to linear systems, the equivalence of output and
state feedback strict passivity follows from com-
parison of results in Fradkov (1976), where the case
of output feedback strict passivity was considered,
and (Saberi et al., 1990; Picci and Pinzoni, 1992),
where necessary and sufficient conditions of state
feedback passivity were obtained. The results of
such a comparison are formulated in the following
theorems.

Theorem 2. Consider the linear system

X = Ax + Bu, y=0Cx 4.1)
where x e R", ye R™, u e R™ and rank B = m.

Then the following three statements are
equivalent:

1. System (4.1) can be made strictly passive by
means of linear output feedback

u=Ky+ Lv 4.2)

for some K, L where ve R™ is a new input,
det L # 0.

2. System (4.1) can be made strictly passive by
means of linear state feedback

u=Mx+ Lv 4.3)

for some M, L. where det L. # 0, v € R™.
3. System (4.1) is minimum phase and det CB # 0.

To simplify the proof of Theorem 2, another
result of a similar kind (for fixed L) is used, which is
interesting in its own right.

Theorem 3. Let rank B = m for system (4.1). Then
the following statements are equivalent.

1. System (4.1) can be made strictly passive by
means of output feedback (4.2) with given L,
det L # 0.

2. System (4.1) can be made strictly passive by
means of state feedback (4.3) with given L,
det L #0.

3. System (4.1) is minimum phase, and CBL =
(CBL)" > 0.

Remark 1. Bearing in mind that a storage function
of a linear passive system can always be taken as
quadratic, i.e.

V(x) = x"Px 4.4

we can say that Theorems 2 and 3 give necessary
and sufficient conditions for existence of

P =P'>0, K. L, such that

PAg + ARP <0, PBL =C,
4.5)
Agy=A + BKC
(for output feedback case) or such that
PAx + ARP <0, PBL = C,
(4.6)
A=A + BM

(for state feedback case).

If matrices K and L were fixed, the solvability
of equations (4.5) and (4.6) would be established
by the Kalman-Yakubovich lemma. Hence, it is
natural to call Theorems 2 and 3 and their non-
linear relative at Theorem 1 by “feedback Kalman-
Yakubovich lemma”.

Remark 2. The solvability conditions of (4.5) for
L = I were found in Fradkov (1974) (for m = 1) and
in Fradkov (1976) for the general case. Since refer-
ences Fradkov (1994, 1976) are of limited access
(although published in English) we give an indepen-
dent proof of the Feedback Kalman—Yakubovich
Lemma for m = 1 in the Appendix. The solvability
conditions of the “nonstrict” version of equation
(4.6) (with inequality PAx + ALP <0) were ob-
tained in Saberi et al. (1990) and extended to the
case of systems with feedthrough in Santosuosso
(1993), where the case of strict passivity also was
considered.

Remark 3. The additional requirement of sym-
metry and positivity of the high-frequency gain
matrix, appearing in statement 3 of Theorem 3, can
be satisfied by proper choice of L, e.g., L = (CB)™ .
If, however, L is fixed, e.g., L = I, then this require-
ment is necessary. Similarly, in the nonlinear case,
L = L(y) while high-frequency-gain matrix de-
pends on both z and y. Hence, the requirement of
symmetry and positivity of the factor by(z) cannot
be removed.

Let us now prove Theorems 2 and 3, starting
with Theorem 3.

Proof of Theorem 3. (1)=>(2) is obvious. (2) = (3)
Substitute equation (4.3) into equation (4.1) to
obtain the closed-loop equations

X = (A + BM)x + BLuy, y=Cx
The change
BL = B, L '=M=M 4.7

reduces the problem to the case L = I considered
in Saberi et al. (1990). Obvious modification of
the proof of Proposition 2 in Saberi et al. (1990)
(replacing PAx + AXP <0 by strict inequality
PAg + AP < 0) gives directly statement (3).
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Finally, to derive (1) from (3) we need to prove
that there exist K and P = P' > 0, satisfying equa-
tion (4.5). For L = I it is just a result of Fradkov
(1976) and the general case can be reduced to the
case L = I by the change (4.7)

Proof of Theorem 2. Implication (1) =(2) is trivial.

To prove (2) = (3), fix some matrix L, det L # 0.
Then it follows from Theorem 3 that systems (4.1) is
minimum-phase, (CBL) = (CBL)" >0 and hence
detCB # 0.

To prove (3) = (1), it suffices to establish solvabil-
ity of equation (4.5). But it again follows from
Theorem 3 for choice L = (CB) ™ *.

Theorems 2 and 3 show that, for rendering a sys-
tem strictly passive, output feedback and state feed-
back give the same results. Eamples show that this
is not the case for rendering a systems “nonstrictly”
passive.

It is interesting to note that Example 4.1 from
Byrnes and Isidori (1991) (see also Byrnes and
Isidori, 1989) shows that straight replacement of
passivity by strict passivity and weak minimum
phaseness by minimum phaseness (asymptotic
stability of zero dynamics) is not enough to provide
equal stabilising capabilities of both output and
state feedback for nonlinear systems.

5. CONCLUSIONS

It was established in this paper that to render
a system in normal form with factorisable high-
frequency gain exponentially passive by means of
either output or state feedback, it is necessary and
sufficient that it is exponentially minimum phase
and invertible. The same property for linear sys-
tems is derived from the results of Fradkov (1974,
1976), Saberi et al. (1990) and Picci and Pinzoni
(1992).

It is shown that the “exponential” properties and
symmetry of the state dependent factor of the
high- frequency gain cannot be simply removed
from the formulation of the Theorem 1. However,
the question of necessity of these properties remains
open.

Finally, it is worth noticing that the main contri-
bution of the paper can be interpreted as a bring-
ing together of different “linear” versions of the
feedback Kalman—Yakubovich lemma and estab-
lishment of some new “exponential” nonlinear ver-
sion of it. Other nonlinear versions of the feedback
Kalman- Yakubovich lemma can be found in By-
rnes et al. (1991) and Byrnes and Isidori (1989).
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APPENDIX: FEEDBACK KALMAN-YAKUBOVICH
LEMMA

Theorem. For the existence of the matrix P = P" >0 and
f € RY, satisfying

PA, + ALP <0, (A1)
PB = CTy, (A2)
As= A + BAC, {A3)

it is necessary and sufficient that the function g"W(J),
where W({i) = C(M] — A)"'B is hyper-minimum phase, ie.
the polynomial N(1) = det(dl, — A)g"™W(A) is Hurwitz,
degN(4) = n—1, N(O) > 0.

To prove the theorem, we need the two following lemmas.

Lemma 1 (Yakubovich, 1962). For the existence of the matrix
P =P7 >0, st

PA+ AP <0, PB=d
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it is necessary and sufficient that

(a) det(Al, — A) is Hurwitz,
(b) Re W (jw) >0,
(¢} lim,_ ,, w?Re W (jw) >0,

where W(1) =d"(A] — A)"'B.

The above lemma contains the first published formulation of
the Kalman-Yakubovich lemma.

Lemma 2. Let P) = A"+ p,_ (A" 1+ oo + piA+ po, Q) =
Gn-14A""1+4 -+ + go be polynomials and Q1) is Hurwitz,
deg Q(1) =n — 1,4,-, > 0. Then ¢P(1) + Q(A)is Hurwitz for all
sufficiently small ¢ > 0.

Proof. Let Afe), i=1,...,n be zeros of P,(A) = eP(1} + Q(4),
(4:(0) are zeros Q(4)). Then Ae) = A[0), i=1,...,n—1 and
Ag(€)~ — g, (/e > —o0 ase— 0. This follows since P,{4) can be
written as P,(4) = 1" (A + q,-1) + R,_ (e, A).

Proof of the Theorem. Introduce the notation 6&(1)=
det(il — A), 84(4) = det(A] — Ag). Then 684(4) = 6(A) — 0Ta(A),
WA} = a(D)/Se(A), N(A) = g"a(D) = o1 A" " + -+ + gt

1. Sufficiency. We will show that (A.1}{A.3) are valid for
f = — ug, where u > 0 is sufficiently large. (A.1) follows from
the relation d4(4) = 6(1) + ugTa(A) and Lemma 2. To prove (A.2)
note that N(jw) # 0 and 8(jw) + uN(jw) # 0 for all we R?, if
uis sufficiently large. Therefore, equation (A.2) is equivalent to

Re[g"We(j)] ! > 0.

8(4) + pg'a(d)
QT“('{) A= jor
d(jw)
N{jw)
Hence, it suffices to show that |Re d(jw)/N(jw)| is bounded for

w— t+ o
For w — + og we have

Re[¢"W,(jw)] ! =Re

=pn+Re

Re 0(jw) Rejo + ay—1 + 0(1/jow)
N(je) Gn-1 + 0(1/je)

and equation (A.2) is proved. Finally, the validity of equation
(A.3) follows from the relations:

lim w?Re g"Wy(jw)= — g'CAsB = — g"CAB + pg,_,.

W+

=1

2. Necessity. Calculate the increment of the argument of
N{jw) for o varying from —oc to + ca Since N(jw) =
g We(jw)-8s(jw) we have AargN(jo)= Aargg"™W,(jo) +
Aarg do(jw).

By virtue of the Mikhailov stability criterion it follows from
equation (A.1) that A argdy(jw) = nn and it follows from equa-
tion (A.2) that |Aargg”W(jw)| <n. Hence AargN(jw)>
(n — 1)n. Note that N(A) is a polynomial of degree n — 1, there-
fore Aarg N(jw) < (n — m, ie, Aarg N(jw) = (n — D)n.

This means that the polynomial N(J) is Hurwitz, its degree
is n—1 and all coefficients are positive. The theorem is
proved.



