Multipendulum mechatronic setup: Design and experiments

Alexander L. Fradkova,b, Boris Andrievskya,b,*, Kirill B. Boykovc

aInstitute for Problems of Mechanical Engineering of Russian Academy of Sciences, 61, V.O. Bolshoy Av., Saint Petersburg, 199178, Russia
bNational Research University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russia
cCorporation Granit-7, Saint Petersburg, Russia

Abstract
In the paper a novel multipendulum mechatronic setup is described. It allows implementing different algorithms of estimation, synchronization and control. The setup is intended for solving various research and educational tasks in hybrid modeling, analysis, identification and control of mechanical systems. It allows one to study the data communication processes in distributed mechatronic complexes.

Keywords: nonlinear dynamics, communication constraints, mechatronic setup

1. Introduction
Problems of oscillatory mechanical systems control and synchronization have significant theoretical interest and practical value. For the purposes of research and control engineering education it is important to build up appropriate laboratory equipment and software to work for investigation of this kind of system. There are many papers where this problem was considered and significant results have been achieved [13, 43, 25, 16, 17]. In the
last decades various mechatronic laboratory setups have been described in the literature: inverted pendulums [27, 12], a reaction-wheel pendulum [44], cart-pendulum [28, 29], Furuta pendulum [46, 47, 30], coupled two-pendulum systems [9, 24, 32, 25, 51], metronomes on a moving base [40, 39], pendulum-like juggling system [45], etc. A promising design described in [42] provides a possibility to model a variety of different oscillatory systems in single setup.

However there is still a demand for equipment useful for research as testbeds for testing new control and data exchange algorithms under real world constraints, as well for education, allowing students to enhance their skills in control systems design.

In the present paper the novel multipendulum mechatronic setup – the Multipendulum Mechatronic Setup of the Institute for Problems of Mechanical Engineering (MMS IPME) is described.

The MMS IPME includes a modular multi-section mechanical oscillating system, electrical equipment (with the computer interface facilities) and the personal computer for experimental data processing, representation of the results the real-time control. The mechanical system consists of the pendulums, connected by means of the springs. The key feature of the MMS IPME is the possibility to change the number of DOF in a broad range. Starting from a single pendulum one may increase the number of the pendulums in the chain up to 50. It is also possible to shape pendulums into several chains. Connecting then the chains by rigid rods between the centers of the springs it is possible to model 2D-lattices.

The MMS IPME allows to implement different algorithms of estimation, synchronization and control. Particularly, it may be used as a multi-degree of freedom mechanical model of controlled physical systems [2] and power system networks [41, 31]. This setup may find an extensive educational application as an example of a complex dynamical system equipped by local and global controllers and computer data exchange facilities.

In Section 2, a brief description of the construction is presented. For making laboratory experiments and on-line control, electrical design, data exchange interface and software tools were created. Their description is given in Section 3. Possible ways for improving the data exchange in multiagent mechatronic complexes are outlined in Section 4, where both hardware-software and algorithmic solutions are presented. Some results of experiments with the MMS IPME are described in Section 5.
2. Design of mechanical part

The schematic of a pendulum section is presented in Fig. 1 (see also pictures in Figs. 2, 3). The foundation of the section is a hollow rectangular body. Inside the body an electrical magnet and electronic controller board are mounted. On the foundation the support containing the platform for placing the sensors in its middle part is mounted. The pendulum itself has a permanent magnet tip in the bottom part. The working ends of the permanent magnet and the electrical magnet are posed exactly opposite each other and separated with a non-magnetic plate in a window of the body. The idea behind control of the pendulum is changing the poles of the electrical magnet by means of switching the direction of the current in the windings of the electrical magnet. Additionally, two computer-controlled electric motors may be connected with the first and the last pendulums of the chain via the torsion springs for changing the boundary conditions on the chain.\footnote{At present, only the “left-side” motor is in service. The boundary conditions at the “right” end of the chain are free.}

In order to allow changes of the eigenfrequency of the pendulum oscillations the pendulum is endowed with additional plummets and counterparts changing its effective length (the distance between the suspension point and the center of mass. On the rotation axis of the pendulum the optical encoder disk for measuring the angle (phase) of the pendulum is mounted. It has 90 slits. The peripheral part of the disk is posed into the slit of the sensor support. The sensor consists of a radiator (emitting diode) and a receiver (photodiode). The obtained sequences of signals allow to measure the pendulum angle, evaluate amplitude of oscillations and register time instants of crossing the lower equilibrium point.

Axes of the neighboring sections are connected with the torsion springs, arranging force interaction and allowing energy exchange between the pendulums. The set of interconnected pendulum sections represents a complex oscillatory dynamical system, characterized by nonlinearity and high number degrees of freedom. Such a mechanical system can serve as a basis for numerous educational and research experiments related to dynamics, control and synchronization in the networks of multidimensional nonlinear systems. In principle, any number of sections can be connected. At the moment mechanical parts of 50 sections are manufactured.
Figure 1: Schematics of the pendulum section.
Figure 2: Photo of the chain of twelve pendulum sections and the motor.

Figure 3: Photo of ten pendulum sections and the universal logic board.
3. Hardware and software of the MMS IPME

The control system of the complex consists of: controllers for pendulum modules and motors; the supervisory computer and the interface unit; the electric power devices (power amplifiers, power supply units); the communication channel.

3.1. Local controllers of modules

Controllers of the pendulum modules and the motors are mounted at the universal logic board (ULB) developed for the MMS IPME for unification of modules schematic and achievement the highest possible controller speed. The kernel of the ULB is the erasable programmable logic device EPM240T100C5 manufactured by Altera Corporation. Each controller is a specialized firmware machine with a built-in microprogram for control of pendulums or DC motors, and for measuring the shaft rotation angles. The ULB also includes three input signal shapers (comparators), mounted on the mechanical parts of the modules, the secondary supply sources and the timer. The firmware is designed with the help of the design system Quartus II [1].

The local controllers are used for offloading the upper level supervisory computer, formation of the pulse-width modulated control signal, the shaft angle measurement and implementation of the low-level data exchange functions.

3.2. Communications protocol

The communications protocol secures transferring the instructions and command qualifiers to the interface board of the pendulum sections and pickup the data from the interface board sensors. The communications protocol uses three kinds of passing: address passing, instruction (mode) passing and data passing. The communications protocol is based on explicit addressing with use the read-write registers of the Enhanced Parallel Port. Logical separation between the data and instruction flows is made with use of two highest stages of the address register. The rest five stages of this register contain the module address for a read-write cycle.

Described data exchange protocol ensures exchange rate up to 9615 Hz for simultaneous operation over the bus with the total number (52) of modules, and up to 500 kHz for operation with a single module.
3.3. The supervisory computer and the interface unit

The personal computer with Intel Celeron processor with operating system GNU/Linux is chosen for upper-level control of the local controllers, processing and visualization of experimental data. Operating system GNU/Linux allows to optimize the CPU time allocation in favor of the priority tasks of query and control.

For supporting the data exchange operations, the packages comedi 0.7.76 and comedilib 0.8.1 are installed additionally to OS ALT Linux Desktop 4.0 Personal. These packages represent a specialized set of software for abstraction from the hardware peculiarities by means of a virtual file system. Package comedi 0.7.76 is a set of drivers supporting the universal analog-to-digital and digital input/output devices of the leading manufacturers such as Advantech, National Instruments, ComputerBoards.

The experimental results may be postprocessed using the packages MATLAB (running under GNU/Linux) or its the open-source analog SCILAB [11]. Alternatively, one can process experimental data using package Octave [15] or package gnuplot for visualization.

4. Directions for optimization of communication channel for multiagent mechatronic complexes

The first experiments, which have been performed with the MMS IPME, consisting from five pendulum modules and one motor, showed correctness of the technical solutions used for control of a multiagent distributed mechatronic system, but some disadvantages have been also revealed.

Identified problems are caused by a single-computer implementation of the hardware-software system, where the single PC is used both for equipment control and for the real-time visualization of the experiments. Visualization requires loading the graphics adapter (X Server in the case of the OS GNU/Linux). This imposes considerable demands to the system resources. Additionally, Window Manager (a graphical shell which provides convenience of the interactive graphical user interface) should be also loaded. An interception of the system’s priorities from the side of the graphical components destabilizes the driver package comedi 0.7.76. This reduces the absolute sampling rate of the bus. In some cases (if a high-precision control is necessary), the experiment may not be even implemented. Consequently, in present time, the data input requests and acquisition of the experimental data are
performed from the console without launching the graphical user interface support.

4.1. Hardware-software solutions

A partial way for improving the system performance would be using the real-time support modules of higher execution priority such as rtai or rtLinux [14]. This decision will help stabilize the data acquisition process. However, in the case of programmable input/output, the problem of increasing the sampling rate to the possible possible maximum value remains a challenging one.

A promising solution for modernization of the mechatronic setup would be changeover from the existing single-computer architecture to the multi-computer complex. In this case, the different nodes of the complex may be linked over the network Ethernet based on a synchronous access protocol, without any association of the complex’ network with the existing computer networks to avoid interfering on the order of messaging for protocols ARP or ICMP. Hardware solution of the controller for data exchange with the stand modules (assuming allocation one controller for 3–5 modules) is reasonable to realize on the base of processor modules x86 for ensuring a uniform cycle of support and developing the software of the complex.

Operating systems microLinux (ucLinux), Embedded Linux, or OpenWrt with built-in support for the real-time mode are planned to use for exchange controllers. An advantage of modules CPC150 and CPC109 is a compact solution (single-board computer with integrated digital I/O). There is an additional opportunity in connection the standard monitor and keyboard to the modules CPC150 and CPC109 to perform stand-alone operation without the upper level computer. Transition from a centralized architecture to the distributed one significantly increases the computational efficiency of the complex, allowing to flexibly resource allocation between computing modules.

4.2. Algorithmic solutions. State estimation under the data rate limitations

The abovementioned directions for increasing the performance capability and the data exchange rate of the complex may be referred to as hardware-software solutions. During the last decade the considerable attention was riveted to the algorithmic solutions for improving the system performance under the data-rate limitations, see the surveys [38, 8, 7], the monograph [34] and the references therein. Particularly, it has been shown that the control/observation of linear systems is possible if and only if the capacity
of the information channel exceeds the entropy production of the system at
the equilibrium (the Data Rate Theorem) [35, 36, 37]. The coding-decoding
schemes were proposed giving an opportunity to get closer to the minimum
possible data rate. Two ideas are basically applied for this purpose: using a
smart sensors, which incorporate the model of the observed plant dynamics,
and also applying the zooming strategy, where the range of the encoder is
updated during the control or observation process [10, 33, 48].

First results on synchronization of nonlinear systems under information
constraints were presented in [20, 21], where so called observer-based syn-
chronization scheme has been employed. It is shown that for the first-order
coder-decoder scheme the upper bound of limit synchronization error is pro-
portional to the maximum rate of the coupling signal and inversely pro-
portional to the information transmission rate (channel capacity). The con-
trolled synchronization problem was analyzed in [3]. It was shown that in the
case of an ideal channel and non-corrupted measurements, the output feed-
back controlled synchronization strategy with the full order encoder/decoder
pair, ensures exponentially vanishing synchronization error if the channel ca-
pacity exceeds a certain threshold. This concurs with the known results,
obtained for linear systems in [49, 50, 10].

Further on, the approach of [20, 21] has been applied to the observation of
nonlinear systems over the limited-band communication channel in [22, 19].
Some experimental results on application of this approach to feedback control
over the limited capacity communication channel are presented in [23]. Let
us briefly recall the mentioned observation schemes.

Consider the following nonlinear plant model:
\[
\dot{x}(t) = Ax(t) + B\psi(y), \quad y(t) = Cx(t),
\]
where \(x(t) \in \mathbb{R}^n\) is the plant state variables vector; \(y(t)\) is a scalar output
variable; \(A\) is an \((n \times n)\)-matrix; \(B\) is an \((n \times 1)\)-matrix; \(C\) is an \((1 \times n)\)-matrix,
\(\psi(y)\) is a continuous nonlinearity.

The problem is to obtain the state estimation of (1) over the digital
communication channel with the limited bandwidth. The measured data
are sampled with a certain sampling rate \(T_s\) and are represented by finite-
length codewords to be transmitted over the channel. The following uniform
memoryless (static) quantizer is employed:
\[
q_{\nu,M}(y) = \begin{cases}
\delta \cdot \langle \delta^{-1}y \rangle, & \text{if } |y| \leq M, \\
M \text{sign}(y), & \text{otherwise},
\end{cases}
\]

\(9\)
where \(M > 0 \) is a real number (the quantizer range), \(\nu \in \mathbb{Z} \) is the positive integer, \(\delta = 2^{1-\nu}M \); \(\langle \cdot \rangle \) denotes the round-up to the nearest integer, \(\text{sign}(\cdot) \) is the signum function. The quantization interval \([-M, M]\) is equally split into \(2^\nu \) parts. Therefore, the cardinality of the mapping \(q_{\nu,M} \) image is equal to \(2^\nu + 1 \) and each codeword contains \(R = \log_2(2^\nu + 1) = \log_2(2M/\delta + 1) \) bits.

The one-step memory coder uses the central number \(c[k] \), \(k = 0, 1, \ldots \) with the initial condition \(c[0] = 0 \) \([49, 50]\). At step \(k \), the coder compares the current measured output \(y[k] \) with the number \(c[k] \), forming the deviation signal \(\partial y[k] = y[k] - c[k] \). Then \(\partial y[k] \) is discretized with a given \(\nu \) and \(M = M[k] \) according to (2). The quantized output signal

\[
\bar{\partial y}[k] = q_{\nu,M}[k](\partial y[k])
\]

is represented as an \(R \)-bit codeword and transmitted over the communication channel to the decoder. At the next step, the central number \(c[k+1] \) and the quantizer range \(M[k] \) are renewed by the following update algorithms \([22]\):

\[
c[k+1] = c[k] + \bar{\partial y}[k], \quad c[0] = 0, \quad k = 0, 1, \ldots,
\]

\[
M[k] = (M_0 - M_\infty)\rho^k + M_\infty, \quad k = 0, 1, \ldots,
\]

where \(0 < \rho \leq 1 \) is the decay parameter, \(M_\infty \) stands for the limit value of \(M[k] \). The initial value \(M_0 \) should be large enough to capture all the region of possible values of \(y[0] \).

The coder of the full order embeds the observer. In \([19, 23]\), the observation error (innovation signal) is transmitted over the channel rather than a measured plant output. For describing a such kind of the coders, let us introduce the error between the the plant and observer outputs as \(\varepsilon(t) = y(t) - \hat{y}(t) = Ce(t) \). This signal is subjected to the coding procedure (2) – (5) instead of \(y(t) \), forming the quantized signal \(\bar{\varepsilon}[k] \). The following state estimation algorithm is implemented at the coder:

\[
\dot{\hat{x}}(t) = A\hat{x}(t) + B\psi(\hat{y}) + L\varepsilon(t), \quad \hat{y}(t) = C\hat{x}(t),
\]

\[
\varepsilon(t) = \bar{\varepsilon}[k] \quad \text{as} \quad t \in [t_k, t_{k+1}), \quad t_k = kT_s, \quad k = 0, 1, 2, \ldots
\]

where \(\hat{x} \in \mathbb{R}^n \) stands for the estimate of the plant state vector \(x(t) \), \(n \times 1 \)-matrix \(L \) is the observer gain (the design parameter).
5. Experiments with the MMS IPME

The system is currently being tested and tuned. Five active and up to 46 passive sections are ready for connection. Already at this stage the system can be used for demonstration and for research. In one of the series of experiments, either inphase and antiphase synchronization of the chain of pendulums, excited by the external harmonic torque, is demonstrated. Another series of experiments was carried out for evaluation of the data transmission schemes of Section 4.2. Some results are presented below.

5.1. Modeling the chain of pendulums

Following [4], the rotation angle of the drive shaft, connected with the first pendulum of the chain, is considered as the system input. The last (Nth) pendulum in the chain is mechanically connected only with the previous one, no boundary conditions for Nth pendulum are specified. This leads to the following model of the chain dynamics:

\[
\begin{align*}
\ddot{\varphi}_1 + \rho \dot{\varphi}_1 + \omega_0^2 \sin \varphi_1 - k(\varphi_2 - 2\varphi_1) &= ku(t), \\
\ddot{\varphi}_i + \rho \dot{\varphi}_i + \omega_0^2 \sin \varphi_i - k(\varphi_{i+1} - 2\varphi_i + \varphi_{i-1}) &= 0, \\
\ddot{\varphi}_N + \rho \dot{\varphi}_N + \omega_0^2 \sin \varphi_N - k(\varphi_N - \varphi_{N-1}) &= 0,
\end{align*}
\]

where \(\varphi_i = \varphi_i(t)\) \((i = 1, 2, \ldots, N)\) are the pendulum deflection angles; \(u = u(t)\) is the controlling action (the rotation angle of the drive shaft). The values \(\rho, \omega_0, k\) are the system parameters: \(\rho\) is the viscous friction parameter; \(\omega_0\) is the natural frequency of small oscillations of the isolated pendulum; \(k\) is the coupling strength parameter, which depends on the stiffness of the connecting spring. The model (7) parameters have been preliminary estimated based on the mass-geometry properties of the mechanical system, and then were specified by means of the trial-and-error procedure, applied to the experimental data sets. The following parameter estimates were finally obtained: \(\omega_0 = 5.5 \text{ s}^{-1}, \rho = 0.95 \text{ s}^{-1}, k = 5.8 \text{ s}^{-2}\).

5.2. Synchronization in the harmonically excited chain of pendulums

The series of experiments has been fulfilled for validation of the analytical results given in [6, 4] related to synchronization of the pendulums chain, excited by means of the external harmonic torque.
The chain of four pendulums was taken. Following [6, 4], model (7) was linearized in the neighborhood of the equilibrium. The frequency magnitude responses $A_i(\omega_m)$ ($i = 1, \ldots, 4$) from the drive shaft rotation angle $u(t)$ to angular deflections $\varphi_i(t)$ are plotted in Fig. (4). The phase shifts $\Delta \psi_{i,i+1}(\omega_m)$ between the adjacent pendulums are depicted in Fig. (5). It is seen from the plots, that there exist certain frequencies ω_1, ω_2 such that the pendulums motion demonstrates inphase synchronization if the excitation frequency ω_m is less than ω_1 and approximately antiphase synchronization if $\omega_m > \omega_2$. It is also seen that the pendulum chain may play a role of a mechanical band pass filter with the bandwidth $[\omega_1, \omega_2]$.

Figure 4: Frequency magnitude responses for pendulum rotation angles in the chain (analytical evaluation). $A_1(\omega_m)$ – solid line, $A_2(\omega_m)$ – dashed line, $A_3(\omega_m)$ – dotted line, $A_4(\omega_m)$ – dash-dot line.

The corresponding experimental results are demonstrated in Figs. 6–8, where the time histories of the pendulums’ rotation angles in the steady-state mode are plotted. An inphase synchronization in the chain of pendulums for the case $\omega_m = 4.0$ rad/s is presented in Fig. 6. An antiphase synchronization for $\omega_m = 8.9$ rad/s is seen in Fig. 7. The running wave for the case $\omega_m = 6$ rad/s is demonstrated in Fig. 8. The similar results have been obtained by experiments with the chain of twelve pendulum sections.

5.3. Testing the data exchange and the state estimation algorithm

The state estimation scheme of Section 4.2 (Eqs. (2)–(6)) has been modified for taking into account presence of the external excitation signal $u(t)$, applied to the chain. In our experiments, the signal $u(t)$ has been measured
Figure 5: Phase shifts between the pendulum rotation angles in the chain (analytical evaluation). $\Delta \psi_{m,1}(\omega_m)$ – solid line, $\Delta \psi_{1,2}(\omega_m)$ – dashed line, $\Delta \psi_{2,3}(\omega_m)$ – dotted line, $\Delta \psi_{3,4}(\omega_m)$ – dash-dot line.

Figure 6: Experimental result. Inphase synchronization in the chain of pendulums. $\varphi_m(t)$ – solid line, $\varphi_1(t)$ – dashed line, $\varphi_2(t)$ – dotted line; $\omega_m = 4.0$ rad/s.
Figure 7: Experimental result. Antiphase synchronization in the chain of pendulums. $\varphi_m(t)$ – solid line, $\varphi_1(t)$ – dashed line, $\varphi_2(t)$ – dotted line; $\omega_m = 8.9$ rad/s.

Figure 8: Experimental result. Running wave in the chain of four pendulums. $\varphi_m(t)$ – solid line, $\varphi_1(t)$ – dashed line, $\varphi_2(t)$ – dotted line, $\varphi_3(t)$ – dash-dot line, $\varphi_4(t)$ – thin line; $\omega_m = 6.0$ rad/s (ω_m lies inside the pass band).
by the optical encoder with the accuracy of 2 degrees and 100 Hz sampling frequency. The measured data were transmitted over the communication link without any restrictions on the data rate. Therefore, for the considered system, the autonomous plant model (1) was replaced by the following exogenous model:

$$\dot{x}(t) = Ax(t) + B\psi(y) + Du(t), \ y(t) = Cx(t),$$ \hspace{1cm} (8)

where $u(t) \in \mathbb{R}^m$ stands for the external input, D is an $(n \times m)$ matrix, the other notations are the same as in (1). Respectively, equation of the modified observer (6) reads as

$$\dot{\hat{x}}(t) = A\hat{x}(t) + B\psi(\hat{y}) + D\tilde{u}(t) + L\bar{\varepsilon}(t), \ \hat{y}(t) = C\hat{x}(t),$$

$$\bar{\varepsilon}(t) = \bar{\varepsilon}[k] \quad \text{as} \quad t \in [t_k, t_{k+1}), \quad t_k = kT_s, \quad k = 0, 1, 2, \ldots$$ \hspace{1cm} (9)

where $\tilde{u}(t)$ denotes the measured value of the exogenous input signal $u(t)$. The errors of the plant input $u(t)$ and output $y(t)$ measurements introduce imperfections into the data transmission procedure and impose limitation on the estimation accuracy, which is achievable in the real-world systems.

The state estimation procedure (2)–(5), (9) has been tested as applied to the chain of four pendulum sections, excited by the motor, which was connected with the pendulum #1 via the torsion spring. Harmonic and irregular input voltages have been applied to the motor in the different experiments. The first-order data transmission scheme (2)–(5) has been used for transferring the rotation angles of the motor and the pendulum #4 to the central computer. For obtaining the estimates of the angles and angular velocities for the pendulums #1–3, the full-order coding algorithm (2),(4),(5),(6) was applied. The coder/decoder parameters have been taken as follows: $T_s \in [0.01, 0.05]$ s, $\nu \in \{4, 6, 8\}$, $M_{0,m} = 15$, $M_{0,\varepsilon} = 2$, $M_{\infty,\varepsilon} = 5e^{-4}$, $\rho = 0.99$, $L = [27.3, 362]^T$. The estimation accuracy has been calculated as the mean-square relative error $Q(R, \nu) = \sqrt{\frac{\int_0^T (\varphi_1 - \hat{\varphi}_1)^2 dt}{\int_0^T \varphi_1^2 dt}}$, $T = 30$ s. The experimental results are depicted in Figs. 9–11. It seen, that the data transmission rate may be taken about 200 bit/s, ensuring the appropriate accuracy of the state transmission in approximately 3 % of the relative mean-square error. It is also demonstrated that there exists a lower bound of the data transmission rate, which is required for remote state estimation, which confirms the results of [19, 23].
Figure 9: Relative estimation error vs transmission rate R for different ν. Solid line – $\nu = 4$, dashed line – $\nu = 6$, dash-dot line – $\nu = 4$.
Figure 10: Measured process $\varphi_1(t)$ (dashed line), the estimate $\hat{\varphi}_1(t)$, obtained by the decoder (solid line), the estimation error $\varepsilon_1(t) = \varphi_1(t) - \hat{\varphi}_1(t)$ (dotted line). $T_s = 0.020 \, \text{s}$, $\nu = 4$, $R = 200 \, \text{bit/s}$. $a)$ – case of the harmonic excitation, $b)$ – case of the irregular excitation.
Figure 11: Estimate of the angular rate $\dot{\phi}_1(t)$, obtained by the decoder. $T_s = 0.020$ s, $\nu = 4$, $R = 200$ bit/s. \(a\) – case of the harmonic excitation, \(b\) – case of the irregular excitation.
Conclusions

A novel multipendulum mechatronic setup is designed, allowing to implement different algorithms of estimation, synchronization and control. The setup is aimed at solving various research and educational tasks in the areas of hybrid systems modeling, analysis, identification and control of mechanical systems as well the data communication in distributed mechatronic complexes.

The system is currently being tested and tuned. Four active and up to 46 passive sections are ready for connection. Already at this stage the system can be used for demonstration and for research. Connecting twelve pendulums and the electric motor, exciting the system, has shown that the type of the synchronization mode (inphase or antiphase) depends on the excitation frequency, that agree with the conclusions of [18, 4]. Possible ways for improving the data exchange in multiagent mechatronic complexes are outlined. The data transmission scheme of [19, 23] has been modified for non-autonomous systems and experimentally tested. It is seen, that the data transmision rate may be taken about 200 bit/s, ensuring the appropriate accuracy of the state transmission over the digital communication channel. It is also demonstrated that there exists a lower bound of the data transmission rate, which is required for remote state estimation, which confirms the results of [19, 23].

The future work intentions are related to use the setup for studying the different kinds of synchronization and nonlinear waves propagation in multi degree of freedom dynamical systems as well for implementation of different global and local control schemes taking into account bandwith limitations, signal drops and delays in the communication channel.

Acknowledgments

Partially supported by the Dutch-Russian program on interdisciplinary mathematics ‘Dynamics and Control of Hybrid Mechanical Systems’ (project NWO–RFBR 047.011.2004.004), the Russian Foundation for Basic Research (project No 11-08-01218), the Russian Federal Program “Research and Teaching Cadres”, contracts NN 16.740.11.0042, 14.740.11.0942, and by the Program of basic research of OEMPPU RAS No 2 “Control and safety in energy and technical systems”.

The mechanical part of the setup is designed by B.P. Lavrov [5, 26].
The authors are grateful to Prof. Henk Nijmeijer and Prof. Alexander Pogromsky (the Technical University of Eindhoven) for their seminal cooperation in the Dutch–Russian NWO–RFBR research program.

References

