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1. Introduction

An important technique in the development of
nonlinear control theory is synthesis of stabi-
lizing controls (Sontag, 1990; Kokotovic, 1992).
A recent approach to stabilizability is based on
the concept of passifiability (feedback passivity)
(Byrnes, Isidori, Willems, 1991). This has been
applied to simple.cascades of nonlinear subsys-
tems. In this paper, extension of some stabi-
lization techniques using passivity concepts is ex-
plored.

Some of the recent investigations take into ac-
count the plant uncertainty in the problem for-
mulation. This leads to development of nonlinear
adaptive control techniques with passivity con-
nections. One of the general techniques is the
so-called speed-gradient (SG) method (Fradkov,
1979, 1990). Using the SG-methodology gives
an opportunity to pose and solve the problem of
adaptive passification (Seron, Hill and Fradkov,
1994).

A very fruitful idea in this field is iterative design
of control algorithms or backstepping, (Kokotovic,
1992). In particular, results by Kanellakopoulos,
Kokotovic and Morse (1992), allow one to attack
problems with a higher relative degree and weak-
ened matching conditions. Connections between
backstepping and passivity have been established
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(Kokoﬁovié, Krsti¢ and Kanellakopoulos, 1992).

For practical applications, it is important to es-
tablish semiglobal stabilization techniques as dis-
cussed by Sussman and Kokotovic (1991), Byrnes
and Isidori (1991).

The present paper is aimed at further investigat-
ing possibilities and limitations of passification of
interconnected systems and to extend the adap-
tive passification results started in Seron, Hill and
Fradkov (1994). A key idea of large scale control
system theory is the representation of a complex
system as a collection of interacting subsystems
e.g., see Michel and Miller (1977). Therefore the
passification problem becomes one of establish-
ing a passivity property of an interconnected sys-
tem provided its subsystems have the appropriate
properties. This approach is clearly related to the
backstepping procedure, but may allow more nat-
ural system structures.

For the sake of brevity, all proofs are omitted.
Further details are found in Fradkov, Hill, Jiang
and Seron (1995).

2. Definitions and problem formulations

Definition 2.1 (Passivity) A system with input
v, output y and state z € X C R® is said to
be C"-passive if there exists a C” nonnegative
real-valued function V(z), V(0) = 0, such that
vz(0) = z% € X, Vt > 0, the following dissipa-
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tion inequality (DI) holds

/., T(ry(r)dr > V(z() = V(z°)  (21)

Passive systems are a particular class of the more
general dissipative systems.

Definition 2.2 (Dissipativity) A system with in-
put v, output y and state z € X is said to be
(@, R, S)-dissipative if there exists a C' nonneg-
ative real-valued function V(z), V(0) = 0, such
that Vz(0) = z° € X, Vt > 0, the following DI
holds

j[f(r)oy(r) + 47 () Ru(r)
+7 (NSu(Pdr > V(z(t) - V(%) (2.2)

Many of the results that we will present are re-
lated to output strict passive systems, or briefly
OSP-systems, defined as (—pl,0, I)-dissipative
systems, where p is a positive constant (Hill and
Moylan, 1976).

Systems that can be rendered passive via state
feedback are called feedback passive systems.
These systems were introduced in Byrnes, Isidori
and Willems (1991), who considered a class of
affine (linear in input) systems:

£ = f(z) +9(z)u
y = h(z) (2.3)

Definition 2.3 (Feedback-Passive Systems) We say
that the system (2.3) where z € X C R",
u,y € R™ and f, g, h are smooth functions,
f(0) = h(0) = 0, is locally (resp. globally) C*
feedback-passive if there exists a C™ smooth
control

u = a(z) + B(z)v A (24)

with a(0) = 0 8(0) # 0, (resp. B(z) # 0Vz € X),
s.t. for the closed loop system (2.3), (2.4) the DI
(2.1) is satisfied. For r > 1 the DI in differen-
tial (infinitesimal) form can be checked instead of

(2.1):
7@ = B (1) + gl <7y (29)

where V : X — R is a (C”) positive definite func-
tion.

Feedback dissipative systems are defined analo-
gously.

A different problem involves not only the search
for a state feedback but also the selection of an
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output function for which the system becomes
passive (dissipative). More specifically:

Definition 2.4 (Feedback Passification Problem)
For the system

z = f(z) + g(z)u (2.6)

where z € X C R®, u € R™ and f, ¢ are smooth
functions, f(0) = 0, find a control law

u = a(z) + B(z)v 2.7
and output function
y=h(z), h(0)=0 (2.8)

such that the input-output operator verifies the
dissipation inequality (2.1).

When f and g in (2.3) are also functions of some
vector of unknown parameters &, i.e.

with z, u and y as before and £ € = C RP a vector
of unknown parameters, we can state the follow-
ing problem, following Seron, Hill and Fradkov,
(1994).

Definition 2.5 (Adaptive Feedback Passivity Prob-
lem) Design a two level control algorithm

u="U(z,6,v)
6 = 6(z,0)

such that the closed loop (2.9)-(2.10) satisfies the
DI (2.1) for some function V(z, 8, £) with specified
positivity properties.

(2.10)

The semiglobal versions of Definitions (2.4), (2.5)
are motivated by related concepts of stabiliza-
tion (Sussman and Kokotovic, 1991; Byrnes and
Isidori, 1991) and extensions to the feedback dis-
sipativity case are introduced in the similar way.
e.g., system (2.3) is called semiglobally feedback
passive if, for every bounded set D C R", there
exists a bounded set £ with P C £ and smooth
feedback

s=ap(z)+ ﬂptz)v (2.11)

such that dissipation inequality in the form (2.1)
(or (2.5)) is valid for system (2.3), (2.11) with ini-
tial conditions z(0) € D and for input functions
v(?) ensuring z(t) € £,t > 0.




T

a2l WL g

Cat i it e o g i

3. Feedback passifiability of an interconnection
of two subsystems

Suppose the two state feedback passive systems
(i-e., systems that may be rendered passive by
state feedback) are given:

Sit #i = fi(zi) + gi(zd)ui,
Yi = h,~(z,~), i= 1, 2 (31)

where z; € R™, v € R%, u; € R™,i=1, 2. Let
us examine the state feedback passivity of the ba-
sic (primary) types of interconnections of Sy and
S;: cascade (series), parallel and feedback. The
state vector of the interconnection is composed of
the state vectors of S; and S» in all cases, ie.,
z = (], z'{)T. We assume that vector dimen-
sions allow the interconnection.

First note that the feedback connection can be re-
duced to the cascade one. Indeed, since the con-
nection is described as u; = u + y», we can make
the change u = —y;+v = —h2(z2)+v, so opening
the loop.

As to the parallel interconnection, its feedback
passivity does not follow from the feedback pas-
sivity of the subsystems S1, Sz even in the linear
case.

u=u y1 =u y
l@l ZITS,;"I 2

Fig. 1. Cascade connection

The last case of the cascade connection shown in
Figure 1 is the most interesting one. For this case,
the following result holds.

Theorem 3.1 Let S; have local relative degree 1,
ie.,

.

det Ly, h1(0) # 0 (3.2)

and satisfy hi(z;) = 0 iff z; = 0. Let Sz be
locally feedback passive, i.e., there exist smooth
functions V; positive definite, az(z2), a2(0) = 0,

Ba(z2), B2(0) # 0 such that,
Lp492a:V2 20, Lgyp,Vo = hg‘ . (33)

Then the cascade system is locally feedback pas-
sive with respect to output y; — az. Further, the
feedback law
v = [Lagi(z1)] 7 [&2 - 32 — Als1 — a2)
—Lp, 1+ 9], (3.4)

A > 0, renders the system output strict passive.

Corollary 3.1 Consider systems Sj,...,Sn, where
S1,...,Sn-1 haverelative degree 1, and S, is feed-
back passive. Then the cascade system shown in
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Figure 2 is feedback passive.

<] Jo 1 [c ]
S—F— —{&]
Fig. 2. Cascade System

It is easy to see that global versions of Theo-
rem 3.1 and Corollary 3.1 are valid.

4. Passification and speed-gradient algorithms

The next question after analyzing the solvability
of the problem is how to solve it? The passify-
ing feedback laws suggested in Byrnes, Isidori and
Willems (1991) and in the previous section are not
always appropriate because they depend essen-
tially on the stabilizing (passifying) feedback for
the subsystems: a;1(z;), a2(z2). In many cases
more convenient algorithms can be designed us-
ing the idea of speed gradient (Fradkov, 1979).

Definition 4.1 Given the system
z = F(z, u, 1) (4.1)

and the objective function Q(z,t), the vector
function QF(z, u,t) = V.Q is called the speed-
gradient of Q(-) with respect to the system (4.1).

In general, QF(z, u,t) = V4 [V,QTF(:::, u, t)

+%?] , evaluating Q along the trajectories of sys-
tem (4.1).

For affine systems z = f(z) + g(z)u and time-
invariant objectives Q = Q(z) the speed gradient
reduces to the Lie derivative:

QF(z) = L,Q = V-QTg(z) (4.2)

Now let us formulate the main result of this sec-
tion for affine system (2.3).

Theorem 4.1 Assume that there exists contin-
uous feedback u = a(z) for system (2.3) such
that the closed loop system is globally asymp-
totically stable, i.c., there exists a radially un-
bounded smooth function V(z) and continuous
function p(z): p(z) > 0 for z # 0, such that

VoV () [f(2) +9(2)a(z)] < —p(z)  (43)
and the following inequality holds:

HM < oo (4-9)

=0 o)

Then, for any bounded set D C R", there exists
scalaryp > 0 such that the SG-feedback

u=—1, VoV +v (4.5)



makes system (2.3), (4.5) semiglobally state
strictly passive with respect to the output y =
97 VV(z). In other words, inequality (2.5) holds
for all initial conditions z(0) € D.

Corollary 4.1 For system (2.3), (4.5) with v = 0,
the origin is asymptotically stable and D lies in
its domain of attraction.

Theorem 4.1 and the corollary assert that if
the system is asymptotically stabilizable then it
is both SG-stabilizable and SG-passifiable; i.e.,
there exists a speed-gradient feedback law making
the system both asymptotically stable and pas-
sive.

5. Passification and backstepping

The aim of this section is to apply the iterative
design known as backstepping to derive passify-
ing controllers for interconnected systems. The
backstepping procedure has been successfully em-
ployed for the (adaptive) stabilization of sys-
tems in strict-feedback form, i.e. systems in which
each new nonlinear integrator depends only on
the state variables that are “fed back”. See,
for example, Kolesnikov (1987); Kanellakopoulos,
Kokotovic and Morse (1992); Jiang and Praly,
(1991); Kokotovié, Kristié and Kanellakopoulos,
(1992); Seto, Annaswamy and Baillieul (1992) and
Druzhinina and Fradkov (1994a). The key idea of
backstepping is based on the derivation of a con-
troller for a basic interconnected structure having
one integrator, and then repeat the known proce-
dure adding one moye integrator at the time. We
start by considering systems of the form

Jo(2) + p(2)y (5.1)
f(2,9) + 9(z, y)u (5.2)

where z € R!, v,y € R™ and fo,p, f and
g are smooth functions and the m x m matrix
9(z,y) is nonsingular. Using the control u =
97Y(z, y) [v — f(z, y)] converts system (5.1),(5.2)
into a cascade of the form considered in Theorem
3.1. With the z system (driven by y) feedback pas-
sive, Theorem 3.1 gives that the cascade is feed-
back passive. In Seron, Hill and Fradkov (1994),
a passifying control was derived that makes sys-
tem (5.1)~(5.2) OSP w.r.t. the output y under the
assumption of minimum-phaseness, i.e. stability
of the subsystem (5.1) when y = 0. Here we re-
place the minimum-phaseness requirement by the
weaker assumption of stabilizability through y of
the first subsystem (5.1). We state this stabiliz-
ability condition formally as follows.

z
y
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Assumption 5.1 (Stabilizability)
There exists a state feedback

y=oa(z) (5.3)

where a(z) is a smooth m x 1 vector function, and
a smooth Lyapunov function W (z) such that

229 (1o(2) + pla)ata)

-n(z) <0 (5.4)

W(z) =

IA

Note that if (5.4) holds for a(z) = 0, 7(z) =0, we
recover the weakly-minimum phaseness assump-
tion of Seron, Hill and Fradkov (1994), and if
it holds for e(z) = 0 and 5(z) a positive def-
inite function, Assumption 1 implies minimum-
Phaseness of (5.1)~(5.2) w.r.t. the output y.

On the other hand, if a(z) is nontrivial, Assump-
tion 1 implies minimum-phaseness of (6.1)-(5.2)
w.r.t. the new output y; = y— a(z). We can then
state the following passifying result.

Theorem 5.1

Consider the system (5.1)—(5.2), where the matrix
9(z,y) is nonsingular for all (z,y) € R' x R™.
Assume that the subsystem (5.1) is stabilizable
by smooth feedback, i.e. it satisfies Assumption
1. Then (5.1)~(5.2) is passifiable (OSP) by means
of the feedback

u = g"(Z,y)[ — £z ) + v — pb(y — a(2))

2 o) + e

-5—'37-P(2)J (5.5)

where p> 0, 6§ > 0.

Corollary 5.1

Consider the strict cascade
2 = fo(z) + p(2)y (5.6)
v=f(y) + 9(y)u (6.7

where z € R', u,y € R™ and fo,p, f and g are
smooth functions.

If (5.7) has vector-relative degree one (i.e. the
mxm matrix g(y) is nonsingular), and (5.6) is sta-
bilizable through y (i.e. it satisfies Assumption 1,
then the strict cascade (5.6)~(5.7) is passifiable.

Corollary 5.2 Integrator Backstepping, (Kanella-
kopoulos, Kokotovic and Morse, 1992)
Assume the first subsystem of the cascade

; z £°(2) +p(z)y (5.8)



where z € R', u, y € R, satisfies Assumption 1.
Then the feedback control

(v a()) + 52

_____avgz(z)p(z)

[fo(2) + p(2)¥]

(5.9)

U =

stabilizes the system (5.8) in the sense that the
closed loop (5.8)-(5.9) is Lyapunov stable and

n(z(t) =0, ¥(t)—a(x()) —0 as t—oo

Remark 5.1 A more general interconnected cas-
cade, where the first subsystem is not affine in y,
was considered in Druzhinina and Fradkov (1994a,
1994b), where a stabilizing controller was derived
for the form

z= F(z,y,t)

y= <I>(z,y, u) (510)

It is clear that the controller in Theorem 1 is no
more than the extension of the backstepping con-
trol (5.9) to the case when u is a vector. Obvi-
ously, the procedure can be iterated to cope with
many integrators in a MIMO strict feedback form.

6. Adaptive passification

We consider the system with linear parameter de-
pendence given by

2 = fo(2) + p(2)€ + po(2)y
y=f(z,9)€ +9(z,9)u

where z€ R\, u,y € R®, 6 €EC R?, and
p(2):=[p1(2), -+, pi(2), -+, pp()]

where p;(z),i=1,2, ---, p are £ x 1 vectors,
f(z: y):= [fl(z, y): cty fi(Z,y), Ty fp(za y)]

where fi(z,y),i=1,2,---, p are m x 1 vectors.

(6.1)

We reformulate the stabilizability condition of As-
sumption 5.1, specifying the structure of the sta-
bilizing feedback as follows.

Assumption 6.1 (Parametric Stabilizability)
There exists a state feedback

ag(z): = ao(2) + &(2)€ (6.2)
where

&(z) = [a(2), - -+, @i(2), -+, @p(2)]

with a;(z),i= 1,2, ---, p smooth m x 1 vector
" functions, and a smooth Lyapunov function W(z)
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such that
W) = ZEEM) + plek
+po(z)[@o(2) + &(z)¢]]
< -n(z) L0 (6.3)

Then a passifying controller is given by the fol-
lowing theorem.

Theorem 6.1 Consider the system (6.1), where
the matrix g(z,y) is nonsingular for all (z,y) €
R! x R™. Assume that the first subsystem is sta-
bilizable by the smooth feedback (6.2), i.e. it sat-
isfles Assumption 6.1. Then (6.1) is output strict
passifiable (OSP) by means of the dynamic feed-
back :

i = - U - dap(e)
_avgfz) p(z)}r
u = g7z y){ — f(z,9)0 — 8po(2)" BZT

+v = pbly — ae(2)] + Aa [fo(z)
+p(2)8 + po(2)y] + &(z)é} (6.4)
where := [0y, ---, 6, -+, 0,]T is a p x 1 vector

of adjustable parameters, a¢(z): = ag(z) + a(z)4,
p>0,6>0,T>0and

P -
ate oy = 2os) S0

i=1

Remark 6.1 A solution for the multi-input-single-
output case was given in Kokotovic, Kanel-
lakopoulos and Morse (1991). The algorithm
given in Theorem 6.1 is simpler and it covers the
case where the plant has vector-parameter uncer-
tainty.

Theorem 6.1 is not a good basis for iterative de-
sign; the overall passifying adaptive controller has
overparametrization since a separate estimator for
§ is generated at each step. We now proceed to
show how this can be avoided.

Theorem 6.2 For the z system with y considered
as input, suppose there exist two smooth functions
ag, 7o and a nonnegative smooth function W s.t.
the following augmented system

fo(2) +p(2)€ + po(2)y
1o{z, 0) + T 7
00(21 0) +9

(6.5)

@ D@ N
i



. with § = 0 — ¢ is passive from (7 1) to
(LpaWT, 2 (2, 6T + I~1§) with respect to the
storage function

Vi(z, 8, €) = Wi(z, 6) + %Fr-lé (6.6)

the system (xilinear) with input u also satisfies
this property for some functions Ws, V5.

Remark 6.1 Using this theorem repeatedly
on strict-feedback systems generates a passify-
ing adaptive nonlinear controller without over-
parametrization. This result recovers the main
result of Kristi¢, Kanellakopoulos and Kokotovié,
(1992) via backstepping.
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