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Abstract

Uncertain nonlinear systems affine in the input are con-
sidered. It is shown that under some matching condi-
tions these systems can be made practically stable by
state feedback. We present an adaptive hybrid algo-
rithm which renders the origin practicably stable to any
desired accuracy. The presented algorithms are simple
and computational y cheap.

1 Introduction

State and output feedback controllers which guaran-
tee both global and asymptotic tracking have been de-
signed for nonlinear systems with uncertain parame-
ters. Typically these results rely on the theory devel-
oped in [1, 2], and on extensions developed for adaptive
systems, as in [3, 4, 5] for example. In these “adaptive”
papers an assumption is made that the plant model de-
pends on a finite number of unknown parameters. The
control algorithms are based on tuning parameter esti-
mates.

A different approach, based on approximating the tra-
jectories of the non-linear systems was presented in [6]
and extended to output feedback in [7]. Related results
may be found in [8, 9]. In this approach the defining
vector field is not estimated, but approximated locally
in space and time.

The aim of this paper is to bring into focus the sim-
ilarities (in the control design) and differences (in the
identification and the hybrid nature of the closed loop)
between the above mentioned approaches. It extends
the work presented in [6] in that the nonlinear systems,
presented in the more traditional affine in the input for-
mat are dealt with, rather that the input-output format
used in [6, 7]. In this paper this extension is discussed
under matching conditions, either an exact matching

(hard constraint) or matching via a Lyapunov function
(soft constraint).
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The two approaches are equivalent and basically dif-
fer in the way that they use prior knowledge about
the system. For “hard” matching the equation of an
asymptotically stable reference model is assumed to be
known and a control algorithm which is an extension
of that in [6] is used. For the “soft” matching case two
approaches are presented. In both cases only a goal
function guaranteeing stability of the reference model
is required. In this paper it is demonstrated that an
arbitrarilyy high accuracy of control achievement, in the
noiseless case, is possible if suitable parameters are ch~
sen for the algorithms presented.

The paper is organised as follows. The problem is in-
troduced in section 2. The identification algorithm is
outlined in section 3 where analytical results depending
on the design parameters bounding the estimation er-
ror are proved. The control algorithm is then presented
together with results demonstrating control implemen-
tation accuracy and control input bounds. The main
results of the paper are presented in section 4 where
we establish the general applicability of the techniques
presented for nonlinear twice differentiable plants affine
in the control input. Lastly a number of simulations are
described in section 6.

2 Problem Statement

Let the plant to be controlled be modeled aa:

x= f(x) +9(X)% ~ 2 0; x(o) = ~o (1)

where x(t) E R* is the plant state. The state is
measurable and measurements are taken at the sam-
ple points kA, where k ~ {1,2 . . .) and A > 0 is the
sampling interval. u(t) E R is the control input and
the vector fields $, g : R“ ~ R“ E C2 are twice con-
Let B: denote a ball of radius r centered at the origin



in Rn:

E; = {X < Rnsuch that 11X11 <r}

Thus the vector fields ~, g satisfy the following relation-
ships Vx E B: and {xl, x2} c B;

f(o) = o

Ilm)ll < J’o(~)>

MOll < Go(r),

Iv(w) – f(x2)ll < ~l(~)llxl - X211,

Ib(xl) – 9(X2)11 < G~(r)llxl - x,II. (2)

Under the assumptions (2) standard results [10] guar-
antee the existence and uniqueness of solutions for the
plant model (1) for all initial conditions in a compact
set, all initial times and for all bounded control input u.
Further requirements on the plant are that the function
g(x) does not vanish on Rn

I19(X)II> 0; Vx E B;.

The control objective is to regulate the state to zero
using a control input which is piecewise constant over
the sampling intervals such that for any given a >0

3T >0: sup llx(t)llz,lt,~l S a. (3)
t>T

We consider the above control objective under two dif-
ferent matching conditions which are defined aa follows.

Definition 2.1 The plant (’1) is said to satisfy a hard
matching condition (HM) if there exists a function

fro(x), i.e. fro(x) E C2, and a continuous at the ori-
gin smooth everywhere else control function Urn(x) such
that

f(x) + 9(x)um(x) = .fm(x) (4)

where the origin is a globally asymptotically stable equi-
librium point of x = f~(x).

Definition 2.2 A plant (1) is said to satisfy a SOB
matching condition (SM) if there ezists a smooth proper
positive definite scalar function, also referred to as a
goal function, Q(x) and a function Ug(x) continuous
at z = O, with uq(0) = O, smooth everywhere else, such
that:

vQT(X)(f(X) + dx)dx)) <0 VZ # o (5)

See also Theorem (1) in [11].

For notational convenience we define the quantities
a(x) = VQ~(x) . f(x) (6)

b(x) = VQT(X) - g(x). (7)
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The two explicit forms for u~(x) we use in the sequel
are either the control law introduced by Sontag [11]:

a(x) + /aZ(x) + bq(x)
Uq(x) = -

b(x) (8)

or alternatively the speed gradient control law intro-
duced in [12, 13]

Uq(X) = –Tb(x). (9)

The constant ~ is calculated to ensure that condition(5)
is satisfied.

Both “hard” and “soft” matching conditions are suf-
ficient to guarantee that the control objective can be
realised.

The adaptive control problem under the HM and SM
condition is to achieve the control objective using full
state measurements x(kA) and full knowledge of fm (x)
for the hard matching condition and Q(x) in the soft
matching condition case. As can be anticipated both
matching conditions are closely linked via classical Lya-
punov stability theorems. Equivalence between the two
approaches is stated in the following proposition

Proposition 2.1 For the plant given in (1) and sta-
ble refenmce model the “soft” and chard” matching am
equivalent.

3 Adaptive Control Algorithms

The control algorithm generates an input, piecewise
constant over the sampling intervals [2(k – l)A, 2kA),
(k= 1,2,. ..) according to :

Here ~ >0 is a (small) test signal which is used in the
identification step of the adaptation algorithm, while
Uk should be chosen to perform the control task.

3.1 Ident ificat ion
For notational convenience we introduce f (x~ )x(kA) ~st,mates for fz;gk:
g(x~) = g~ where YCk= . “
namely ~ok and ~zk can be computed, [6], from:

[1
f2k = 1

[

A(u~ – ~)1

1

–A(uk + ~)1 .

i2k 2A2K –AI AI

[

Xzk —Jtzk-1
Xzk-1 – Xzk-z 1

(11)
We are now in a position to
accuracy of (11). However

investigate the estimation
before doing so we prove



the following lemmata and introduce the notation C(p)
and C(p=, pti) to denote a positive valued function of its
arguments. Furthermore it is assumed that O< K, A <
1.

Let X(to, t, Zo) denote the state trajectories of (1) for
initial condition Z. and for any t E U = [to, td) where
td is the region of definition of this system.

Starting assumption: Ijx(s)l] < p= and Iu(s)[ < p.,
VO < s < tri for some td >0. Note that td >0 exists
if we assume that, e.g. IIx(0)I] s pZ/2. Since ~(x)
and g(x) are Lipschitz continuous in B;, a conservative
estimate for

td>Tl= (12)

(

P=min Pu

)2 max(p., FO(p=) + Go(p=)u~’ max(pti, u~) “

The sampling period A is hence chosen

Lemma 3.1 For all It – s]~A,0~t,s~21A<td
we have Ilx(t) – x(s)II < c(Pz, P.)A

Now we are in a position to bound the estimation error
for the estimates of f(x(t)) and g(x(t)) as obtained
from (11).

Lemma 3.2 On any interual 2(k – l)A ~ t ~ 2(k +
l)A, t G [0, td) the estimate error is bounded by

w. – f(x(o)ll < C(PZ ,Pu, ~)A

l192k – 9(x(t))ll s WZ,PU! ~)A” (14)

3.2 Control Step
In this section we introduce the two variants of the
control law which will be implemented to control the
plant and investigate the control implementation for
each case. For the hard matching condition the control
law is chosen to be

0 < /? < 1 is a design parameter. U1 = O i.e. con-
trol action starts at sample time 2A. (15) amounts
to choosing uk+l as the least squares solution of the
equation ~z~ + ~zku = .fm (x2k )

For the soft matching condition the law is chosen either
as
{

_* iflbk[>~
Uk+l = (16)

o otherwise
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or speed gradient

~k+l = –~bb (17)

where

ak = ~~kVQ(x2~) (18)

bk = jj:kvQ(X2k) (19)

and O < @ < 1, 7 > 0 are design parameters. We take
U1= O. In the next sections the control implementation
accuracy is investigated for the above control laws and
it is proven that the control input for the proposed laws
is bounded. The existence of 7 may be seen from

u(x) + a(x) + b4(x)
7 ~ peyr

b2(x)
(20)

3.3 Cent rol Implement at ion

Lemma 3.3 HM control case:
Iu(t)l s p“ on O s t s 21A, t
tE [2A,21A) we have

Accuracy

ff Ilx(t)ll < p= and
~ [0, td) then fOr all

llfm(x(~)) - f(x(t)) - 9(x(~) )u(t)ll S

c(P.,P., K)(P+ K+ A) (21)

Lemma 3.4 SM control case: If I/x(t)\j ~ p= and
Iu(t)l ~ p~ on O ~ t ~ 21A, td C [O,td) then for ail
t E [2A, 21A) we have

VQT(x(t))(f(x(t)) + !?(x(t))U(t)) <

C(p., p“, ~)(~ + A + ~) (22)

- @QT(x(W(W))2+(WT(WMx(t)))2

3.4 Control input bounds
We now investigate the input bounds for the two pro-
posed control laws. For the hard matching case we

have

Lemma 3.5 Assume Ilx(t)ll ~ p on O ~ t < A. Let
s<land p”= supll=ll<PIum(x)l, then there ezists a
A1(p, K,P) >0 such that for all O < A < AI(p, tc,/3),
we have Iu(t)l ~ p. + 1 on O ~ t < 21A.

Similarly for the soft matching case we have

Lemma 3.6 Assume [Ix(t)ll ~ p on O < t ~ A. Let

~<land p”= supllxll<P lug(z)l, then there exists a
AI(p, K,~) >0 such that for all O < A < Al(P, K,@,
we have Iu(t)l < P* + 1 on O S t < 21A.



initial conditions yl~ = O and yzr = 0.1 and vr = 0.1.
4 Main Result

The main result of this paper, a proof showing the gen-
eral applicability of the techniques outlined in previous
sections for all twice continuously differentiable nonlin-
ear plants affine in the control input, is encompassed
in the following theorem:

Theorem 4.1 Consider the system dejined by (1) un-
der Hill (alternatively SM). For any a >0 and any R >
0 them ezist a positive (small) constant AJa, R) >0
such that all trajectora”es of the closed loop system
described by equations (l), (10), (11) and (15) (al-
ternatively equations (l), (10), (11), (16) (18) and
(19)) with initial condition 11x.11 ~ R are bounded
and achieve the control objective for any sampie period
A G (O, Aotc) when the design parameters are chosen
as /3c (O, AO) and K E (O, AO).

Theorem 4.2 Consider the system dejined by (1) un-
der SM. For any a > 0 and any R > 0 them ezist
a positive (small) constant Ao(a, R) > 0 and 7 >> 0
such that all tmjectom’es of the closed loop system de-
scn”bed by equations (l), (10), (11) and (17) (18) with
initial condition [Ixol{ ~ R am bounded and uchieve the
control objective for any sample pe~’od A E (O,AOK)
when the design pammeters am chosen as /3c (O, AO)
and K.E (O, AO).

Proofi All that is required to be proven is that
there exists a positive definite function W(x) such that
V(xzk) – V(ZM_l) < –WO(ZZ~-2). The rest follows
directly from Theorem 1. ■

5 Simulation Example

In this section we utilise the techniques described in
this paper and illustrate their general applicability by
attempting to control the trajectories of a continuous
time nonlinear system to converge to a reference model.
The particular example we consider

[1[
Y1

Y2 ‘2 ‘ I[:I+[HU ’23)= @(Y) +NY)

where a(y) and ~(y) are unknown locally Lipschitz
continuous functions of the state. In this particular
simulation example they are set to CY(Y)= ~ COS2(Y1)
and P(Y) = 3+ sin( yz). It is emphmised that the struc-
ture of a and ~ are unknown.

In order to ensure synchronisation we introduce the

control aim

lim sup(l~l(t)– Ylr(t)l+ lY2(~) – y2r(t)l) < ~ (24)
t-m
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where yl~(t) and yz~(t) are a solution of the reference
model

[KI=[-271+[W ’25)

and the initial conditions in (25) are arbitrary but fixed.
The aim (24) can be reformulated by introducing the
state vector

(26)

Then the synchronisation error can be expressed as

[: N=[~2 W: I+[WVJ+

[

o 1(~cos’(z~ + y,,) -1) :4 +sin(zz +.?&)) “

where the components 1/2 COS2(Z1+ ylr) and 3 +
sin(zz -i- yz~) are assumed to be unknown. The ob-
tained equation is in a form for which the trajectory
approximation algorithms presented in this paper are
directly applicable. The identification step can be per-
formed exactly as (11). We are now in a position to
formulate the appropriate control laws for (27).

5.1 HM control law synchronisation
A candidate for ~~ (x) is

(28)

In this example a; and al are set to 1, –1 respectively.
It can be seen that x = f~ (x) is asymptotically stable
and the “ideal” control law which satisfies (4) can be
shown to be equal to

Um(x) = –V, + (1 – (1/2) COS2(Zl+ ylr))(xl + ylr)

–(4 +sin(zz + Y2r))(z2 + Y2r) + Z1 – X2 (29)

This control law cannot be used because it dependa on
unknown plant parameters. Hence the hard matching
control law was chosen according to (15).

The simulation was performed for the following sets of
parameters. The update interval was A = 0.01s, con-
trol excitation K = 0.01 and ~ = 0.01. The plant initial
conditions were set to yl = –0.1 and Y2 = 0.1. Our aim
is to synchronise this plant with the reference model,
Figure(2)
tion error
is plotted

displays the phase diagram of synchronisa-
where X2, the velocity synchronisation error
against XI.



linear Control Systems., pages 660-665, Tahoe City,
5.2 SM control law synchronisation
The soft matching control law can also be used to con-
trol the system (27). As outlined in the previous sec-
tions we utilised the following two variants: Sontag’s
form (16) or speed gradient (17). More references can
be found in [11],[12]. For both of these variants an ap-
propriate goal function needs to be determined. In this
simulation example the goal function investigated was

(30)

It can be shown that Q(x) is a control Lyapunov func-
tions. Our aim as with the hard matching condition is
to synchronise the plant with the reference model.

Figure [3]displays results obtained using control law
(16) with goal function Q for plant and reference mod-
els with parameters similar to the hard matching con-
dition. As is demonstrated in figure [3] the system ex-
hibits order epsilon chattering behaviour. This chatter-
ing behaviour can be attributed to the following three
factors. Firstly errors in the estimates of the dynamics
of the plant which are specified in our algorithm by f
and j. Secondly when b(x2~ ) < ,d the control input
is prematurely switched off, since b(x) # O there is no
requirement that a(x) <0, the plant begins to lose syn-
chronisation until the next control input update. The
chattering effect can be controlled via the selection of
A or the control excitation level ~.

Figure [4] displays the results obtained using the speed
gradient approach, with goal function Q, for plant
and reference models with parameters similar to those
in the hard matching section with the exception that
~ = O. For this simulation the value of 7 was set to
100. Increasing 7 increases the region of stability. In
our simulations it wss found that if 7 is increased, the
update interval must be decreased. Through our sim-
ulations we found that the update interval should be
set in the order of A7 < 1 otherwise the system may
exhibit large undesirable oscillations.

6 Conclusions

In this paper we consider uncertain twice continuously
differentiable nonlinear systems affine in the input. It
is shown that under certain matching conditions these
systems can be made globally asymptotically stable
by state feedback. We presented adaptive algorithms
which render the origin practically stable to any desired
degree under both “hard” and “soft” matching condi-
tions. The algorithms presented were demonstrated on
a simulation example. It was shown that if an asymp-
totically stable reference is known then the hard match-

ing control law could be used yielding very satisfactory
results. If no such reference model exists then a goal
function is required. It was shown that this goal func-
tion must be a control Lyapunov function.
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Figure 1:

timot

Evolution of the states for uncontrolled plant
with initial conditions Z1 = -0.1 and Z2 = 0-1
Figure 2: Phase diagram of synchronkation error under
HM control.
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Figure 3: Phase diagram of synchronisation error under
SM control with goal function Q.
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SG control with goal function Q.
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