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Abstract— A scheme for state estimation for multiple-output
nonlinear system under communication constraints is extended
for the case of exogenous excitation and implemented for
Mechatronic Multipendulum Setup. Experimental results are
presented, showing efficiency of the proposed method.
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I. INTRODUCTION

During the last decade substantial interest has been shown
in networked control systems (NCS). The idea is to use serial
communication networks to exchange system information
and control signals between various physical components of
the systems that may be physically distributed. NCS are real-
time systems where sensor and actuator data are transmitted
through shared or switched communication networks, see e.g.
[1]–[4]. Transmitting sensor measurement and control com-
mands over wireless links allows rapid deployment, flexible
installation, fully mobile operation and prevents the cable
wear and tear problem in an industrial environment. The
possibility of NCS motivates development of a new chapter
of control theory in which control and communication issues
are integrated, and all the limitations of the communication
channels are taken into account. The introduction of a com-
munication network into a NCS can degrade overall control
system performance through quantisation errors, transmis-
sion time delays and dropped measurements. The limitations
of estimation and control under constraints imposed by a
finite capacity information channel have been investigated
in detail in the control theoretic literature, see the surveys
[5], [6], the monograph [4] and the references therein. It
has been shown that stabilization of linear systems under
information constraints is possible if and only if the capacity
of the information channel exceeds the entropy production of
the system at the equilibrium (Data Rate Theorem), [7]–[9].

Continuous-time nonlinear systems were considered in
[10]–[12], where several sufficient conditions for different
estimation and stabilisation problems were obtained. In
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[11], uniformly observable systems were considered and
an “embedded-observer” decoder and a controller were de-
signed, which semi-globally stabilizes this class of systems
under data-rate constraints. In most of the above mentioned
papers the coding-decoding procedure is rather complicated:
the size of the required memory exceeds or equals to the
dimension of the system state space. Such a draw-back was
overcome in [13], where a first order coder scheme was pro-
posed for SISO nonlinear autonomous systems, represented
in the Lurie form (linear part plus nonlinearity, depending
only on measurable outputs) and the limit possibilities of
synchronization and state estimation under information con-
straints are established. Complexity of the scheme of [13]
does not grow with the dimension of the system state.

The results of [13] are extended in [14], [15] to the MIMO
case. Under the assumptions that the measurements on the
transmitter’s side are perfect and the channel distrosions
and errors may be neglected, in [13]–[17] is shown that
the upper bound of the limit estimation error is propor-
tional to the upper bound of the transmission error. As a
consequence, it is proportional to the maximum rate of the
coupling signal and inversely proportional to the information
transmission rate (the channel capacity). In the present paper
the data transmission scheme of [13]–[17] is modified for
non-autonomous systems, and implemented for the multi-
pendulum mechatronic setup. The state estimation scheme is
studied experimentally for the real-world system, subjected
to measurement errors and data losses.

The paper is organized as follows. The state estimation
scheme of [13]–[17] is extender to the case of additional
exogenous input in Section II. Results of experiments with
the multipendulum setup are described in Section III. Con-
cluding remarks are given in Section IV. Coding procedure
and analytical evaluation of the transmission error are given
in Appendix A.

II. STATE ESTIMATION SCHEME

Consider a system model in the Lurie form. In additional
to [13]–[17], let us assume presence of an exogenous input
signal and consider the following non-autonomous system:

ẋ(t) = Ax(t)+ϕ
(
y(t)
)
+Bu(t), y(t) =Cx(t), (1)

where x(t)∈Rn is the state variables vector; y(t)∈Rl is the
system output; u(t)∈ Rm denotes an exogenous input; A is
(n×n)-matrix; B is (n×m)-matrix; C is (l×n)-matrix; ϕ(y)
is a continuous nonlinear vector-function, ϕ : Rl → Rn. We
assume that the system is dissipative: all the trajectories of
the system (1) belong to a bounded set Ω (e.g. attractor of a



chaotic system). Such an assumption is typical for oscillatory
and chaotic systems. Let the signals u(t), y(t) be measured
at the side of the source system (1) and be transmitted to the
remote observer over the digital communication channel.

The observer has the following form:

˙̂x(t) = Ax̂(t)+ϕ
(
ȳ(t)
)
+L
(
ȳ(t)− ŷ(t)

)
+Bū(t), ŷ =Cx̂,

(2)

where x̂(t)∈Rn is the vector of the state estimates, produced
by the observer; ū(t), ȳ(t) are, respectively, plant (1) input
and output signals, transmitted over the channel and restored
by the decoder; L is the vector of the observer parameters
(gain). Apparently, in absence of the transmission errors (i.e.
if ū(t) ≡ u(t), ȳ(t) ≡ y(t)), the dynamics of the state error
vector e(t) = x(t)− x̂(t) are described by a linear equation

ė = ALe, y =Cx, (3)

where AL = A−LC.

Fig. 1. Block-diagram of state estimation over a discrete communication
channel.

In the case if the pair (A,C) is observable, there exists
L providing the matrix AL with any given eigenvalues. In
particular all eigenvalues of AL can have negative real parts,
i.e. the system (3) can be made asymptotically stable and
e(t)→ 0 as t→∞. Therefore, in the absence of measurement
and transmission errors the estimation error decays to zero.

Now let us take into account transmission errors. Let
the observed signals ui(t) ∈ Rl , y j(t) ∈ Rl (i = 1, . . . ,m,
j = 1, . . . ,m) be coded with symbols from a finite alphabet at
discrete sampling time instants tk,i = kiTs,i, tk, j = k jTs, j where
Ts,i, Ts, j are the sampling periods. Disregarding difference in
representation of digital numbers and symbols of the coding
alphabet, let us denote the output codewords as ūi[k] = ū(tk,i),
ȳ j[k] = ȳ(tk, j) (respectively). The block-diagram, illustating
the considered remote estimation scheme is shown in Fig. 1
(cf. [18], [19]).

At the present stage of the study we assume that the
observations are not corrupted by the observation noise, and
that transmission delay and distortion may be neglected.

Assume that zero-order extrapolation is used to convert
the digital sequences ūi[k], ȳ j[k] (i= 1, . . . ,m, j = 1, . . . ,m) to
the continuous-time input signals ūi(t), ȳ j(t) of the observer
(2): ūi(t) = ūi[ki], ȳ j(t) = ȳ j[k j] as kiTs,i ≤ t < (ki + 1)Ts,i,

k jTs, j ≤ t < (ki +1)Ts, j. Then the transmission error vectors
are as follows:

δu(t) = u(t)− ū(t)∈ Rm, δy(t) = y(t)− ȳ(t)∈ Rl . (4)

In presence of the transmission errors, equation (3) reads
as

ė = ALe+ϕ(y)−ϕ
(
y+δy

)
−Bδu−Lδy. (5)

We are interesting in limitations imposed on the estimation
precision by limited transmission rate. To this end introduce
an upper bound on the limit output estimation errors Qi =
sup lim

t→∞
‖εi(t)‖, where εi(t) = yi(t)− ŷi(t), i = 1, . . . , l, and

the supremum is taken over all admissible transmission
errors. In [13], [14] it has been proved analytically and
illustrated by numerical examples, that for the considered
estimation scheme, applied to an autonomous system, the
total estimation error is proportional to the upper bound of
the norm of the transmission error and, in turn, is inversely
proportional to the transmission rate. It is easy to show that
this relationship is also valid for non-autonomous system,
if an exogenous signal is transmitted to the observer at the
receiver’s end by means of the coding-decoding procedure
(8), (10), (11). In the next section, the experiments on the
mechatronic laboratory setup for evaluation of the estimation
error are described. It is shown that the experimental results
agree with the general statements of [13], [14].

III. EXPERIMENTS ON STATE ESTIMATION OVER THE
COMMUNICATION CHANNEL

A. Experimental setup

The Multipendulum Mechatronic Setup of the IPME RAS
(MMS IPME) consists of the set of interconnected pen-
dulum sections, electrical equipment (with the computer
interface facilities), the electric computer-controlled motor,
the personal computer for data processing and real-time
representation of the results. The mechanical part of the setup
consists of a number of identical sections with pendulums,
diffusively connected by torsion springs. The computer-
controlled electric motor is connected with the first pendulum
of the chain via the spring, applying the torque to the “left”
end of the chain. The “right” end of the chain is unconnected.
Axes of the neighboring sections are connected by torsion
springs, arranging force interaction between pendulums. In
principle, any number of sections can be connected. At the
moment mechanical parts of 50 sections are manufactured.
The setup is described in more details in [20].

B. Modeling the chain of pendulums

Following [20], the rotation angle of the drive shaft,
connected with the first pendulum of the chain, is considered
as the system input. The last (Nth) pendulum in the chain
is mechanically connected only with the previous one, no
boundary conditions for Nth pendulum are specified. This



leads to the following model of the chain dynamics:
ϕ̈1 +ρϕ̇1 +Ω2 sinϕ1− k(ϕ2−2ϕ1) = ku(t),
ϕ̈i +ρϕ̇i +Ω2 sinϕi− k(ϕi+1−2ϕi+ϕi−1)=0,

(i = 2,3, . . . ,N−1),
ϕ̈N +ρϕ̇N +Ω2 sinϕN− k(ϕN−ϕN−1) = 0,

(6)

where ϕi=ϕi(t) (i=1, 2, . . . ,N) are the pendulum deflection
angles; u=u(t) is the controlling action (the rotation angle
of the drive shaft). The values ρ , ω0, k are the system pa-
rameters: ρ is the viscous friction parameter; Ω is the natural
frequency of small oscillations of the isolated pendulum; k
is the coupling strength parameter, which depends on the
stiffness of the connecting spring. The model (6) parameters
have been preliminary estimated based on the mass-geometry
properties of the mechanical system, and then were specified
by means of the trial-and-error procedure, applied to the
experimental data sets. The following parameter estimates
were finally obtained: Ω= 5.5 s−1, ρ = 0.95 s−1, k= 5.8 s−2.

C. Data transmission and state estimation algorithms for the
multi-pendulum set-up

In our experiments, the chain of four pendulum sections
and the motor, attached via the spring to pendulum #1 were
used. The outside left rotary angle (the angle of the drive
shaft) may be reffered to as exogenous action, applied to
the plant (the chain of the pendulums), it was coded by
means of the first-orded coder (8), (11), (10), where z≡ ϕm
is taken. The model (6) is used for designing the remote state
estimator (2), (8), (11), (10) for the pendulum angles ϕi(t).
Namely, in (8), (11), (10) z = ϕi for i = 1, . . . ,4 is taken.

For the considered problem, observer (2) has been de-
signed by means of (6) decomposition into four intercon-
nected subsystems of the second order. This leads to the
following observer equations:

˙̂ϕ1 = ω̂1 + l1ε̄1,
˙̂ω1 =−ρω̂1−Ω2 sin ϕ̄1 + k(ϕ̂2−2ϕ̂1)

+kϕ̄m(t)+ l2ε̄1,
˙̂ϕ2 = ω̂2 + l1ε̄2,
˙̂ω2 =−ρω̂2−Ω2 sin ϕ̄2 + k(ϕ̂3−2ϕ̂2 + ϕ̂1)+ l2ε̄2,
˙̂ϕ3 = ω̂3 + l1ε̄3,
˙̂ω3 =−ρω̂3−Ω2 sin ϕ̄3 + k(ϕ̂4−2ϕ̂3 + ϕ̂2)+ l2ε̄3,
˙̂ϕ4 = ω̂4 + l1ε̄4,
˙̂ω4 =−ρω̂4−Ω2 sin ϕ̄4 + k(ϕ̂3− ϕ̂4)+ l2ε̄2,

(7)

where ϕ̂i, ω̂i (i = 1, . . . ,4) stand for the estimates of the
rotation angle and the angular velocity of the i-th pendulum
(respectively), ε̄i = ϕ̄i − ϕ̂i are the observer output errors;
l1, l2 are the oserver gains. To find them, an isolated linear

subsystem with the matrices A1 =

[
0 1
−2k −ρ

]
, C1 = [1,0]

was considered. The gains l1, l2 have been found ensuring
the prescribed eigenvalues s1,2 = −14± 14i (where i is an
imaginary unit) of the matrix A1− LC1, L = [l1, l2]T. This
gives the following values of the observer gains l1, l2:
l1 = 27.3, l2 = 362. It may be easily verified that for the

chosen parameters, the spectrum of the matrix AL in (5)
is as follows: {−14.14± 13.75i,−14.14± 13.93i,−14.14±
14.45i,−14.14±14.21i}, which leads to exponential stability
of observer (2).

D. Experimental results

In course of the experiments, the harmonic waveform
voltages have been applied to the motor. The rotary angles
of the drive shaft and the pendulums were measured with
the sampling rate of 100 Hz and 2o precision by means of
the optical sensors. Then the measured signals have been
processed by the above coding algorithms for transferring
over the channel. During the experiments, the sampling
times for the drive motor Tm and the pendulum angles
Tϕ,i and the quantizer (8) parameters νi were taken equal:
Tm = Tϕ,1 = · · ·= Tϕ,4, νm = ν1 = · · ·= ν4, varying from one
data processing run to another.

Each experiment lasted in tfin = 100 s. The relative output
estimation errors Qi(R,ν) (i = 1, . . . ,4) have been calculated
as

Qi(R,ν) =

max
t∈[tbeg,t f in]

|yi(t)− ŷi(t)|

max
t∈[tbeg,t f in]

|yi(t)|
,

where tbeg = 10 s is taken to eliminate influence of transients
on the accuracy indeces Qi(R,ν).

Experimental results are depicted in Figs. 2–6. The time
histories of the rotation angle of the first pendulum ϕ1,exp(t),
obtained by the experiment, and its estimate ϕ̂1(t), produced
by observer (7) at the decoder’s side, are plotted in Figs. 2,
3 for ν = 0 (binary coder) and for ν = 2. Corresponding
estimates ˆ̇ϕ1 of the angular velocity ϕ̇1 are shown in Figs. 4,
5. It should be noticed, that the the angular velocities are not
measured by sensors and are subjected to estimation.

The generalized accuracy indeces are plotted in Figs. 6,
??, where dependence of limit output estimation error for
the first pendulum Q1 on the overall transmission rate RΣ

and parameter ν is reflected. It is worth mentioning that
the “exact” values of ϕm(t), ϕi(t) are not known due to
the measuring errors in the optical sensors, effecting on
experimental evaluation of the data transmission accuracy.
Namely, the overall error can not be less than the optical
sensor error. It is seen from the plots that dependence
of the estimation error, obtained by the experiments, are
close to the biased inversely proportional function on the
transmission rate. One also may notice that small values of
ν are preferrable from the viewpoint of the transmission rate
for given accuracy, cf. [13], [21].

IV. CONCLUSIONS

We have studied dependence of the error of state es-
timation for nonlinear Lurie systems over a limited-band
communication channel both analytically and numerically.
It is demonstrated that upper bound for limit estimation
error depends linearly on the transmission error which, in
turn, is proportional to the driving signal rate and inversely
proportional to the transmission rate. Though these results
are obtained for a special type of coder, it reflects peculiarity
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Fig. 2. ϕ1,exp(t),ϕ̂1(t) and the output estimation error ε1(t) time histories.
Binary coder. RΣ = 1.3 Kbit/s.
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Fig. 3. ϕ1,exp(t),ϕ̂1(t) and the output estimation error ε1(t) time histories.
ν = 2. RΣ = 3.0 Kbit/s.

of the estimation problem as a nonequilibrium dynamical
problem. On the contrary, the stabilisation problem consid-
ered previously in the literature on control under information
constraints belongs to a class of equilibrium problems.

APPENDIX

A. Coding procedure

Following [13], for a given real number κ > 0 and
nonnegative integer ν ∈ Z define a uniform quantizer to be
a discretized map qν ,κ : R→ R as follows. Introduce the
range interval I = [−κ,κ] of length 2κ. Let this interval be
equally split into 2ν parts. Define the discretization interval
of length δ = 21−νκ and the quantizer qν ,κ(z) as

qν ,κ(z) =

{
δ · 〈δ−1z〉, if |z| ≤ κ,
κ sign(z), otherwise,

(8)

where z denotes the signal to be transmitted over the channel
(in our case, z ∈ {u,y}), 〈·〉 denotes round-up to the nearest
integer, sign(·) is the signum function: sign(y) = 1, if y≥ 0,
sign(y) = −1, if y < 0. Therefore, the cardinality of the

0 1 2 3 4 5
−15

−10

−5

0

5

10

15
dφ

1,est
/dt

t, s

Fig. 4. The angular velocity ˆ̇ϕ1(t) estimate time history. Binary coder.
RΣ = 1.3 Kbit/s.
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Fig. 5. The angular velocity ˆ̇ϕ1(t) estimate time history. ν = 2. RΣ =
3.0 Kbit/s.
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mapping qν ,κ image is equal to 2ν +1, and each codeword
symbol contains R̆ = log2(2

ν + 1) = log2(2κ/δ + 1) bits.
Thus, the discretized output of the considered coder is found
as z̄ = qν ,κ(z). We assume that the coder and decoder make
decisions based on the same information [18], [19].

In the present paper we use l + m independent coders
for components ui, y j (i = 1, . . .m, j = 1, . . . , l) of the
transmitted vectors u∈ Rm, y∈ Rl . Each coder number i,
j has its particular sampling period Ts,i, Ts, j, ranges κi,
κ j and integers νi, ν j. The corresponding bit-per-second
rates Ri, R j are calculated as Ri = R̆i/Ts,i = log2(2

ν
i +1)/Ts,i,

R j = Ri = R̆ j/Ts, j = log2(2
ν
j +1)/Ts, j. The overall averaged

rate R is a sum of the particular ones, R =
l
∑

i=1
Ri +

m
∑
j=1

R j.

The static quantizer (8) is a part of the time-varying coders
with memory, see e.g. [7], [13], [19], [22]. In the first-order
(one-step memory) coder the central vectors (the “centroids”)
c[k]∈Rl , k ∈ Z with initial condition c[0] = 0 is utilized. At
step k the coder compares the current measured output z[k]
with the number c[k], forming the deviation vector ∂ z[k] =
z[k]−c[k]. Then this vector is discretized with given κ=κ[k]
according to (8). The output signal

∂̄ z[k] = qκ(∂ z[k]) (9)

is represented as an R̆-bit information symbol from the
coding alphabet and transmitted over the communication



channel to the decoder. Then central number c[k + 1] and
range parameter κ[k] are renewed based on the available
information about the drive system dynamics. Assuming
that transmitted signal z(t) changes at a slow rate, i.e. that
z[k+1]≈ z[k]. the following update algorithms are employed:

c[k+1] = c[k]+ ∂̄ z[k], c[0] = 0, (10)

κ[k] = (κ0−κ∞)ρ
k +κ∞, k = 0,1, . . . , (11)

where 0 < ρ ≤ 1 is the decay parameter, κ∞ stands for the
limit value of κ. The initial value κ0 should be large enough
to capture all the region of possible initial values of z0.

Equations (8), (9), (11) describe the coder algorithm.
A similar algorithm is used by the decoder. Namely: the
sequence of κ[k] is reproduced at the receiver node utilizing
(11); the values of ∂̄ z[k] are restored with given κ[k] from
the received codeword; the central numbers c[k] are found in
the decoder in accordance with (10). Then z̄[k] is found as a
sum c[k]+ ∂̄ z[k].

It worth to mention that the logarithm quantization [23],
[24].

B. Evaluation of the estimation error

Denoting in the right hand of (5) the sum ϕ(y)−ϕ
(
y+

δy
)
− Bδu − Lδy as ξ (t) ∈ Rn, one obtains the followng

observer error equation:

ė(t) = ALe(t)+ξ (t), (12)

where ξ (t) is l2-norm bounded disturbing vector, ‖ξ (t)‖ ≤
Cξ , where Cξ ≥ 0 depends on the magnitudes of δy(t), δu(t),
on function ϕ(·) and matrices A, B. Namely, assuming that
a nonlinearity ϕ(·) is Lipschitz continuous along all the
trajectories of the observed system (1), i.e. that there exists a
positive real number Lϕ > 0 such that ‖ϕ(y)−ϕ

(
y+δy

)
‖ ≤

Lϕ‖δy‖, one may majorize Cξ as Cξ ≥ (Lϕ + ‖L‖)‖δy‖+
‖B‖ · ‖δu‖.

Let us evaluate the magnitudes ‖δu‖, ‖δy‖ of the trans-
mission errors δu(t), δy(t). Since all the components ui(t)
(i = 1, . . . ,m), y j(t) ( j = 1, . . . , l) are transmitted over the
channel by means of scalar coding–decoding procedures (8)–
(11), let us denote the scalar signal to be transmitted as z(t)
and evaluate the upper bound ∆z = sup lim

t→∞
|δz(t)| of the data

transmission error δz(t) = z(t)− z̄(t). To this end let us recall
some statements from [13].

Let the growth rate of z(t) be uniformly bounded, i.e
there exists a positive real number Lz such as sup

t
|ż(t)| ≤ Lz.

Let the bit-per-second rate R, parameter ν ∈ Z, and range
parameter κ of quantizer (8) be given (design) parameters.
Our aim is to find ∆z as a function of R, κ and Lz.

The quantization interval δ of quantizer (8) is defined as

δ = 21−ν
κ. (13)

As follows from (8), the magnitude of the quanization error
δ∂ z = ∂ z− ∂̄ z (where ∂ z[k] = z[k]− c[k], ∂̄ z = qν ,κ(∂ z)) for
given ∂ z does not exceed δ/2 = 2−ν κ , if

|∂ z| ≤ κ +δ/2 = (1+2−ν)κ. (14)

Inequality (14) corresponds to the nonsaturated quantiza-
tion, e.g. to the “nominal case”. If (14) is violated, then the
error grows linearly on ∂ z. Therefore the magnitude of the
quantization error δ∂ z satisfies the inequality

|δ∂ z| ≤

{
2−ν κ, if |∂ z| ≤ (1+2−ν)κ,

|∂ z−κ| otherwise.
(15)

The bit-per-step rate R̆ for quantizer (8) is given by the
following expression:

R̆ = log2(2
ν +1). (16)

Since the bit-per-second rate R may be found as R = R̆/Ts,
where Ts denotes the sampling period, the following expres-
sion for Ts in the terms of the other coder parameters may
be found:

Ts =
log2(2

ν +1)
R

. (17)

Now let us turn to procedure (10) of updating the central
number. Firstly, assume, that at k-th step the measured value
z[k] = z(tk), tk = kTs, belongs to the interval [−κ−δ/2,κ +
δ/2] around the central number c[k]:

|z[k]− c[k]| ≤ κ +δ/2. (18)

This means fulfillment of inequality (14). Therefore in this
case the quantization error δ∂ z does not exceed 2−ν κ .
According to update algorithm (10), the next value of the
central number is found as

c[k+1] = c[k]+ ∂̄ z[k]. (19)

Apparently, c[k + 1] represents z[k] with a maximal error
2−ν κ , i.e. |c[k+1]−z[k]| ≤ 2−ν κ . To ensure the nonsaturated
mode of the coder, inequality (18) should be valid at the
next step k := k+1. This may be guaranteed if the quantizer
range κ is sufficiently large for given Lz ≥ sup

t
|ż|. Since

|z(tk+1)− z(tk)| ≤ LzTs, then κ should satisfy the following
inequality:

κ ≥ TsLz. (20)

Consider now the case when (18) is violated for some k =
k0. In this case the quantization error may be large depending
on c[k0], see (15). However, it may be easily shown that if the
quantizer range κ satisfies inequality (20) with some margin,
i.e. if κ is taken as

κ ≥ (1+θ)TsLz, (21)

where θ > 0 is an arbitrary small real number, then there
exists an integer k0 < k∗ < ∞ such that (18) is fulfilled for all
k, starting from k = k∗. If θ = 0 is taken in (21), then only
asymptotic convergence may be ensured. In what follows,
we assume that validity of (19) is assured by means of an
appropriate choise of κ[0] in zooming procedure (11).

It follows from (17), (20) that κ should satisfy the relation:

κ ≥ log2(2
ν +1)

Lz

R
. (22)



To analyze the coder-decoder accuracy let us evaluate
the upper bound ∆z = sup

t
‖δz(t)| of the transmission error

δz(t) = z(t)− z̄(t). Consider the sampling interval [tk, tk+1],
tk = kTs. It is shown above that |δz(tk)| does not exceed
δ/2 = 2−ν κ . Additionally, the error may increase from tk
to tk+1 due to a change of z(t) by a value not exceeding LzTs
[13]. Therefore the total transmission error for each interval
[tk, tk+1] meets the inequality |δz(tk)| ≤ 2−ν κ +LzTs and ∆z
may be found as

∆z = 2−ν
κ +LzTs. (23)

Taking into account expression (17) for the sampling period
Ts, we obtain the following relation between the transmission
error and other parameters:

∆z = 2−ν
κ + log2(2

ν +1)
Lz

R
, (24)

where κ should satisfy (22). Since we are aimed to minimize
the transmission error for a given rate, it is naturally to
choose a minimal admissible value for κ . This gives the
following expressions for κ and ∆z:

κ = log2(2
ν +1)

Lz

R
, (25)

∆z =
(
1+2−ν) log2(2

ν +1)
Lz

R
. (26)

It should be noticed that (25), (26) lead to the following
relations between ∆z and κ [13]:

∆z =
(
1+2−ν)κ, κ =

2ν

1+2ν
∆z. (27)

Defining a multiplier λ (ν) as λ (ν) =
(
1+2−ν) log2(2

ν +
1) let us rewrite (24) in the following form

∆z = λ (ν)
Lz

R
. (28)

Following [13] let us find ν minimizing ∆z for given Lz, R.
The derivative of λ (ν) on ν

d λ

d ν
=

2ν − ln(2ν +1)
2ν

ln(2) (29)

is strictly positive. Therefore, λ (ν) strictly grows on ν , and
∆z is minimized at ν = 0. This means optimality of the binary
quantizer qν ,κ(z) = ν sign(z) in the sence of the transmission
error for a given rate R (cf. [13], [21]).
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