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Abstract: The brief survey of recent (1993-1995) papers on control of chaotic systems is
given. The problem statements and methods of synchronization, stabilization and
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1. INTRODUCTION: “PUTTING PHYSICS UNDER
CONTROL”

During recent years a dramatic growth of interest was
observed to the problem of controlling chaotic systems. The
clear sign of it is the growth of number of publications.
E.g., the bibliography on control and syncronization of
chaos (Chen, 1996) contains more than 400 titles with
about 300 published in 1993-1995 and expands by 3%-5%
per month. However the rapid growth demands for regular
surveying the field. The existing surveys (Ogorzalek, 1993),
(Chen and Dong, 1993) reflect the papers published before
1993. The present paper is aimed at surveying the papers
on control of chaos published mainly in 1993-1995 and
those not mentioned in the previous surveys. Due to the
paper length restrictions it is certainly uncomplete and only
the main ideas of proposed methods are briefly
characterized. A number of the recent publications tend to
introduce the mathematical framework into the field
previously attacted mainly at the "physical” level of rigour.
An important role is played by the methods of nonlinear
and adaptive control due to nonlinear dynamics of chaotic
systems and presence of uncertainty in real problems.
Therefore the second aim of this survey is to show links

between new problems of control of chaos and the existing
methods of nonlinear and adaptive control.

The most attention in the paper is paid to the problems of
syncronization of chaotic systems (Section 2) where results
are more systematic. Particularly the synchronization
problem is formulated and such methods as the open loop,
decomposition, high-gain feedback and coupling are consi-
dered. Other classes of problems addressed are stabilization
of periodic orbits and equilibria (Section 3) and control of
bifurcations (Section 4). Some applications and peculiarities
of control of chaos are discussed in the Conclusion.

2. SYNCHRONIZATION

First we formulate the synchronization problem following
(Blekhman, 1971, 1988)

Definition 2.1 (Synchronization problem).

Given equations of » interacting subsystems:

X, = F(x,ut), x; € R" .D
and the equation of connection system

u=U(x,....x,,b), ucR” 2.2)

i=l.r,



Find conditions of existence and stability of solution
x(t) = (x,(£),x,(£),..x, (1)) of (2.1), (2.2) for 0<f<oo
which is called synchronous motion of (2.1), (2.2).

In case of arbitrary initial condition this problem will be
referred to as the global (total) synchronization problem,
while for certain acceptable initial conditions we will speak
about conditional synchronization (Dedicu et al., 1993).

Also the concept of stability may be understood in different
senses. In original version of (Blekhman, 1971) standard
concepts of Lyapunov or asymptotic stability of periodic
solution x(z) were used. Later (Leonov ef. al., 1992) the
concept of orbital stability of periodic x(t) was employed

that is equivalent to stability in the sense of Zhukovsky
allowing for different parametrizations ¢ =¢(t) along
periodic synchronous motion ¥(¢"). For our purposes more
mild concept of stability is suitable: so called stability with
respect to part of variables (Roumyantsev and Oziraner,
1987). For example, in case of asymptotic synchronization
one can require convergence of type:
x()-x()—>S

where S is a manifold of dimension less than 2

2.3)

n;
i=1 !

(special cases and examples can be found in (Afraimovich
et. al., 1986; Wu and Chua, 1994)). If connection system is
given the problem is one of analysis, while in case when we
have to find (2.2) to achieve synchronization the problem is
one of control system design and (2.2) can be regarded as
control algorithm. The special case of the posed problem
arises when one of subsystems, say the first one, does not
depend on control: x; = F(x,t) . If the solution x;(#)=x,(¢)

is bounded and the set S is just origin it may be regarded as
external synchronizing signal and the problem is referred to
as “external”, or “master-slave”, or “drive-response” synch-
ronization. Note that in terms of control theory (2.4) is just
reference model. In what follows we will briefly discuss
different known approaches to solving the above problem.

Decomposition based method. Perhaps the first paper
concerning chaotic synchronization was one by Pecora and
Carroll (Pecora and Carroll, 1990) described a system of
two oscillators of the following form:
z,=2(z,.y . z,=2(z,,y
4 (Z4.va) drive sys. ,( rYa)
Ya=Y(z4,¥4) v, =Y(z.v,)
where (z,,v,)" and (z,,y,)” are the state vectors of the
drive and response systems. The goal of synchronization is
|z4(t)= 2,() > 0, when £ — oo (2.42)
It was conjectured that (2.4a) is achieved if all Lyapunov
exponents of the response system calculated along the
trajectory of drive system are negative. As an example inter-
connected Lorenz systems were considered (Carrol, Pecora,
1993). Similar example was investigated in (Cuomo et al,

response sys.
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1993) where another variable of the Lorenz system was used
to as the “drive signal”. The case when the state of the res-
ponse model is used as the drive signal for another slave
system (cascade synchronization) was considered in
(Carroll and Pecora, 1993). Consider the additional goal:
[ya(t) =y, (5] -0, when £ — o. (2.4b)
It turns out that the conditions of synchronization in the
sense (2.4a), (2.4b) can be established using concepts of
input-to-state stability or more weak bounded input-boun-
ded state stability (BIBS) (Sontag, 1990). To investigate
system behavior consider the following error system:
éz = f(:J(ez’deVd) é_v = fi(ez ’ey9zd’yd)$
€, =2y _zr’ey =Ya~—Vr
It may be shown that the goals (2.4a), (2.4b) are (globally)
achieved if ¢ = fy(e,.2,,y,) and ¢, = f,(0,e,.z,,y,) are
(globally) asymptotically stable and the system
e, = fi(e..e,.z4,y,) is BIBS stable with e, as input. It can
be also shown that known applications of the Pecora-Carroll
method for Chua’s circuit (Murali and Lakshmanan, 1993),
Lorenz equation (Cuomo et al, 1993) etc. can be analyzed in
such a framework.

High-gain  synchronization. Consider the
synchronization scheme:

X = )KL =)o =h(x), v, =)
3= L) =YK, = y,). 5 € R% x, eR™ Y € R
First that fi=f,,h=h, and the

synchronization goal is |x1 " -x, (t)] — 0. Further assume

following

2.5)

we  assume

that the error equation obtained from (2.5) after some
coordinate transformation, is given by:

éz = /;O(ez’ey’zhy] )

éy = _};(ez’eyazl ’yl ) +YK(ez 9ey521’y] )ey
where ¢, =z -z,, e,
matrix. Using results of (Byrnes and Isidori, 1991) it can be
shown that the error system can be made semiglobally
exponentially stable by appropriate choice of gain y if
zero dynamics ¢, = f,4(e,,0,2,,y,) are exponentially stable.

(2.6)

=y, -y, , and X is positive definite

Some authors also used linear feedback to synchronize
chaotic systems e.g. Chen and Dong (1993a) applied it to
synchronize two Duffing’s oscillators.

Synchronization of two systems each of them is of Lur’e
form (linear part with static nonlinearity in feedback loop)
was considered in (Tesi et al., 1994) where several
parametrizations of linear part of the system are proposed
which help improve synchronization property. An approach
to synchronization problem for discrete-time systems based
on the contraction mappings is presented in (Ushio, 1995).



Coupling. Synchronization scheme (2.5) for nonidentical
J; and f, can describe connection (coupling) of different
electrical circuits. Kapitanyak et. al (1993) considered
coupling of Chua’s circuit and linear oscillator. It was
shown numerically that the synchronization in the sense
that |y, — v,| = 0 can be observed.

Open-loop  synchronization. Methods of open-loop
synchronization do not require the measurement of plant
state or output and therefore they are easy to implement. In
the paper by Leonov (1986) the Lur’e system

x = Px+ B(p(y) +osinwt), y=Cx

was considered with nonlinearity ¢(y) which graph lies
inside stability sector for |1{>y, and outside otherwise.

Using absolute stability theory the conditions wich ensure
existence of bounded 2w /® -periodic solution X(¢)and

synchronization goal |x(f)—¥(f]—0 for any initial

conditions were found. These conditions (which are in most
cases valid for sufficiently large o) were relaxed by
Churilova (1994) and extended to discrete-time systems by
Gelig (1990). Also a number of papers on open-loop control
by either harmonic or nonharmonic forcing signals which
contain interesting computer simulations rather than
rigorous results were published.

Adaptive synchronization. Adaptive synchronization prob-
lem can be posed as follows (Fradkov, 1994).

Definition 2.2. (Adaptive synchronization problem).

Given equations of » interacting subsystems:

X, =F(x,.u,E,0), i=L.r, x, eR™ 2.7
where & € = is the vector of unknown parameters.

Find the equation of connection system
u=U(x...,x,,0.1), ueR" (2.8)

and adaptation algorithm
0 =0(x,...,x,,0,1)

ensuring the goal |x,(t)— X, ()| < A for 1> 1,
where x(¢) is some solution, perhaps unknown apriory.

Some attempts have been made in order to achieve the goal
of adaptive synchronization for chaotic systems (Vassiliadis,
1994) where known adaptive algorithms were employed for
a new class of chaotic systems. Local synchronizing
property of the system was established. System (2.7) with
right hand sides consisting of linear passyfiable part and
nonlinearities available for measurements was considered in
(Fradkov, 1995). Conditions of adaptive synchronization
achievement are based on feedback Kalman-Yakubovich
lemma and speed-gradient (SG) algorithm (Fradkov, 1979).
SG method is applicable also for other problems of
synchronization and control of chaotic systems. It is based
on reformulating of control goal as follows:
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O(x(1),t) > 0, when t -0 2.9)
where Q(x,7)20 is given objective function. Then the
adaptation law is as follows:

d

Z(e +y (x,0,0)=-TVy0(x,0,1) (2.10)
where T=T7 >0,0(x,0,0) =V, OF (x,6,t)+30 / ot

and y () satisfies pseudogradient condition:

v V,0(x,0,6)>0 2.11)
Applicability of the method requires convexity of ® with
respect to the vector of adjustable parameters. Moreover the
main control law should be chosen in such a way to ensure
that Q(x) becomes Lyapunov function of the overall system
for some “ideal” adjustable parameters. The SG method was
applied to adaptive synchronization of Duffing’s systems
(Fradkov and Pogromsky, 1993; Pogromsky, 1995) and
Chua’s systems (Fradkov et al, 1995).

Notice that the problem of output adaptive synchronization
encompasses the problems of adaptive output-feedback
model-reference control and adaptive observer design.
Therefore results of (Krstic et al., 1995; Marino and Tomei,
1992) can be employed.

3. STABILIZATION OF INHERENT SOLUTIONS OF
CHAOTIC SYSTEMS

One of the first papers in the field of control of chaotic
systems was the one by Ott, Grebogi and Yorke (Ott ef al,
1990) where the idea to stabilize unstable periodic orbit
embedded within the chaotic attractor was proposed. The
idea is based on the linearization of the Poincare map in the
neighbourhood of its fixed point, i.e. periodic orbit x of the

system. The paper produced a real boom in physics, because
it makes possible to solve various applied problems, see
Petrov et. al. (1994), Schiff et al. (1994), Weiss (1994) . In
practice, linearization of Poincare map can be obtained by
identification with probing control signals or using time-
delayed coordinates.

Apparently linearization can be applied to stabilize periodic
orbit of arbitrary system, but for systems with chaotic
dynamics it has some advantages. Indeed, as we assumed
the desired periodic orbit is embedded in attractor of the
uncontrolled system, so we can design the control procedure
in the following manner: wait until the trajectory of the un-
controlled system comes near the desired orbit and then ap-
ply one of the standard linear control algorithm for lineari-
zed control system. Once the trajectory falls in the neigh-
borhood of the desired periodic orbit the local controller can
stabilize it. So the question is whether the uncontrolled
trajectory gets to this neighborhood without any control
force. It certainly does in case when § is ® — limit set of



the uncontrolled system for all possible initial conditions,
that is usually assumed in published papers.

The disadvantage of the approach is high sensitiveness to
noise and disturbances due to the control is applied only at
moments of intersection of the trajectory with surfaceX . An
important feature is that the linearized model can be quite
easy obtained from experimental data by solving the
identification problem with probing signals.

Different control laws can be chosen to stabilize linearized
discrete-time system on Poincare section X. For example
Romeiras et al., (1992) applied pole-assignement procedure,
while Hunt and Johnson (1993) used simple proportional
output feedback. Gallias (1995) suggested to minimize the
norm of the next value of the error vector by projection al-
gorithm which essentially coincides with Kaczmarz algo-
rithm , see e.g. (Aved’yan and Tsypkin, 1979). The conver-
gence rate of OGY algorithm was evaluated in (Aston and
Bird, 1995).

Another method was proposed by Pyragas (1992). It was

suggested to use continuous-time control law
u(®)=-K(¥(1)-y@) 3.1

where y is the measurable output of the system and 3(z) is

the reconstructed inherent periodic solution of the
uncontrolled system which can be obtained numerically
from the time-delayed coordinates. Stability results for this
kind of controller can be established similary to the case of
high-gain synchronization. Since the desired trajectory y(¢)

is to be obtained via extensive preliminary experimentation

another algorithm was proposed (Pyragas, 1992):
u()=-K(y@)-y(t-1)) (3.2)

where T is the estimated period of y(f). Modification of

this method using Fourier analysis was suggested in (Soco-
lar et al., 1994). Computer simulations carried out for vari-
ous examples (see ref. in Pyragas, 1995) demonstrate the
ability of the control laws (3.1), (3.2) to stabilize the
inherent periodic orbits.

General methods of nonlinear control were employed for
stabilization of the inherent solutions of chaotic systems re-
cently, .g. feedback linearization (Alvarez-Gallegos, 1994),
(Krishchenko, 1995), Lyapunov observer-based control for
chaotic system (Nijmeijer and Berghius, 1995 a,b), variable
structure control (Yu, 1995). Genesio and Tesi (1993) (see
also Genesio et. al, 1993) employed frequency harmonic
balance to formulate structural conditions which
approximately express the occurrence of complex dynamics
phenomena in Lur'e systems and suggested algorithms to
control the distortion.

Algorithms for stabilizing higher periodic orbits were
suggested by Paskota et al (1994, 1995). Chen and Dong
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(1995) and Lebender et al. (1995) developed neural network
based algorithms. Finally, different problems of adaptive
stabilization for chaotic systems were solved by speed-
gradient method (Fradkov, 1994; Fradkov and Pogromsky,
1995; Pogromsky, 1995).

4 BIFURCATION CONTROL OF CHAOTIC SYSTEMS

One of the new approaches to the control of nonlinear
systems is the bifurcation control (Wang and Abed, 1995;
Lee and Abed, 1991, Abed et al, 1992;).

Assume that nonlinear system to control depends on some
scalar parameter  :

x = F(x,1,u) CAY
As this parameter slowly varies the uncontrolled system

undergoes bifurcations which can result in changes of the
system behavior.

There are two important problems arising in the control of
each given bifurcation:

1) How to change the value of bifurcation parameter for
which bifurcation occurs?

2) How to modify stability of bifurcated solutions?

To solve both of the problems Lee and Abed (1991)
proposed to apply dynamic feedback based on the so called
washout filters with the following transfer function:

GE)Y=yE)/ x(s)=s/(s+d) “.2)
where d>0 is the filter parameter. As inputs of the filters
the state x is used while feedback law u is based on the
output y of the washout filters. The useful feature of the
approach is that the control law does not result in any
changes in the set of equilibria even in case of model
uncertainty. The main idea of the approach is to find control
of the following form:

u=-K,y+y'0,y+C, (%) (4.3)
where K, is linear gain, 0, is symmetric matrix, and C, is
a cubic form. Using various examples (Wang and Abed,
1995, Abed et al., 1992) it was demonstrated that linear
term in (5.3) solves the first problem while nonlinear
(quadratic and cubic) terms modify the stability of the
bifurcated solution. Similar approach can be also applied to
discrete-time systems (see e.g. Abed et al., (1992) , where
the control of period doubling bifurcation was proposed).

CONCLUSION: CHAOS FACILITATES CONTROL

The reason of increasing interest in control of chaos is that
control gives a perspective both of better understanding
chaotic behavior and of modifying it. Various applications
were reported such as eliminating multimode regimes in
lasers (Gills et al., 1994); increasing the reaction rate in



chemical technology by means of chaotic stirring (Petrov et.
al., 1994); providing secure communications by using
chaotic carrier signals (Cuomo et. al., 1993; Dedieu et al.,
1993); treating ventricular tachycardia (Weiss et al.,1994);
controlling neuronal activity in the preparation from the rat
brain (Schiff et al, 1994).

Note in conclusion that chaotic behavior of uncontrolled
plant can also facilitate control of it at least by two ways.
The first way is based on idea that for many nonlinear
systems chaos is easy to create using open-loop control and
the resulting chaotic system will, through time, drive the
trajectory of the system to vicinity of the goal set of the
closed-loop overall system where control goal may be
achieved by control signal of small level. This advantage of
chaotic motion was used by (Vincent, 1995) to control a ball
bouncing on a vibrating plate and by (Pogromsky, 1995) to
stabilize inherent unstable equilibria of Lorenz system. The
second way is related to identification based adaptive
control where persistency of excitation ensures convergence
of the parameter estimates to their true values. Although in
general the presence of chaos does not imply persistency of
excitation, in many cases it does. Therefore introducing
chaotic behavior in originally nonchaotic system can help
solve various control problems.
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