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THE S-PROCEDURE AND A DUALITY RELATIONS
IN NONCONVEX PROBLEMS OF QUADRATIC PROGRAMMING

UDC512.897 .
A. L. FRADKOV AND V. A. JAKUBOVIC

Abstract. The following problem is considered. Real-valued functions F(x) and
Gl(x), <+« G(x) are given on a set X. It is required to clarify when the condition
F(x) 2 0 with Gl(x) 20,...,6,x)=0x€LX, implies the existence of numbers
7,2 0,j=1,...,m, such that F(x) — Z‘.'ln‘r‘-Gi(x) > 0 for all x € X. If this is so,
then the S-procedure is said to be lossless for the inequality F(x) > 0 subject to the
constraints Gl(x) >0,..., Gm(x) > 0. It is shown that the S-procedure is lossiess if
m = 2, X is a complex linear space, and F(x), G(x) and G,(x) are quadratic func-
tionals on X, where Gl(xo) > 0 and 02("0) > 0 for some x5 € X It is shown that
the losslessness of the S-procedure, in general, is connected with the presence of
duality in extremal problems. It is established that duality theorems hold in 4 num-
ber of nonconvex quadratic pmgrummihg problems.

\
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Introduction

This paper is a continuation of [1]. We remind the reader of the problem that
was considered in [1]. Real-valued functions F(x) and G,(x), . . . , G,,(x) are given

on an arbitrary set X = {x}. Let 7,,...,7,, be real numbers and 7 = |I7|i}". We
set
Si(x, 1') g P‘(.\‘)——}:t/.Gj (x). ©.1D)
Consider the following two conditions: o
F(x)>0 for G,(x) O, ..., G,(x).-0.x€X, 0.2)
520, j=1, ..., m:85(x, 1) >0 yx€X. (0.3)

Obviously, (0.3) implies (0.2). Under 4 number of additional conditions imposed on the
functions F(x) and G, (x), . . . , G,,,(x), (0.2) implies (0.3), i.e., (0.2) and (0.3) are equiva-
lent. In this case [1] the S-procedure is said to be lossless for the inequality #(x) =0
subject to the constraints G,(x) =0, ...,G,, (x) = 0. The losslessness of the S-procedure
is defined similarly for the inequality £(x) > 0 or the equality F(x) = 0, subject to the
constraints G;(x) > 0 or Gi(x)= 0. (Any combinations are possible.) In applications,

the functions F(x) and G, (x), . . ., G (x) depend on certain “consiructive” parameters,
and the conditions (0.2) and (0.3) single out certain domains in the space of these para-
meters, say 4 for (0.2) and B for (0.3). We always have A € B. If the S-procedure is
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lossless, then 4 = B. The problem considered in [1] consistud in the clarification of
conditions under which the S-procedure is lossless. In particular, it was shown in 1]
that this is so for the inequality F(x) > 0 subject o one construint G(x) 2 0 when
F(x) and G(x) are real quadratic forms(!) and X is a real linear space.(2) Earlier, it
was established in [2] (with a differcnt terminology) that the S-procedure is lossless
when F(x) and G(x) are Hermitian forms and X is u complex lincar space.(3) For two con-
straints (F, G,,and G, are quadratic forms) the S-procedure is lossy [11 in the real case.
Later we will show (Theorems 1.1 and 1.2) that for two regular (see §1) con-
straints in the complex case (F, G, and G, are Hermitian forms) the S-procedure is
lossless. Moreover, we shall consider the question of the losslessiess of the S-procedure
if F, G,,and G, are nonhomogencous quadratic functionals. We shall also show that
the losslessness of the S-procedure, in general, is closely connceted with the validity of
the duality theorem in the corresponding extremal problem.  With the aid of the
theorems on the losslessness of the S-procedure for quadratic functionals we shall
establish that duality relations hold in certain nonconvex quadratic progranuming prob-
lems.

§1. The losslessness of the S-procedure for Hermitian forns (two constraints)

This section is devoted to the proof of the losslessness of the S-procedure for the
inequality F(x) = 0 subject to the constraints G, (x) = 0 and G,(x)=0or G,(x)=0
and G,(x) = 0, where F, G,, and G, are Hermitian forms on a complex linear space
X. The following lemma plays the central role in the proof..

LumMa 1.1. Let X be a complex lincar space, and let !y 0= 1,2, 3, be arbitrary
Hermitian forms on X. We define a mapping . X — R3 by the jormula

p(x) = (F1(x), Fa(x), Fa(x)), s (1.1)
Then the set (X)) is convex. |

ReMARK. One can ask whether the set @(X) is convex under the mapping ¢:
X — R* defined by o(x) = (F,(%), . . . , F(x)) for any Hermitian forms £, ... JF,

(HBy a quadratic form F(x) on a real linear space X we mean a functional of the form
F(x) = B(x, x), where B(x, y) is a bilincar symmetric functional on & < X, By a Hermitian form
on a complex linear space we mean 2 functional B(x, x), where B(x, ) is a Hermitian-bilineur and
Hermitian-sy mmetric functional (i.e., linear in the first argument, antilinear in the second argument,
and satisfying B(x, ¥) = B(y, x) for all x, y € X). In whut follows, the arguments of quadratic
and Hermitian forms will sometimes be omitted for brevity.

(®)1In [11], this assertion was stated for a Fuclidean space X, However, the proof goes over
without any change to the case when X is an arbitrary real linear spuce. We remark that there is u
mistake in the statement of this assertion in { 1] (Theorem 1), numnely, instead of “. .. the form
(Gx, x) is not negative definite’ it should read ... the form (Gx, x) is not nonpositive.”

(3) This assertion is proved in another way in [l 1. (Yheauthior of {1} did not know of 121.)
We mention that this assertion for the complex case follows immediately from the same assertion
for the real case, but the direct prool |21 is simpler.
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‘The affirmative answer to this question for & = 2 follows immediately from Huus-
dorf’s theorem on the convexity of the numerical image ol an operator (sce [3] amd
also ]4]). Lenma 1.1 yiclds an alfiinative answer for & = 3. It is casy to consiruct
examples showing thut the answer to this question for k > 3 is negative.

ProOF. We may assume that dim X > 1, since otherwise the lenmma is obvious.
Let us show that the lemma holds under the assuraption that dimm X = 2 (X = C?).
" An application of Lemma 3.3 of [1] to the case when m = 2,.X = C?, und & is the
set of Hermitian forms in two variables reduces the proof tu showing that the set
M= {x € C%: Fix) =, Fy(x) = &, } is urcwise connected for any real ), a,
and any F;, F, € . (The empty set is assumed to be arcwise connected.) 1t is sul-
ficient to consider the case /' (x) # 0 and F,(x) #0. Morcover, it may be assumed
that o) #0 and F,(x) # 0. Morcover, it uiay be assuimned that «, = 0ora, =0 (if,
e.g., a, # 0, then we replace Fy by F, ~ ay by fay ). For definiteness, let o, = 0. We
set x = (£, n), where £ € C! und n € C', and reduce F,(x) to the cunonical form. Then
we may assume without loss of generality that A is given by the cquation Bigl* +
Re(yER )+ 81nl? = a, I£1% —elnl? = 0. Here o, 5,8, und € are real numbers, and v is a com-
plex number. We may also assume that y +# 0 und ¢ > 0, since otherwise the linear
connectedness of A can be established in an obvious way. Let vy = pe'*, where p > 0
i

. . . i ip .
and « is real. We introduce polar coordinates § = rje ", 1= 1/5¢ 2. Then the equa-

tions take the form

2 2 2o ~ ST . . . .
ry==2:ciy, o (\)C --‘- O -‘{'— ‘/ ep COs (’\’(1 - P2 'I“ ‘)) . (l 3)
Note that the equations (1.2) do not change under the substitution \p'l =9, +{,
¢y = ¢y + Y. Therefore, it is sufficient 10 establish that A" =M N {x: ¢, + x = 0}
is arcwise connected. Indeed uny point x € M with the polar coordinates x =
(rys @y, Fys $p) Can be connected by an arc in M with u point x" € M'. 1a polar co-
ordinates this arc can be given, eg., by the formulas
x(t)y==(r,, $1—t(x-t %) T2y 2 t{x-f-50)), 1610, L.

The set M is given by the equations

ry= Ver,, g, ==— =2, ralpe |04 p /08 s,) = (1.3)

Thus, it is sufficient to prove that the plune cuive M with the polar-coordinues

(r,, w,) given by the last equation in (1.3) is arcwise connected. For a =0, this
curve is a point, a ray, or a pair of rays starting at the origin. For a # 0, the domaiu
of v, is the circle or its part defined by the inequality

~ "
a(fpe4-04pV ecosqy) - .
In this domain A" can be given by the single-valued continuous dependence relation
R T i

ry = Vo, l/ Bzt 6 p 1 e Cos g,

i.e., M" is arcwise connected. Thus, the lemnta has been proved under the assumption
t 1

that X == C*. )
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Let us now prove that ¢(X) is convex iu the general cuse. - Let z,,z, €p(X)C
R3, i.e., assume that there exist points x,, ¥y € X such that z, = p(x) and z, =
@(x,). We clim that the entire interval with the end-points z, and z, also be-
longs to p(X). Consider the two-dimensional subspace X, C X spanned by these
vectors (if x, and x, are linearly dependent, then the lemma obviously holds
because the forms F,, F, and F; are homogencous.) Let ¢, be the restriction of ¢
to X,. By what has been proved abave, v, (X)) is a convex set containing z, and z,
and contained in ¢(X). Therefore p(X) contains the interval with the end-points z,
and z,, i.e., ¢(X) is convex.

We shall need the so-called Slater regulurity condition (see, for example, [5]),
which is well-known in convex progranuning:

FXEXN G (v) >0, j==1, . .0, (1.9

Moreover, in discussing constraints in the form of cqualitics we shull make use of
a modified Slater condition:

v =| ':}.H'/-'f,l, g 0, sy G )\':T/-Oj (x) >0, j=1, ..., m. (1.5)

For example, for m = 1 the condition (1.5) means thut G (x) is indefinite, i.e. assumes
values of different signs on X We say that the constraints G, (x) =0, ..., G,,(x)

= 0 are regular if the condition (1.4) is satisfied. By regulurity of constraints in the
form of equalities G,(x) = 0, ..., G, (x) = 0 we mean thut (1.5) is satisfied. Regular-
ity of constraints in the form of an arbitrury set of equalities and inequalities is defined
similarly.

THeEOREM L. Let G (x) und G, (x) be Henmitian forms on a complex linear
space X. Then the S-procedure for the inequuality F(x) = 0 subject to the regular
constraints G ((x) 2 0 and G,(x) > 0 is lossless if F(x) is an arbitrary Hermitian form
on X,

Proovr. Consider the image p(X) of X under the mapping ¢: X — R3 defined
by the formulu v(x) = (G (x), G,(x), F(x)). The condition (0.2) means that o(X)
does not intersect the octant Q = {(z), 25,z € R3, z; >0,z, 20,25 <0}. There-
fore, the set ¢(X), which is convex by Lemma 1.1, and the set 0 do not have common
interior points.(4) By the separation theorem, there exist numbers A, A, and 7\3, not
all zero, such that Azy Az, Az, 20 for (z,.25,2;) Emund Nz, T Az, +
A\z3 <Ofor(z, z,, z5) € Q. Since (0,0, — 1) € 0, we have Ay 2 0. Similarly,
A; <O0and )\, <0. Further, A, > 0, since otherwise )\‘Gl(x) + 7, G, (x) = 0 for all
X € X, which contradicts (1.4). Setting 7, = - A Ay, 1y =~ N, /A5, we obtain the
assertion of the theorem.

(%) A denotes the closure of u set A,
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Remark. The condition (1.4) is essential. It is cusy to give examples of forins
G,(x) and G,(x) not satisfying (1.4) for which the ussertion of Theorem 1.1 is false.
For example, one can tuke X = R? = {(x, x,, x;)}, G, (x) =~ |x1)2, G,(x) =
—lx, [2. Then, for any £(x) of the form .

F(x)== x|+ ‘ Xy I2 + Re lfl‘_'xl.;c:: -+ frl:""l-.\:;t +- ,/‘::v\':}-_,]

with |f, 31 + 1£, 51 # 0 the condition (0.2) is satisfied, but (0.3) is not. We have the
same situation also for m = 1.

The following theorem is concerned with the conditions for the Josslessness of
the S-procedure with constraints in the form ol equulitics.

TUEOREM 1.2. Let G, and G, be two Hermition fors satisfying (1.5). Then for
any Hermitian form ¥ such that F(x) 2 0 when G (x) = G,(x) = 0 there exist real
numbers 7, and 14 such thut F(x) - 7,G (x) - 1,G,(x) 2 0 Jor el x € X In other
words, the S-procedure for the inequality F(x) 2 O subject to rhe regudar constraints
G,(x) = 0 and G,(x) = 0 is lossless for any Hermitian jorm F.

Proovr. As in the prool of Theorem 1.1, we consider the mapping . X — R3
defined by p(x) = (G, (x), G,(x), F(x)). By Lemma 1.1, the set ¢(X) is convex. By
the condition of the theorem, ¢(X) N Q' = &, where Q' = {(z,, 2z, z3) € R3: z, =
z, =0,z; < 0}. By the separation theorem, there exist numbers A, A, and A5, not
all zero, such that X z, + Az, + Nz, <Ofor(z, z,, z3) € Q' (this means that
A; = 0)and Nz, + Nz, + Ayz; 20 for (2, 25, 2;3) € p(X). Further, A3 >0,
for otherwise NG, (x) + N, G,(x) = 0 for all x € X, which conuradicts (1.5). Setling
7, = = A /Ay and 7, = = N, [N, we arrive at the assertion of the theorem.

Rimark. The losslessness of the S-procedure for the iuequality £(x) 2 0 sub-
ject 1o the regular constraints G (x) 2 0 and G,(x) = 0 can he proved in the same way.

§2. The losslessness of the S-procedure for quadratic functionals
DEVINITION, A quadratic functional on a real linear space X is a mapping £
X — R! defined by the formula £7(x) = A(x) + b(x) + ¢, where A(x) is a quadratic
form, b(x) is a linear functional on X, and ¢ is a real number. A quadratic functional
on a complex linear space X is a mupping F: X — R! defincd by the formula £(x)
= A(x) + Re b(x) -+ ¢, where 4(x) is a Hermition form, b(x) is a linear functional on
X, and ¢ is a real number.

TuroreM 2.1, Ler X be a complex or real linear spuce, and let F and G be
quadratic functionals on X. Then the S-procedure for the inequality F(x) 2 0 subject
to the regular constraint G(x) 2 0 or G(x) = 0 is lossless. (It the cuse of a real space
X and the constraint G(x) = Q it is assumned, in addition, that the functional G is non-
linear, i.e. its quudratic form does not vanish identically.)
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Treorem 220 Ler X be a complex lincar spuce, and let £, G|, and &, be
quadratic functionals on X. Then the S-procedure for the inequality £(x) 2 0 subject
1o the regular constraints G (2) 2 0, G,(x) = 0 or G (x) 2 0, G,(x) = 0 or G,(x)
=0, G,(x) = 0 is lossless. (In the case G (x) = G,(x) = 0 it is assumed in addition
that at least one of the functionals G| or G, is nonlinear.)

Proor. Theorems 2.1 and 2.2 are proved iu the sume manner, by the reduction
to the S-procedure for quadratic or Hermitian torms. Let us prove, e.g., Theorem 2.2,
We consider the case of the constraints &, (x) 2 0 und G,(x) = 0. Let F(x) = A(x)
+ Re b(x) + ¢ and Gi(x) = A4;(x) + Re b;(x) + cpf=1,2 We may assume that the
zero element of X satisties thc constraints, i.c. that (; (0) = ¢;=0,j= 1, 2 (this can
be achieved by a shift in X). We define a Hennitiun loxm r (}’), where y = (x; §) €
X x C1, as follows:

A(x), ¢:==0. (2.1)
Obviously, F'(x, £) = A(x) + Re |b(x)E ] + cl§1?. We define the Hermitiun forms
G]-'(x, £) from the functionals Gl-,j = 1,2, in a similar wuy; and we claim that F'(x, £)
2 0 when Gl'(x, £) 2 0 and Gy(x, §) 2 0, if F(x) = 0 when G,(x) 2 0 and G,(x) =
0. Indeed, by (2.1) the assertion holds for & % 0. It remains to show that F'(y) =
0 when G,(¥) > 0 and G,(y) = 0, where y = (x, 0). Consider the family of vectors
L EX x C?! of the form Yo = (& T axg, aty(a)), where « is real. Let us show that
we can always choose a vector x; € X and a complex function £,(c) not vanishing
and bounded in a neighborhood of « = 0 such that, fur a sequence &, —> 0, n —> oo,

the vectors y, ,n=1,2,. .., satisty the constraints G (», ) =0, G,(y, ) =0,
n H "
n=1,2,.... Indeed, sct x, = 0. Then
Gj(y)=4;(x) | aRe [y, (x)&., ----- ¢l E P

Since 4;(x) = Gi'(x, 0)=0and ¢; = 0,/ = 1, 2, the constraints (zf(yu) 2 0 are
satisfied for all a 2 0 if £, () satisly the inequu]ities

Re [b;(x) £,(2)] >0, j=1, 2. (222)
But each of the inequalities (2.2) defines u closed half-pline in the complex plane {£};
therefore the system (2.2) always has a solution £y(a) = & + 0. Thus, F'(yu) =0
for a 2 0, and so

Fr{x, O)y==tim &' (y,) 0.
“-oU

Further, the constraints G| (x, £) 2 0 and G, (x, §) > 0 are regular, since G (x) >0
and G,(x) = 0 are. The application of Theorem 1.1 and the substitution & = 1 com-
plete the proof of Theorem 2.2 for constraints in the form of inequalities. The proof
for the remaining cases and also the proof of Theorem 2.1 differ only by the

choice of sequences of vectors y, € X x C! that satisfy the requirements indicated

n
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above and the corresponding constiaints. 14 is not hard (o check that wnder the
assumptions of Theorems 2.1 und 2.2 such a choice is always possible.

ReMARK. The requirements in Theorems 2.1 and 2.2 that the constraints are
nonlinear are necessary. Namely, if G(x) = b(x) + ¢, where b(x) is a linear functional
on a real lineur space X und ¢ is a real number, then there always is a quadratic func-
tional F(x) 2 0 subject to the constraint G(x) = 0 is lossy. For example, one can
set F(x) = 1 — [G(x)]*. Similarly, in the complex case with G;(x) = Re b,-(x) + ¢,
J =1, 2, the S-procedure tor the inequality £7(x) = 0 subject 1o the constraints G, (x)

= 0 and G,(x) = 0 is lossy if one takes

Fx)m=1 =R (b, (x) 1-0)Ub, (v) | ic2).

In the following section, the results of §81 and 2 will be applied to prove
duality theorems in a number of nonconvex extremal problens.
§3. The connection of the S-procedure with duality theorems in extremal probiems

Tueorem 3.1, Lot F(x) and G (x),
set X and suppose that the S-procedure for the inequality F(x) = ¢ subject to the con-
straints G (x) = 0 , G, (x) 2 0 is lossless for any real number c¢. Then the follow-
ing duality relattou holds in the extremal prob/un inf {(F(x): G, (x) 0,j=1,...,m}:

., G, () be real-valued functions on a

mn

int F{x)=sup inf| 77(x)- V ;U (%)

Uj(,\',\ S0 \y w0 ey ]

, (.1)

;~—_-1

where the supremum on the right-hand side of (3.1) is attained.(5) Conversely, if (3.1)
holds and the supremum on the right-hand side of (3.1) is attained, then the S-pro-
cedure for the inequality F(x) > ¢, subject to the constraints G,(x)=0,...,G,(x)
= 0 is lossless, where ¢ is any real number,

Proor. To begin with we prove the first part of the theorem. It is easy Lo see
that the right-hand side of (3.1) never exceeds the left. Indeed, for any 7, 2 0,7 =
1, ..., m,the following relution holds:

III 1t
inf F(x)>= inf F(x A (J Ol =ini | Flx)— $,0G(x
o,m.,u (x) 2 G (%) 0 () - (9} L{ F) :2&1’ 1)
J<1, ... m jflrl...../n - j"l - J=1

(3.2)
It remains to take the supremum on both sides of (3.2) over all m-tuples “T” s
20,j=1,...,m Let us show that the losslessness of the S- -procedure
guarantees the reverse inequality. Let

INE{F(X):Gy(x) 220, f==1, .00, my==1

If I = — oo, then (3.1) follows from (3.2). Therefore, we muay asswime that s a
(5)lleru and fater, we use the natucal extension of the detinition ot supremum to functions
assuming infinite values. Namely, if &(7) = — %, 7 & T, then we set sume*li(T) = e,
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finite number. Then F(x) —{ = 0 for G, (x) = 0, , G (x) 2 0. The losslessness
of the S-procedure for the function F(x) — ! means that there exist nunbers 7; = 0,
j=1,...,m, such that F(x) — 2} T/-Gl.(x) =1 for all x € X. Hence follows the first
assertion of the theorem.
Conversely, let F(x) — ¢ > 0 for G () = . m(x) > 0. Then

supinf S(x, v)== ini [F{x)]

*j‘.'-() aeXN G ,(x):vn ’
Therefore there exist numbers T =0, =1,...,m,such that S(x, r) = ¢ for all

XEX,ie.

which was to be proved.

A duality theorem for constraints in the form of equulitics can be proved in a
similar way.

THEOREM 32. Let F(x) and G (x), . . ., G, (x) be real-valued functions on a
set X, and suppose that the S-procedure for the inequulity F(x) 2 ¢ subject to the
constraints G, (x) =0, . . ., G, (x) = 0 is lossless for any real number c¢. Then the
Sollowing duality relation holds in the problem inf {£'(x): G/.(x) =0,j=1,...,m}:

H

inf Ja . () — Y ) G lx
G/l(i}) N (x) == = sup mf F(x) %t,(lj(\) , (3.3)

where the supremumn on the right-hand side of (3.3) is attained. Conversely, if (3.3)
holds and the supremum is attained, then the S-procedure is lossless for the inequality
F(x) > c subject to the constraints G (x) =0, . .., G, (x) = O, where ¢ is any real
number.

The following assertions, which provide a number ol exmuples of true duality
relations in nonconvex extremal problems, follow directly from Theorems 2.1, 2.2,
3.1, and 3.2.

THEOREM 3.3. Let mi = 1, let X be a complex or real linear spuce, and let
G(x) be an indefinite quadratic functional on X, nonlinear in the real case. Then
(3.3) holds for any quadratic functional F(x) on X.

THEOREM 34. Let m = 2, and let G (x) and G,(x) be quadratic functionals
on a complex linear space X. Then the following relations hold for any quadratic
functional F(X) on X: (3.1) if the constraints G (x) = 0 and G,(x) 2 0 are regulur,
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inf  F(x) = sup inf [F(x) — <G, (x) — 7., (x)], 34
N ad

~.

if the constraints G (x) 2 0 and G,(x) = 0 wre regular; and (3.3) if the constraints
G,(x) = 0and G,(x) = 0 are regular and at least one of the functionals G (x) or
G,(x) is nonlinear.
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