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Opinion Dynamics in Social Networks With Hostile
Camps: Consensus vs. Polarization
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Abstract—Most of the distributed protocols for multi-agent
consensus assume that the agents are mutually cooperative and
“trustful,” and so the couplings among the agents bring the values
of their states closer. Opinion dynamics in social groups, how-
ever, require beyond these conventional models due to ubiquitous
competition and distrust between some pairs of agents, which
are usually characterized by repulsive couplings and may lead
to clustering of the opinions. A simple yet insightful model of
opinion dynamics with both attractive and repulsive couplings was
proposed recently by C. Altafini, who examined first-order consen-
sus algorithms over static signed graphs. This protocol establishes
modulus consensus, where the opinions become the same in mod-
ulus but may differ in signs. In this paper, we extend the modulus
consensus model to the case where the network topology is an
arbitrary time-varying signed graph and prove reaching modulus
consensus under mild sufficient conditions of uniform connectivity
of the graph. For cut-balanced graphs, not only sufficient, but also
necessary conditions for modulus consensus are given.

Index Terms—Agents, clustering, consensus, opinion dynamics.

I. INTRODUCTION

FOR multi-agent networks, the striking phenomenon of
global consensus caused by only local interactions has

attracted long-standing interest from the research community.
The interest is motivated by numerous natural phenomena and
engineering designs related to reaching synchrony or agreement
among the agents. Examples include, but not limited to, intel-
ligence of large biological populations and multi-robot teams.
We refer the reader to [1]–[3] for excellent surveys of recent
research on consensus protocols and their applications, as well
as historical milestones.
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Starting from the DeGroot algorithm of “iterative pooling”
[4] for distributed decision making, many consensus algorithms
were based on the principle of contraction: every agent’s state
constantly evolves to the relative interior of the convex hull
spanned by its own and neighbors’ states. Hence, the convex hull
spanned by the states of the agents, driven by such a protocol,
is shrinking over time. Based on the Lyapunov-like properties
of this convex hull [5], [6] or relevant results on convergence
of infinite products of stochastic matrices [1], [2], [7], stability
properties of contracting iterations were examined intensively
with special attention on the effect of time-varying interaction
topologies. Necessary and sufficient conditions for consensus
under bidirectional [5], [8], [9] and cut-balanced graphs [10]
boil down to repeated joint connectivity of the network. For
general directed graphs the sufficient condition of uniform
quasi-strong connectivity (UQSC) [6], is considered to be “the
weakest assumption on the graph connectivity such that con-
sensus is guaranteed for arbitrary initial conditions” [11]. This
common belief has recently been confirmed by results in [12]
and [13] stating that the UQSC is necessary and sufficient for
robust consensus and consensus with exponential convergence.
Many high-order consensus algorithms either extend their first-
order counterparts [1], [3] or are squarely based on them [14].

Unlike teams of agents that achieve a common goal due
to cooperation, networks where agents can both cooperate
and compete (sometimes referred to as coopetitive networks
[15], [16]) still demand more thorough mathematically rigor-
ous analysis. In social networks, competition, antagonism and
distrust between social actors and their groups are ubiquitous
[17], [18], which are usually modeled by repulsive couplings
or negative ties [19] among the agents. A specific example of
such couplings observed in dyadic interactions, is reactance
[20] which leads to boomerang effects, first described in [21]:
in the process of persuasion, opinions (even close to each
other initially) can become opposite. Analogous phenomenon,
referred to as the group polarization [22], has long been studied
in social psychology: the community divides into two groups,
each reaching consensus; the consensus opinions are not only
opposite, but often further away from each other than the two
initial average opinions of the corresponding groups. Analysis
of real-world social networks (e.g., users of social web-sites
[17]) shows the strong correlation between polarization and
structural balance [17], [18] of positive and negative ties. The
latter property implies that community splits into two hostile
camps (e.g., votaries of two political parties), where the rela-
tions inside each faction are cooperative.

It is known that agents’ repulsion can lead to the cluster-
ing behavior in a complex network [23]. The possibility of
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clustering in social groups due to negative ties was demon-
strated in [19] (see also references therein); these effects are still
waiting for mathematically rigorous analysis. Most of the exist-
ing works on opinion dynamics focus on the persistent disagree-
ment and clustering of opinions caused by bounded confidence
[24], [25] or, more generally, biased assimilation [26]: agents
readily adopt opinions of like-minded neighbors, accepting the
“deviating” opinions with discretion. In [27] and [28] Altafini
proposed a simple yet instructive mathematical model of opin-
ion polarization over structurally balanced graphs, extending
conventional first-order consensus algorithms to the case with
antagonistic interactions. These protocols were examined under
the assumption that the interaction graph is static and strongly
connected and shown to establish modulus consensus [29],
where the opinions agree in modulus but may differ in signs.
If the graph is structurally balanced, the modulus of the final
opinion is generally non-zero and opinions either reach con-
sensus or polarize (“bipartite consensus” [28] is established);
otherwise, opinions converge to zero.

Mathematical examination of polarization behavior due to
antagonism is among the first important steps towards under-
standing the dynamics of networks consisting of both cooper-
ative and competitive agents. Such networks are not confined
to social systems; repulsive interactions play an important role
in, e.g., motion control of swarms and other multi-agent forma-
tions, where agents may avoid collision [30], [31] and distribute
evenly on circular or other closed curves [32]–[34]. So a num-
ber of papers have been published recently studying this class of
networks [15], [35]–[39].

The aforementioned papers, however, mainly focus on the
case where the interaction topology is static. In the present
paper, we consider Altafini’s model on opinion dynamics over
general directed time-varying graphs. Removing the restrictions
of static topologies not only allows one to analyze dynamics of
real social networks, where the agents may change their rela-
tionships from friendship to hostility and vice versa, but also en-
ables one to extend the result to non-linear protocols. In fact we
will examine nonlinear algorithms in the common framework as
linear ones, getting rid of the restrictions such as monotonicity
[27], [28], [40].

Our main result states that modulus consensus is established
if the topology is uniformly strongly connected. Unlike coop-
erative networks, the uniform strong connectivity cannot be
relaxed to the uniform quasi-strong connectivity, which is a
commonly adopted condition for consensus over directed time-
varying graph [11], [41]. At the same time, the condition of
uniform strong connectivity is in general not necessary, and fill-
ing the gap between necessary and sufficient conditions remains
a tough problem even in the cooperative case. However, we fill
this gap in the special case of cut-balanced graphs, extending
necessary and sufficient consensus criterion from [10] to mod-
ulus consensus over signed graphs. It should be noticed that
results from [10] are not directly applicable to signed graphs;
in the special case of bidirectional or “reciprocal interactions”
they were extended to the signed case by the lifting technique
[37]. We will make further remarks on this in the corresponding
sections. The results were partly reported in our conference
papers [42], [43].

The paper is organized as follows. Section II introduces some
preliminary concepts and notations. Section III gives the setup
of the problem in question. Section IV presents the main results.
Section VI offers the proof of the main results.

II. PRELIMINARIES

Throughout the paper m : n, where m,n are integers and
m ≤ n, stands for the sequence {m,m+ 1, . . . , n}. The sign of
a number x ∈ R is denoted by sgn x ∈ {−1, 0, 1}. The abbre-
viation “a.a.” stands for “almost all” (except for the set of zero

Lebesgue measure). Given a matrixL=(ljk), let abs L
Δ
=(|ljk|).

We also introduce the matrix norm|L|∞ Δ
= maxj

∑
k |Ljk|. As

usual, for a column vector x ∈ RN , one has |x|∞ = maxj |xj |
and it is easily shown that |L|∞ = sup(|Lx|∞/|x|∞), where
the supremum is over all column vectors x �= 0 of appropriate

dimensions. Let 1̄N
Δ
=(1, 1, . . . , 1)T ∈ RN . Given x ∈ R, let

x+ = max(x, 0) and x− = (−x)+, hence x = x+ − x− and
|x| = x+ + x−.

A. Signed Graphs and Their Properties

A (weighted directed) signed graph is a tripleG = (V,E,A),
where V = {v1, . . . , vN} stands for the set of nodes, E ⊂
V × V is a set of arcs and A = (ajk) ∈ RN×N is a signed
adjacency matrix, i.e., ajk �= 0 if and only if (vk, vj) ∈ E.
Throughout the paper, we confine ourselves to graphs that
have no self-loops (ajj = 0 ∀ j) and are digon sign-symmetric
[28], i.e., any pair of opposite arcs (if exists) is identically
signed: ajkakj ≥ 0 ∀ j, k. Identifying the set of nodes V with
1 : N , there is a one-to-one correspondence between signed
graphs and their adjacency matrices A ∈ RN×N 	→ G[A] =
(1 : N,E[A], A), where E[A] = {(j, k) : akj �= 0}.

Given ε > 0, let Aε = (aεjk) stand for the “truncated” ad-
jacency matrix: aεij = aij when |aij | ≥ ε and aεij = 0 other-

wise. The corresponding graph Gε Δ
=G[Aε] is obtained from

G = G[A] by removing arcs of absolute weight less than ε and
we call it ε-skeleton of the graph G.

A path connecting nodes v and v′ is a sequence of nodes
vi0 :=v, vi1 , . . . , vin−1

, vin :=v′ (n≥1) such that (vik−1
, vik) ∈

E for k ∈ 1 : n. A path where vi0 = vin is referred to as a cycle.
The cycle is positive if ai0i1ai1i2 . . . ain−1in > 0 and negative
otherwise. The digon-symmetric strongly connected graph is
structurally balanced if and only if all its oriented cycles are
positive [17], [28]. A node is called root if it can be connected
with a route to any other node of the graph. A graph is strongly
connected (SC) if a path between any two different nodes
exists. The graph is quasi-strongly connected (QSC) if it has
at least one root. Any SC graph is also QSC, each node being
a root. A graph whose ε-skeleton is SC (respectively, QSC)
is called strongly ε-connected (respectively, quasi-strongly
ε-connected).

Given a graph G = (V,E,A), its subgraph is a graph
G′ = (V ′, E′, A′), where V ′ ⊆ V , E′ ⊆ (V ′ × V ′) ∩E and
A′ = (aij)i,j∈V ′ stands for the corresponding submatrix of A.
We call a subgraph in-isolated if no arc comes from V \ V ′ to
V ′, i.e., aji = 0 ∀ i ∈ V ′, j �∈ V ′.
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We call two disjoint non-empty sets V1, V2 ⊆ V hostile
camps in the graph G if ajk ≥ 0 when j, k ∈ V1 or j, k ∈ V2

and ajk ≤ 0 whenever j ∈ V1, k ∈ V2 or j ∈ V2, k ∈ V1. The
graph is structurally balanced (SB) [17], [28] if the set of its
nodes can be divided into two hostile camps V = V1 ∪ V2. The
digon-symmetric SC graph is structurally balanced if and only
if any cycle in it is positive [17], [28].

Following [28], we define the Laplacian matrix L = L[A] of
the signed graph G[A] as follows:

L[A] � (Ljk)
N
j,k=1, Ljk :=

{
−ajk, j �= k∑N

m=1 |ajm|, j = k.
(1)

Equation (1) is a straightforward extension of the conven-
tional definition of the Laplacian matrix of a weighted graph
[44] to the case of signed weights. As implied by the Gershgorin
disk theorem [28], L[A] has no eigenvalues in the closed left
half-plane C̄−={λ ∈ C : Reλ ≤ 0} except for possibly λ = 0.
Unlike the unsigned case, in general L[A] may have no zero
eigenvalue and hence −L[A] may be a Hurwitz matrix. For
a SC graph G = G[A] this is the case if and only if G is not
structurally balanced [28, Lemma 2].

B. Some Important Types of Time-Varying Signed Graphs

Throughout the paper, the term time-varying (signed) graph
means the graph G[A(t)], where a time-dependent matrix
A(t) ∈ RN×N is Lebesgue measurable and locally bounded.
Given such a graph G(t) = G[A(t)], we say a node j is essen-
tially connected to a node k if

∫∞
t0

|ajk(s)|ds = ∞ for some
t0 ≥ 0 (the latter inequality then holds for any t0 ≥ 0 since
ajk is locally bounded). Let E = E [A(·)] stand for the set of
all such pairs (j, k). Following [9], we call the graph G[A(·)] =
(1 : N, E) the graph of essential interactions and say that the
graph G(·) is essentially strongly connected (ESC) if G[A(·)] is
strongly connected. Likewise, G(·) is essentially quasi-strongly
connected (EQSC) if G[A(·)] is QSC.

The graph G[A(·)] is said to be uniformly strongly con-
nected (USC) if there exist constants T > 0 and ε > 0 such
that the graph G[

∫ t+T

t abs A(s)ds] is strongly ε-connected
for any t ≥ 0. By replacing the word “strongly” in the latter
definition with “quasi-strongly,” one defines uniformly quasi-
strongly connected (UQSC) time-varying graph. It may be
easily shown that the USC (respectively UQSC) graph is always
ESC (respectively, EQSC), while the inverse is not valid.

The graph G[A(·)] is cut-balanced [10] if a constant K ≥ 1
exists such that for any partition of the nodes V ′ ∪ V ′′ = 1 : N ,
V ′ ∩ V ′′ = ∅, the following inequalities hold:

K−1
∑
j∈V ′

∑
k∈V ′′

|akj | ≤
∑
j∈V ′

∑
k∈V ′′

|ajk| ≤ K
∑
j∈V ′

∑
k∈V ′′

|akj |.

(2)

A typical example of a cut-balanced graph is the type-symmetric
graph [10], which means the existence of K ≥ 1 such that

K−1 |akj(t)| ≤ |ajk(t)| ≤ K |akj(t)| ∀ t ≥ 0 ∀ j �= k.
(3)

Other examples include weight-balanced graphs, see [10] for
details. As implied by [10, Lemma 1], for cut-balanced graphs,
the EQSC property implies ESC; precisely, any quasi-strongly

connected component of the digraph G Δ
=G[A(·)] is strongly

connected, and a path between j and k exists if and only if the
path from k to j exists.

III. PROBLEM SETUP

Consider a group of N ≥ 2 agents indexed 1 through N , the
opinion of the ith agent is denoted by xi ∈ R and we define
x := (x1, . . . , xN )T ∈ RN . The agents update their opinions in
accordance with a distributed protocol as follows:

ẋ(t) = −L [A(t)] x(t), t ≥ 0 (4)

which can be written componentwise as

ẋj(t) =

N∑
k=1

|ajk(t)| (xk(t)sgn ajk(t)− xj(t)) ∀ j. (5)

Here A(t) = (ajk(t)) is a locally bounded matrix-valued func-
tion which describes the interaction topology of the network
and ajj(t) ≡ 0. At time t ≥ 0, the opinion of the jth agent is
influenced by agents for which ajk �= 0 (“neighbors”). Unlike
conventional consensus protocols [44] this influence may be
either cooperative (when ajk > 0) or competitive (when ajk <
0). The coupling term |ajk|(xk sgn ajk − xj) in (5) drives the
opinion of the jth agent, respectively, either towards the opinion
of the kth one or against it.

In [28] protocol (4) has been carefully examined, assuming
the interaction graph is constant (A(t) ≡ A) and strongly con-
nected. It was shown that the steady-state opinions always agree
in modulus, but generally differ in signs; in other words, the
modulus consensus of opinions [29] is established.

Definition 1: The protocol (4) establishes modulus consen-
sus, if for any x(0) a number x∗ ≥ 0 exists such that

lim
t→+∞

|xi(t)| = x∗. (6)

The following lemma shows that there are two essentially
different types of modulus consensus: “trivial” with x∗ = 0 for
all x(0) (the system (4) is asymptotically stable) and “non-
trivial,” where x∗ �= 0 for a.a. x(0).

Lemma 1: Suppose that protocol (4) establishes modulus
consensus. Then there exist vectors v, ρ ∈ RN with ρ1, . . . ,
ρN = ±1 such that for any solution of (4) one has

lim
t→+∞

x(t) = ρvTx(0) ⇔ lim
t→+∞

xj(t) = ρjv
Tx(0). (7)

Lemma 1 shows that in the “non-trivial” case v �= 0, opinions
either reach consensus (ρ1 = · · · = ρN ) or polarize (ρi have
different signs) whenever vTx(0) �= 0. For both situations we
say that the protocol establishes bipartite consensus.

Definition 2: We call the protocol (4) stabilizing, if
limt→∞ xj(t) = 0 ∀ j ∀x(0). The protocol establishes bipartite
consensus if (7) holds with some v �= 0; it establishes consensus
if additionally ρ = 1̄N or ρ = −1̄N .
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It was proved in [28] if A(t) ≡ A, then the protocol is
stabilizing (that is, −L[A] is a Hurwitz matrix) unless the graph
G[A] is structurally balanced (SB). The latter property implies
that a community is divided into two hostile camps (such as vo-
taries of two political parties), where each agent cooperates with
its camp-mates, competing with agents from the opposite camp.
A special case of SB graphs is the graph with non-negative
weights ajk ≥ 0 where one of the camps is empty. In this case
strong connectivity (SC) and even quasi-strong connectivity
(QSC) imply consensus [1]. The case of general SB and SC
graph is reducible to this case by means of the gauge transfor-
mation [28], which allows to prove (6), where x∗ depends on
the initial conditions. If both hostile camps are not empty, the
opinions polarize. In other words, structural balance implies bi-
partite consensus. A generalization of the gauge transformation
from [28] is the lifting approach from [37], splitting each agent
into a pair of virtual agents with opposite opinions, after which
the original dynamics can be considered as a projection of
some larger network with purely cooperative interactions. This
approach can be applied also to some time-varying networks.

In Section IV-A we further refine Altafini’s results on mod-
ulus consensus over static graphs by discarding the strong con-
nectivity assumption. We show that for structurally balanced
graphs modulus consensus is established if and only if the graph
is QSC; in fact, in this case bipartite consensus is established.
Conversely, bipartite consensus is reached only when the graph
is structurally balanced and QSC. If the graph has no struc-
turally balanced in-isolated subgraphs, the protocol is stabi-
lizing. Thus we offer necessary and sufficient conditions for
modulus consensus for general static graph.

The main concern of this paper is modulus consensus over
time-varying signed graphs. In [28] this problem was consid-
ered only for the very special case where the graph is constantly
strongly connected, has time-invariant signs of the arcs and
also weight-balanced (this assumption was not explicitly men-
tioned, but in fact was used in the proof which appeals to [44,
Theorem 9]). Below we relax these restrictions. Dealing with
real-world social networks, the time-invariance of such relation-
ships between individuals as friendship and hostility is evidently
a non-realistic assumption. What is more important, the opinion
dynamics in social networks are usually considered to be non-
linear [19], [24]. Such models are often reducible to the linear
case by introducing time-varying gains, depending on the solu-
tion; however, the corresponding graphs can hardly be weight-
balanced. Our techniques allow us to examine both linear and
nonlinear consensus protocols from [27], [28] in the common
framework. Although it is a hard problem to find explicitly the
ultimate opinion vector in the case of time-varying topologies,
Lemma 1 shows that there are similarities with the static case.

A common techniques used to prove consensus in the case of
cooperative agents is the shrinking property of the convex hull,
spanned by agent’s opinions. Under the UQSC property of the
graph, the diameter of this convex hull may serve as a Lyapunov
function [5], [6], [11]. The UQSC condition is not necessary in
general [5], considered as “the weakest assumption on the graph
connectivity such that consensus is guaranteed for arbitrary
initial conditions” [11], and becomes necessary under additional
restriction of uniform convergence [6]. On the other hand, the

EQSC condition is always necessary for consensus yet insuffi-
cient in the case of directed topologies [5]. This gap between
necessary and sufficient conditions has been filled recently for
type-symmetric and other cut-balanced graphs [9], [10] where
EQSC is not only necessary but also sufficient for consensus.

Under antagonistic interactions between the agents, the con-
vex hull spanned by opinions is not shrinking, and the only avail-
able Lyapunov function is the maximal modulus, which will
be shown to be non-increasing and thus converging to a limit.
However, the UQSC property in general does not guarantee
that the minimal modulus also converges to the same limit (as
will be shown by a counter example). To provide this, one re-
quires stronger USC conditions. Whereas EQSC property is
necessary for bipartite consensus, it is not necessary for sta-
bility, as illustrated by the following trivial example. Let A =
diag(A1, A2), where both graphsG[A1] andG[A2] are strongly
connected and structurally unbalanced. As follows from [28],
the matrices (−L[A1]) and (−L[A2]) are Hurwitz, which also
holds for (−L[A]) = −diag(L1[A], L2[A]) and thus the proto-
col is stabilizing. The static graph G[A] is not QSC and thus
not EQSC. Filling this gap between the necessary and sufficient
conditions for modulus consensus that is even “wider” than
in the cooperative case, is a tough open problem. However,
adopting the techniques from [9], we fill this gap for cut-
balanced graphs by offering necessary and sufficient conditions
of modulus consensus (Section IV-C).

IV. MAIN RESULTS

This section is organized as follows. We start with modulus
consensus criteria for static graphs which extend results from
[28] by discarding the assumption of strong connectivity in them
(Section IV-A). We show that the necessary and sufficient con-
dition for bipartite consensus is structural balance and QSC, and
give also necessary and sufficient conditions for stability. The
next Section IV-B deals with the case of general time-varying
graphs. We show sufficiency of the USC condition for modulus
consensus and demonstrate that, unlike the cooperative case, this
condition cannot be relaxed to UQSC. In the last Section IV-C
we focus on modulus consensus over cut-balanced graphs. In
this case it is possible to give necessary and sufficient conditions
for both types of modulus consensus, whereas filling the gap be-
tween necessary and sufficient conditions for modulus consen-
sus under general directed graphs remains a tough open question.

A. Time-Invariant Protocols

Throughout this section A(t) ≡ A is a constant matrix. We
start with the case of structurally balanced graph. In this case, a
gauge transformation [28] exists which reduces the protocol to
a cooperative one, whose properties are well established.

Lemma 2: Let G[A] be structurally balanced. Then L[A]
has eigenvalue at 0 and the following claims are equivalent:

1) the graph G[A] is QSC;
2) the linear subspace kerL[A] ⊂ Rn has dimension 1;
3) the protocol (4) establishes modulus consensus.

If these claims hold, then ρ, v from Lemma 1 are respectively
the right and the left eigenvectors of L[A] at 0, hence vTL[A] =
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Fig. 1. Static QSC graph: modulus consensus is impossible if a31a32 > 0.

L[A]ρ = 0 and v �= 0, so protocol establishes bipartite consen-
sus. If A is a non-negative matrix (one of the hostile camps
is empty), the protocol establishes consensus, and otherwise,
opinions polarize.

In the case where G[A] is structurally balanced yet not QSC
(so modulus consensus is not reached), the structure of steady-
state opinions may be described in terms of the maximum out-
forest matrix as done in [45] for cooperative agents.

As follows from Lemma 2, a protocol with structurally
balanced graph cannot be stabilizing. Therefore, stability is also
impossible when the graph contains an in-isolated structurally
balanced (ISB) subgraph, in other words, the group involves
hostile camps whose members ignore the opinions of the re-
maining agents. The nodes of such a subgraph, if existed, would
reach bipartite consensus of opinions independently of the
remaining agents. The following theorem gives a criterion for
modulus consensus over static graphs, showing that existence
of ISB subgraphs is the only obstacle for stability.

Theorem 1: Let A(t) = const. The protocol (4) is stabiliz-
ing if and only if the graph is neither SB itself nor contains an
ISB subgraph. Bipartite consensus is established if and only if
G[A] is structurally balanced and QSC: if ajk ≥ 0 ∀ j, k, then
consensus is established; otherwise, opinions polarize.

Example 1: Consider a team of N = 3 agents with states
x1(t), x2(t), x3(t). Assume that a12 = a21 = −1 (see Fig. 1)
and a31a32 > 0. Thus the equations are

ẋ1 =(−x2 − x1), ẋ2 = (−x1 − x2)

ẋ3 = a31x1 + a32x2 − (|a31|+ |a32|)x3

and the graph is not structurally balanced (agents 1 and 2 are con-
stantly antagonistic, so the structural balance requires agent 3
to cooperate with only one of them, competing with the other,
whereas in reality it cooperates with both agents 1 and 2). Ac-
cording to Theorem 1, modulus consensus is impossible (since
the ISB subgraph with the set of nodes {1, 2} exists). This can
also be shown in a straightforward way: the system has equilib-
ria (ξ,−ξ, ρξ), with ρ � (a31−a32)/(|a31|+ |a32|) ∈ (−1; 1),
ξ ∈ R.

This simple example illustrates that, unlike the cooperative
case (ajk ≥ 0), the protocol with static QSC graphs in general
does not establish modulus consensus. To guarantee modulus
consensus, one typically requires strong connectivity (assumed
in [28]) or some other property, excluding ISB subgraphs.

B. Protocols Over Dynamic Signed Graphs

We start with the following useful lemma, which does not
rely on any connectivity assumptions and shows, in particular,
that solutions to (4) are always bounded.

Lemma 3: For any solution of system (4), the func-
tion |x(t)|∞ = maxi |xi(t)| is monotonically non-increasing:
|x(t)|∞ ≤ |x(t0)|∞ whenever t ≥ t0 ≥ 0. Equivalently, the
Cauchy evolutionary matrix Φ(t; t0) of system (4) satisfies the
inequality |Φ(t; t0)|∞ ≤ 1 for t ≥ t0.

Lemma 3 implies, in particular, the existence of the limit
limt→+∞ |x(t)|∞. The following theorem shows that under the
uniform strong connectivity property and bounded coupling
gains the modules of all opinions converge to the same limit.

Theorem 2: If ajk(t) are bounded and the graph G[A(·)] is
USC, then the protocol (4) establishes modulus consensus.

As a corollary, we immediately obtain the well-known crite-
rion for consensus under cooperative protocols.

Corollary 1: If ajk(t) ≥ 0 ∀ j, k for a.a. t ≥ 0 and G[A(·)]
is USC, then the protocol (4) establishes consensus.

It is well known that assumptions of Corollary 1 can be
relaxed: in the case where ajk ≥ 0 the UQSC condition is suffi-
cient for consensus [6], [11], [46]. Moreover, using the gauge
transformation approach from [28], sufficiency of the UQSC
property may be proved for a dynamic structurally balanced
graph, provided that the subdivision into two “hostile camps”
remains unchanged.

Lemma 4: Suppose that V = 1 : N = V1 ∪ V2, where
ajk(t) ≥ 0 for any t ≥ 0 if j, k ∈ V1 or j, k ∈ V2; otherwise,
ajk(t) ≤ 0 for any t ≥ 0. If the graph G[A(·)] is UQSC, the
protocol establishes bipartite consensus (if V1 = ∅ or V2 = ∅)
or bipartite consensus (when V1, V2 �= ∅).

Remark 1: Lemma 4 obviously remains valid if two hostile
camps V1, V2 exist only for t ≥ t0, where t0 ≥ 0. This obser-
vation makes the result of Lemma 4 applicable to topologies
that evolve in order to achieve the structural balance in finite
time (after which the signs of arcs remain unchanged); graph
dynamics leading to structural balance in finite time were
proposed in [47] and [48].

However, in general the USC condition in Theorem 2 is not
relaxable to UQSC. Example 1 in Section IV-A shows that even
for static graphs the QSC property (equivalent to UQSC) does
not guarantee modulus consensus unless the graph is struc-
turally balanced. Our next example shows that the UQSC prop-
erty is not sufficient neither when the graph remains structurally
balanced but the relations of friendship and hostility between
the agents evolve over time. We construct a protocol (4) with
periodic piecewise-constant matrix A(t), such that the graph
G[A(t)] is structurally balanced for any t ≥ 0 and UQSC, and
nevertheless modulus consensus is not established.

Example 2: Consider the more general system

ẋ1(t) = (−x2(t)− x1(t)) , ẋ2(t) = (−x1(t)− x2(t))

ẋ3(t) = a31(t) (x1(t)−x3(t))+a32(t) (x2(t)−x3(t)) . (8)

The functions a31, a32 are constructed as follows. Consider first
system (8) with a31(t) ≡ 1, a32(t) ≡ 0 and the solution to (8)
launched at the initial state x1(0) = 1, x2(0) = −1, x3(0) =
−1/2. It is evident that x1(t) = 1 = −x2(t) for any t ≥ 0
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and x3(t) ↑ 1 as t → +∞. Therefore, there exists the first
time instant T0 > 0 such that x3(T0) = 1/2. Notice that in the
symmetric situation where a31(t) ≡ 0, a32(t) ≡ 1 and x(t) is a
solution to (8) starting at x1(0) = 1, x2(0) = −1, x3(0) = 1/2,
one has x3(t) ↓ −1 and T0 is the first instant where x3(T0) =
−1/2. Taking

a31(t) = 1− a32(t) =

{
1, t ∈ [0;T0) ∪ [2T0; 3T0) ∪ . . .

0, t ∈ [T0; 2T0) ∪ [3T0; 4T0) ∪ . . .

one finally gets a 2T0-periodic matrix A(t), corresponding to
the UQSC graph G[A(·)]. Moreover, this graph is also quasi-
strongly connected and structurally balanced at any time. Even
so the solution to (8) starting at x1(0) = 1, x2(0) = −1,
x3(0) = −1/2 does not achieve modulus consensus. It can be
easily shown that x1(t) = −x2(t) = 1 for any t ≥ 0. Since
a31(t) = 1 and a32(t) = 0 when t < T0, one has x3(T0) = 1/2
by definition of T0. On the next interval t ∈ [T0; 2T0) one has
a31(t) = 0 and a32(t) = 1 and hence x3(2T0) = −1/2, so the
solution x(t) is periodic and x3(t) ∈ [−1/2; 1/2] whereas
|x1(t)| = |x2(t)| = 1.

Dealing with purely cooperative protocols, UQSC is consid-
ered to be not only sufficient for consensus but also “nearly”
necessary. It may also be relaxed to EQSC for some types of
graphs (e.g., cut-balanced ones). On the other hand, the EQSC
condition is always necessary for consensus among cooper-
ating agents, being in general not sufficient. As discussed in
Section IV-A, stability of (4) is possible without the EQSC
property even for static graphs. However, EQSC is required for
bipartite modulus consensus.

Lemma 5: If the protocol (4) establishes bipartite consen-
sus, the graph G[A(·)] is EQSC.

Remark 2: In the general situation, where the graph is
USC but the assumptions of Lemma 4 do not hold, it is dif-
ficult to distinguish between stability and bipartite consensus.
A sufficient condition for stability was proved in [37]: the
protocol is stabilizing, if for some ε > 0, T > 0 all the graphs
G[

∫ t+T

t abs A(s)ds] (where t ≥ 0) have strongly connected
and structurally unbalanced ε-skeletons [37]. This is the only
case where the “lifted” network is proved to inherit the USC
property [37]. Generally, this is not the case, so the approach
[37] does not allow to derive Theorem 2.

C. Modulus Consensus Over Cut-Balanced Graphs

In the previous subsection, we get a sufficient condition for
modulus consensus (the USC condition). In general, this prop-
erty is not necessary for modulus consensus. Moreover, even
the weaker EQSC condition is necessary for bipartite consensus
but not for stability. Filling this gap between necessary and suf-
ficient conditions is a hard open problem even for cooperative
protocols. However, this gap has been recently filled for cooper-
ative protocols with type-symmetric [9] and more general cut-
balanced graphs [10]. The proofs from [10] are not applicable
for signed graphs. However, adopting the approach from [9], we
extend the result from [10] to the case of modulus consensus
over signed graph, giving necessary and sufficient conditions
for each type of modulus consensus.

Throughout this section the graph G[A(·)] is cut-balanced,
i.e., the inequalities (2) hold for some K ≥ 1. Recall the jth
agent essentially interacts with the kth one if

∫∞
0 ajk(t)dt = ∞

and hence either
∫∞
0 a+jk(t)dt = ∞ or

∫∞
0 a−jk(t)dt = ∞. We

say agents essentially cooperate in the first case and essentially
compete in the second situation (in general, both relations
may hold). Let E � E [A(·)] and E+ ⊆ E , E− ⊆ E be the sets
of those pairs of agents (j, k) that, respectively, essentially
cooperate and essentially compete.

If E+ ∩ E− = ∅, we assign the weights +1 and−1 to the arcs
from E+ and E− respectively, transforming G � G[A(·)] to a
signed graph G± = (1 : N, E , (sjk)), sjk = +1 for (j, k) ∈ E+

and sjk = −1 for (j, k) ∈ E−.
As implied by [10, Lemma 1], for cut-balanced graphs the

EQSC property implies ESC, precisely, any quasi-strongly con-

nected component of the digraph G Δ
= G[A(·)] is strongly con-

nected, and a path between j and k exists if and only if a path
from k to j exists. From Lemma 5, the ESC condition is neces-
sary for bipartite consensus. In the case of cooperative agents,
this property is also sufficient for consensus [10]. However,
in the case of signed graph, ESC is not sufficient without the
“essential” structural balance.

Theorem 3: Assume the graph G[A(·)] is cut-balanced. The
protocol (4) establishes bipartite modulus consensus if and only
if G± is well-defined (E+ ∩ E− = ∅), strongly connected and
structurally balanced; opinions polarize if and only if E− �= ∅,
and otherwise consensus is established. If G is strongly con-
nected but E+ ∩ E− �= ∅ or G± is structurally unbalanced, the
protocol (4) is stabilizing.

In the case of purely cooperative protocol (ajk(t) ≥ 0),
Theorem 3 transforms into the result obtained in [9] and [10].

Corollary 2: Cooperative protocol establishes consensus if
and only if the graph G[A(·)] is essentially connected.

Our next result addresses the case where G is not necessarily
connected and thus may be decomposed into several disjoint
strongly connected components G = G1 ∪ G2 ∪ · · · ∪ Gd, Gr =
(Vr, Er), d ≥ 1. In this case in any component Gr, modulus
consensus is established, and the type of which depends only
on the structure of Gr. Let E+

r := Er ∩ E+ and E−
r := Er ∩ E−.

If E+
r ∩ E−

r = ∅, define a signed graph G±
r by assigning arcs

from E+
r , E−

r with weights +1 and −1 respectively.
Theorem 4: For any solution of (5) there exists limits x†

i =

limt→∞ xi(t) and |x†
i| = |x†

j | whenever i and j are in the same
strongly connected component: i, j ∈ Vr. If E+

r ∩ E−
r = ∅ and

G±
r is structurally balanced, the bipartite consensus is achieved,

which comes to consensus if E−
r = ∅, and otherwise the opin-

ions polarize (Vr = V 1
r ∩ V 2

r and x†
i = −x†

j ∀ i ∈ V 1
r , j ∈ V 2

r ).

If E+
r ∩ E−

r �= ∅ or the graph G±
r is structurally unbalanced,

x†
i=0 ∀ i ∈ Vr that is, dynamics of opinions from Vr are stable.
The following criterion of stability is immediate.
Corollary 3: The protocol (4) is stable if and only if for any

strongly connected component Gr, one has either E+
r ∩ E−

r �= ∅
or G±

r being structurally unbalanced.
Remark 3: Theorems 3 and 4 were proved in [37] in the

special case of “type-symmetric” graphs, such that (3) holds
for some K ≥ 1. The main idea of the proof is to show that the
latter property remains valid for the “lifted” network, which is
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purely cooperative and hence can be examined by techniques
from [10]. We extend the result from [37] to cut-balanced
graphs. Although this extension seems to be provable by tech-
niques from [37], our proof based on [9] is of independent
interest; we elaborate mathematical techniques to cope with
both general and cut-balanced cases in similar ways.

V. APPLICATIONS: NONLINEAR PROTOCOLS

In this section we apply our results to some types of nonlinear
consensus protocols, similar to those from [27], [28].

A. Additive Laplacian Protocols

Our first example concerns nonlinear consensus algorithms
that are referred in [28] as the “additive Laplacian feedback
schemes.” The first of them is

ẋi(t) =

N∑
j=1

|aij(t)| (hij (xj(t)sgn aij(t)) − hij (xi(t))) (9)

and the second protocol has the form

ẋi(t) =
N∑
j=1

|aij(t)|hij (xj(t)sgn aij(t)− xi(t))) ∀ i. (10)

We adopt the following assumption about the nonlinearities.
Assumption 1: For any i, j ∈ 1 : N the map hij ∈ C1(R) is

strictly increasing (and hence h′
ij > 0) with hij(0) = 0.

Defining the functions Hij [y, z] as follows: Hij [y, z] :=
(hij(y)− hij(z))/(y − z) for y �= z and Hij [z, z] := h′

ij(z)

so that Hij [y, z] > 0 for any y, z. Since hij ∈ C1, Hij is eas-
ily shown to be a continuous function and hij(y)− hij(z) =
Hij [y, z](y − z) ∀ y, z. Under Assumption 1, Theorems 2 and 3
appears to be applicable to the protocols (9), (10) after the stan-
dard trick, replacing nonlinearities with the solution-dependent
gains, as shown by the following lemma.

Lemma 6: Let x(t) be a solution to system (9), which is de-
fined for t ≥ 0. Define the matrix A(t) = (aij(t)) by aij(t) :=
aij(t)Hij [xj(t)sgn aij(t), xi(t)]. Then

ẋ(t) = −L [A(t)]x(t). (11)

If the graph G[A(·)] is EQSC, ESC, UQSC, USC, or cut-
balanced, then the same is valid for the graph G[A(·)]. If the
matrix A(·) is globally bounded, the same is valid for the
matrix A(·). These claims also hold for the protocol (10), taking
aij(t) := aij(t)Hij [xj(t)sgn aij(t)− xi(t), 0].

Application of Theorems 2, 3 to (11) yields the following.
Theorem 5: Under Assumption 1, the solutions to systems

(9), (10) exist, are unique and infinitely prolongable for any ini-
tial condition. If the graph G[A(·)] is USC and A(·) is bounded,
or the graphG[A(·)] is ESC and cut-balanced, the protocols (9),
(10) establish modulus consensus.

Comparing the result of Theorem 5 with that of [28,
Theorem 3,4], one notices that our assumption about the non-
linearities hij differs from [28], where they are not assumed to
be smooth, but only monotonic with some integral constraint.

However, unlike [28], functions hij may be heterogeneous and
not necessarily odd; the graph may be time-varying.

Note that Theorem 5 gives only sufficient conditions for
modulus consensus. Necessary conditions such as Lemma 5 are
not directly applicable since they assume the matrix A(t) to be
common for all solutions. Extending the concept of essentially
equivalent protocols (see Section VI-C) to the nonlinear case,
it is possible to get some necessary conditions which are, how-
ever, beyond the scope of this paper.

B. Nonlinear Laplacian Flow

In this subsection we examine the nonlinear consensus pro-
tocol similar to that addressed in [28, Section IV-B]

ẋi(t) =

N∑
j=1

|Fij(t, x)| (xj(t)sgn Fij(t, x) − xi(t)) (12)

here i ∈ 1 : N and Fij : [0;∞)× RN → R are Caratheodory
maps, i.e., Fij(t, ·) are continuous for a.a. t and Fij(·, x) are
measurable for any x. We assume also that for any compact set
K ⊂ [0;∞)× RN one has

sup {Fij(t, x) : x ∈ K, t ≥ 0} < ∞ ∀ i, j. (13)

Theorem 6: For any initial condition x(0) a solution of (12)
exists for t ≥ 0 and the matrix A(t) � Fij(t, x(t)) is bounded.
If the graph G[A(·)] is USC or ESC and cut-balanced, the
protocol (12) establishes modulus consensus.

Although in general it is hard to verify the uniform or es-
sential strong connectivity ofG[A(·)], whereA(t)=Fij(t, x(t))
depends on the concrete solution, in special cases such a
property may be proved. For instance, it is implied by the global
strong ε-connectivity [28, Section IV-B]: the graphG(F̂ij(t, x))
is strongly ε-connected for any t, x. The result of Theorem 6 ex-
tends the result from [28, Section IV-B] in several ways. First
of all, it deals with time-variant gains Fij(t, x) and does not re-
quire them to have a constant sign. In particular, system (12)
does not necessarily generate order-preserving flow [27]. More-
over, we do not assume that the graph G[A(t)] is weight-
balanced which can hardly be provided for nonlinear functions
Fij . In the case of USC graphs, the balance is not needed at all;
in the case of ESC graphs it is replaced by the much weaker cut-
balance condition. At last, we relax the connectivity assumption.

VI. PROOFS

We start with the proof of Lemma 1 and then prove results,
concerned with static graphs (Section VI-A). To proceed with
the case of dynamic graph, we elaborate some useful techniques
in Section VI-B and C, entailing also Lemmas 3 and 5. The
case of cut-balanced graph is considered in Section VI-D. In
Sections VI-E and F we prove the modulus consensus criterion
for directed dynamic graphs and its implications, dealing with
nonlinear protocols.

Throughout the section, Φ(t|t0) (where t, t0 ≥ 0) stands for
the Cauchy evolutionary matrix of the system (4), that is, the
solution of the Cauchy problem for (4) with initial data x(t0) =
x0 is given by x(t) = x(t|t0, x0) = Φ(t|t0)x(0).
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Proof of Lemma 1: Assume the protocol (4) establishes
modulus consensus. Note that since functions xi(t) are contin-
uous, existence of the limits limt→+∞ |xi(t)| = x∗ implies that
the limits limt→+∞ xi(t) also exist (and equal to ±x∗). There-
fore Φ(t)−→

t→∞
Φ∗ := [φ1, . . . , φN ] as t → ∞, where each col-

umn φj have entries with equal modules. The same applies for
any linear combination

∑N
j=1 αjφj . If Φ∗ = 0, the statement of

Lemma 1 is evident, taking v = 0. Assume that one of φj , say,
φ1 is nonzero, thus φ1 = v1ρ where v1 �= 0 and ρ is a vector
with entries ±1. Notice that for any real numbers α, β �= 0 we
have |α− β| �= |α+ β|. Therefore, if φj �= 0 for some j �= 1,
all entries of φj − φ1 have the same module if and only if φj =
vjρ, vj �= 0. If φj = 0, we put by definition vj = 0. Therefore,
φj = vjρ for any j and limt→∞ xj(t) = Φ∗ = ρvTx(0), where
v := (v1, . . . , vN )T . �

A. Proofs of Lemmas 2, 4 and Theorem 1

Proof of Lemma 2: We use a gauge transformation [28].
Suppose that the graph is structurally balanced; let V1 and V2

be hostile camps covering all the nodes. Introducing a diagonal
matrix D = diag(d1, . . . , dN ) by di = 1 for i ∈ V1 and di =
−1 for i ∈ V2, one easily shows that the gauge transformation
x 	→ z := Dx transforms the system (4) into

ż(t) = −L[abs A]z(t). (14)

The properties of cooperative protocols (14) are widely known
[1], [2], [49]. Since the matrix B = abs A is non-negative,L[B]
has zero eigenvalue with eigenvector 1N . The algebraic and
geometric multiplicities of this eigenvalue coincide [49], and
it is simple if and only the graph G[B] is QSC (has oriented
spanning tree). If this holds, the protocol (14) establishes con-
sensus and exp(−L[B]t) −→

t→+∞
1̄Nv. Since L[B] = DL[A]D

and G[A] is QSC if and only if G[B] is QSC, one immediately
obtains the claims of Lemma 2. �

Proof of Lemma 4: The proof employs the same idea of
the gauge transformation, retracing the arguments from [28,
Section III-B2]. Suppose the graph G[A(t)] is structurally
balanced for any t with static hostile camps V1 and V2. The
gauge transformation x 	→ z := Dx, introduced in the forego-
ing, transforms the system (4) into (14). Since G[abs A(t)] is
UQSC, the protocol (14) establishes consensus [1], [46] and
thus opinions in network (4) polarize. �

To proceed with the proof of Theorem 1, note that stability
is equivalent to the asymptotic stability of the system (4),
which means that (−L[A]) is a Hurwitz matrix. By using the
Gershgorin disk theorem, it was shown in [28] that all eigenval-
ues of L[A], except for possibly zero, have positive real parts.
Hence protocol is stable if and only if 0 is not an eigenvalue of
L[A], i.e., L[A]ρ = 0 is impossible when ρ �= 0. We need the
following simple lemma.

Lemma 7:Let L[A]ρ = 0 and |ρ|∞ = 1. Then V1 = {j : ρj =
1}, V2 = {j : ρj = −1} are hostile camps and V∗

Δ
= V1 ∪ V2 �=

∅. If j ∈ V∗, k �∈ V∗, then ajk = 0.
Proof: By assumption, |xk| ≤ 1 for any k and |xj | = 1 for

some j, hence V∗ �= ∅. For any such j one has ρj
∑

k �=j |ajk| =∑
k �=j ρkajk. We note that |

∑
k �=j ρkajk| ≤

∑
k �=j |ajk|. The

equality implies, firstly, that |ρkajk| = |ajk| (i.e., k ∈ V∗ or
ajk = 0) and secondly, all non-zero terms ρkajk have the same
sign (coinciding with sgnρj). In other words, if j ∈ V∗, then
ajkρjρk ≥ 0 ∀ k ∈ V∗, and ajk = 0 when k �∈ V∗, from where
the statement is straightforward. �

Proof of Theorem 1: Sufficiency in the first statement is
immediate from Lemma 7: if no “in-isolated” structurally bal-
anced subgraph exists, then 0 is not an eigenvalue of (−L[A]),
which therefore is a Hurwitz matrix. Necessity follows from
Lemma 4: nodes of the subgraph are independent of the remain-
ing agents and reach bipartite consensus, and hence stability
of the whole community is impossible. Lemma 4 implies suf-
ficiency in the second statement. To prove necessity, suppose
that bipartite consensus is established. Then 0 is an eigenvalue
of L[A] and there exists an eigenvector ρ, such that L[A]ρ = 0,
and |ρ|∞ = 1. Bipartite consensus implies that for this vector
one has |ρ1| = · · · = |ρN | = 1. Applying Lemma 7, we obtain
the structural balance of G[A] since V∗ = 1 : N . �

B. Ordering Permutations

In this Subsection, we elaborate some useful techniques to be
used in the subsequent proofs.

Given a family of scalar functions f1(t), . . . , fN(t) (where
t ≥ 0), let [k1(t), . . . , kN(t)] be the ordering permutation,
sorting the set {f1(t), . . . , fN (t)} in the ascending order:
fk1(t)(t) ≤ fk2(t)(t) ≤ · · · ≤ fkN (t)(t). If fj(t) = fk(t) for
some j, k and t, the permutation is not uniquely defined. The
following technical Lemma shows the permutation may always
be taken in some regular way.

Lemma 8: Assume that fj are locally Lipschitz. Then
there exists such an ordering permutation k1(t), . . . , kN(t) that
kj(·) are measurable, functions Fj(t) � fkj(t)(t) are locally

Lipschitz and Ḟj(t) = ḟkj(t)(t) for any j and a.a. t ≥ 0.
To prove Lemma 8, we need the following proposition.
Lemma 9: Let f∗(t) := maxi∈[1:N ] fi(t) and j(t) be the

index such that f∗(t) = yj(t)(t) for a.a. t. In the case of non-
uniqueness, one always may choose j(·) in a way that it is
measurable and ḟ∗(t) = ẏj(t)(t) for a.a t. The claim remains
valid, replacing max with min.

Proof: As follows from the generalized version of
Danskin theorem [50, Theorem 2.1], f∗(·) is locally Lipschitz
and ḟ∗(t) ∈ {ẏj(t) : yj(t)=f∗(t)} for a.a. t ≥ 0. The Filippov-
Castaing measurable selector theorem (see e.g., [51, Theorem 1])
yields that a measurable function j(t) exists such that ḟ∗(t) =
ẏj(t)(t) and yj(t)(t) = f∗(t). The last claim is proved by re-
placement fj 	→ −fj . �

Proof of Lemma 8: The proof is via induction on N . For
N = 1, the claim is evident. Let it be true for some N , and
let f1(·), . . . , fN+1(·) be locally Lipschitz. The ordering of the
first N functions z1(·), . . . , zN (·) are locally Lipschitz by the
induction hypothesis. The recursion y0N+1(t) := yN+1(t)

yνN+1(t) := max
{
zν(t); y

ν−1
N+1(t)

}
ẑν(t) := min

{
zν(t); y

ν−1
N+1(t)

}
, ν ∈ 1 : N

results in the ordering ẑ1(t) ≤ · · · ≤ ẑN (t) ≤ ẑN+1(t) :=
yN+1,N(t) of the entire set y1(·), . . . , yN+1(·). By applying
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Lemma 9 at every recursion step, we see that ẑν(·) are locally
Lipschitz. For any ν = 1, . . . , N , the sequence

Zν(t) :=
[
ẑ1(t),ẑ2(t), . . . , ẑν(t), zν+1(t), . . . , zN (t), yνN+1(t)

]
(15)

is obtained from Zν−1 via a permutation Jν(t) of indices,
which either is the identity one or exchanges the places of the
νth and (N+1)th entries and may be chosen measurable. By
Lemma 9, the sequence Z′

ν(t) that results from replacement
of any function in (15) by its derivative is related to Z′

ν−1(t)
by the same permutation for a.a. t. The sequence Z0(t) is
obtained from Y(t) := [y1(t), . . . , yN+1(t)] via a permutation
of indices K(t) = [k1(t), . . . , kN (t), N + 1]. By the induction
hypothesis, K(t) also relates Z′

0(t) and Y′(t) := [y′1(t), . . . ,
y′N+1(t)] for a.a. t. Then KN+1(t) = JN ◦ · · · ◦ J1 ◦K(t)
transforms Y′(t) into Z′

N(t) for a.a. t, which proves the induc-
tion step. �

C. Some Technical Lemmas and Proofs of Lemmas 3, 5

To start with, we note that since ajk(t) are locally bounded,
this also holds for ẋj and therefore xj(·) are locally Lipschitz.
For any solution x(t) of (4) we introduce functions

χj(t) := |xj(t)| , θij(t) := sgn aij(t)sgn xi(t)sgn xj(t).

The following lemma gives a useful interpretation of dynamics
(4) in terms of the moduli functions χk.

Lemma 10: The functions χj are locally Lipschitz, thus
absolutely continuous. For a.a. t ≥ 0 and any k one has

χ̇k(t) =

N∑
i=1

|aki(t)| [χi(t)θki(t)− χk(t)] (16)

(since χk ≥ 0, it has sign sgnχk(t) equal to 0 or 1).
Proof: Since ajk are assumed to be locally bounded,

xk(·) are locally Lipschitz. The same applies to χk(·) since
|χk(t1)− χk(t2)| = ||xk(t1)| − |xk(t2)|| ≤ |xk(t1)−xk(t2)|.
Therefore χk are absolutely continuous and for a.a. t > 0
the derivative χ̇k(t) exists. For such t we immediately have
χk(t) = 0 =⇒ χ̇k(t) = 0 by the Fermat theorem since 0 is the
global minimum of χk, which proves (16) (indeed, xk(t) = 0
implies that θki(t) = 0 for any i). Let χk(t) > 0. Since
sgn xk(s) = sgn xk(t) for s ≈ t, one has

χ̇k(t) = ẋk(t)sgn xk(t)
(5)
=

(5)
=

N∑
i=1

|aki(t)| [xi(t)sgn aki(t)sgn xk(t)− χk(t)]

which proves (16) since xi(t) = χi(t)sgn xi(t). �
Henceforth, we fix some ordering permutation k1(t), . . . ,

kN (t) for the family χ1(t), . . . , χN(t) (see Section VI-B)
and put Mj(t) = χkj(t), in particular, MN (t) = maxj |xj(t)|.
Combining Lemmas 10 and 8, one gets the following.

Lemma 11: The function MN (t) = maxi∈1:N |xi(t)| is non-
increasing and hence

∫∞
0 |ṀN (t)|dt < ∞. For ãji := akjki ,

θ̃ji := θkjki , for a.a. t ≥ 0 and any j ∈ 1 : N one has

Ṁj(t) =

N∑
i=1

|ãji(t)|
[
Mi(t)θ̃ji(t)−Mj(t)

]
. (17)

Proof: Combining (16) with Lemma 8, we get

Ṁj(t) =
N∑
i=1

|akj i(t)| [χi(t)θkj i(t)−Mj(t)]

=

N∑
i=1

|akjki(t)| [χki(t)θkjki(t)−Mj(t)]

from where (17) follows since Mi = χki . Using (17), one
has ṀN(t) ≤ 0 for a.a. t ≥ 0 since |θ̃ij | ≤ 1 and Mj ≤
MN for any j thus MN(·) is non-increasing. We have also∫∞
0 |ṀN(t)|dt = M(0)− inft≥0 M(t) ≤ M(0). �

We also require one additional simple tool which allows to
examine the behavior of system (5) by comparing it with a
simpler system, obtained by ignoring all inessential interactions
between the agents. Consider a protocol

ξ̇(t) = −L [A(t)] ξ(t) (18)

where A(t) = (aij(t)) is locally bounded. We say the protocol
(18) is essentially equivalent to (4) if

∞∫
0

|aij(t)− aij(t)| dt < ∞ ∀ i, j.

We are going to show that the essentially equivalent protocol
provides the same limit sets for the solutions. Let B1 := {x ∈
RN : |x|1 ≤ 1 ∀ i} be a unit ball in the | · |∞-norm, positively
invariant by Lemma 11: x(t0) ∈ B1 =⇒ x(t) ∈ B1 ∀ t ≥ t0.

Definition 3: Let Ωt0,x0
:= {y ∈ RN : ∃tn → ∞ :

x(tn|t0, x0) −→
n→∞

y)}. We call the set Ω :=
⋃

t0,x0
Ωt0,x0

⊆ B1

the Ω-set of the system (4) (the union is over t0 ≥ 0, x0 ∈ B1).
Lemma 12: Suppose the protocols (4) and (18) are essentially

equivalent. Then for any ε > 0 there exists T0 = T0(ε) such
that ξ(T0) = x(T0) ∈ B =⇒ |x(t)− ξ(t)|∞ ≤ ε ∀ t ≥ T0. In
particular, the systems (4) and (18) have equal Ω-sets.

Proof: Since x(t0) ∈ B1 =⇒ x(t) ∈ B1 ∀ t ≥ t0 thanks
to Lemma 11, one has |Φ(t|t0)|∞ ≤ 1 ∀ t0 ≥ 0 ∀ t ≥ t0. Let
T0 > 0 be so large that

∫∞
T0
|L[A(t)]−L[A(t)]|∞dt<ε. Apply-

ing Lemma 11 to (18) implies that ξ(T0) ∈ B =⇒ ξ(t) ∈ B
∀ t ≥ T0, and hence Δ(t) := (L[A(t)]− L[A(t)])ξ(t) satisfies
the inequality

∫∞
T0

|Δ(t)|∞dt < ε. Since ξ′(t) = −L[A(t)]ξ +
Δ(t), condition x(T0) = ξ(T0) ∈ B implies

ξ(t)− x(t) = ξ(t)− Φ(t|T0)ξ(T0) =

t∫
T0

Φ(t|s)Δ(s)ds

and therefore |ξ(t)− x(t)|∞ ≤
∫ t

T0
|Φ(t|s)|∞|Δ(s)|∞ds < ε.

This proves the first claim from where the second one imme-
diate follows: indeed, for any solution x(t|t0, x0) with t0 ≥ 0,
x0 ∈ B and any ε > 0 one can find T0 such that |ξ(t|T0, ξ0)−
x(t|t0, x0)|∞= |ξ(t|T0, ξ0)−x(t|T0, ξ0)|∞ ≤ ε for any t ≥ T0,
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where ξ0 := x(T0|t0, x0) ∈ B. Therefore, any set Ωt0,x0
from

Definition 3 belongs to the Ω-set of (18) and thus the whole
Ω-set of (4) belongs to the Ω-set of (18). The inverse inclusion
is proved in the same way. �

Remark 4: Such properties of the protocol as modulus
consensus, stability, bipartite consensus, and “partial” modulus
consensus (modulus agreement among a subgroup of agents) in
fact depend only on the Ω-set. For instance, modulus consensus
is established if and only if the Ω-set is comprised of the set
{x ∈ B : |x1| = · · · = |xN |}. Lemma 12 implies that those
properties are preserved, replacing the protocol with essentially
equivalent one.

We are now going to prove Lemmas 3, 5. Lemma 3 immedi-
ately follows from Lemma 11 since MN (t) = maxj |xj(t)|.

Proof of Lemma 5: Suppose the protocol (4) establishes
bipartite consensus. Lemma 12 and Remark 4 show that, with-
out loss of generality, one may assume ajk ≡ 0 unless j es-
sentially interacts with k, i.e., (j, k) ∈ E [A(·)]. If the topology
is not EQSC, then the graph G[A(·)] is not QSC and thus, as
shown in [5], there exist non-empty disjoint subsets V1, V2 ⊂
1 : N that has no incoming arcs: ajk = 0 if j ∈ V1, k �∈ V1 or
j ∈ V2, k �∈ V2. Therefore, the opinions of agents from V1 are
independent on the opinions of agents from V2, and hence
bipartite consensus is impossible. �

D. Proof of Theorems 3, 4 and Corollary 3

Henceforth G[A(·)] is cut-balanced. The cornerstone of the
proofs is the following lemma, based on Lemma 11.

Lemma 13: For a given solution of (4), let η̃ji(t) :=

|ãji(t)|(θ̃ji(t)Mi(t)−Mj(t)), where θ̃ji are the same as in
(16). Then η̃ji ∈ L1[0;∞] for any i, j, so that Ṁj ∈ L1[0;∞].

Proof: Lemma 11, which is valid for any dynamic graph,
shows that η̃N1, . . . , η̃N,N−1 ∈ L1[0;∞] since η̃Nj ≤ 0 and
ṀN ∈ L1. We are going to show that η̃N−1,j ∈ L1.

Note that |η̃Nj(t)| ≥ |ãNj(t)|(MN (t)−MN−1(t)) for any
j< N . Indeed, |θ̃N,jMj−MN | ≥ |MN | − |θ̃N,jMj | ≥ MN −
MN−1 since Mj ≤ MN−1. Applying the definition of cut-
balance (2) to V ′ = {k1, k2, . . . , kN−1} and V ′′ = {kN}, one
obtains

∑
j<N |ãjN (t)| ≤ K

∑
j<N |ãNj(t)|. Therefore the

function SN (t) � (MN (t)−MN−1(t))
∑N−1

j=1 |ãjN (t)| is

summable. Note that if η̃N−1,N (t) > 0 then θ̃N−1,N (t) = 1
and η̃N−1,N (t) = |aN−1,N(t)|(MN (t)−MN−1(t)). Thus,
η̃+N−1,N (t) ≤ SN (t) and hence η̃+N−1,N ∈ L1. By invoking
(17) for j = N − 1, one obtains that

ṀN−1(t) = −η̃−N−1,N (t)+

N−2∑
j=1

η̃N−1,j(t)+ η̃+N−1,N (t). (19)

Since −η̃−N−1,N(t) ≤ 0 and η̃N−1,j(t) ≤ 0 for any t ≥ 0 and
the last term in (19) is L1-summable, we either have η̃−N−1,N ,

η̃N−1,j ∈ L1 or
∫∞
0 ṀN−1(t)dt = −∞. The latter is impossi-

ble since MN−1(t) ≥ 0. Thus η̃N−1,j ∈ L1[0;∞] ∀ j.
Our next step is to prove that η̃N−2,j ∈ L1 for any j. We note

that for any j ≤ N − 2 and r = N − 1, N we have |η̃rj(t)| ≥
|ãrj(t)|(MN−1(t)−MN−2(t)). Applying (2) to V ′ = {k1,

k2, . . . , kN−2} and V ′′ = {kN−1, kN}, we obtain that∑N−2
j=1

∑N
r=N−1|ãjr(t)|≤K

∑N−2
j=1

∑N
r=N−1|ãrj(t)| and hence

the function SN−1(t) � (MN−1(t)−MN−2(t))
∑N−2

j=1 ×∑N
r=N−1 |ãjr(t)| belongs to L1. If η̃N−2,N−1(t) > 0, one has

η̃N−2,N−1(t)= |ãN−2,N−1(t)|(MN−1 −MN−2(t)). Therefore,
η̃+N−2,N−1 ≤ SN−1. Analogously, if η̃N−2,N (t) > 0 then
η̃N−2,N (t) = |ãN−2,N (t) |(MN (t) −MN−1(t) + MN−1 −
MN−2(t)) and hence η̃+N−2,N ≤ SN−1 + SN . Thus η̃+N−2,N ,

η̃+N−2,N−1 ∈ L1[0;∞]. Applying (17), we get

ṀN−2(t) = −η̃−N−2,N−1(t)− η̃−N−2,N (t) +

N−3∑
j=1

η̃N−2,j(t)

+ η̃+N−2,N−1(t) + η̃+N−2,N (t).

Since−η̃−N−2,N (t) ≤ 0,−η̃−N−2,N−1(t) ≤ 0 and η̃N−2,j(t) ≤ 0
for j < N − 2, then either all of these functions are summa-
ble or

∫∞
0 ṀN−2(t)dt = −∞. The latter is impossible since

MN−2(t) ≥ 0. Therefore, η̃N−2,j ∈ L1[0;∞] ∀ j.
Applying the same procedure, one proves that SN−2(t) �

(MN−2(t)−MN−3(t))
∑N−2

j=1

∑N
r=N−2 |ãjr(t)| is summable

and η̃N−3,j ∈ L1[0;∞] ∀ j, and so on, η̃ij ∈ L1[0;∞]. �
Corollary 4: For any solution of (4) one has ηij :=

|aij |(θijχj − χi) ∈ L1[0;∞] and χ̇i ∈ L1[0;∞], so the finite
limits χ0

i = limt→+∞ χi(t) and x0
i := limt→+∞ xi(t) = ±χ0

i

exist. If (i, j)∈E [A(·)] then |x0
i |= |x0

j |; moreover,x0
i =x0

j when
(i, j) ∈ E+[A(·)] and x0

i = −x0
j when (i, j) ∈ E−[A(·)]; as a

consequence, x0
i = x0

j = 0 if (i, j) ∈ E+[A(·)] ∩ E−[A(·)].
Proof: Since k1, . . . , kN is just a permutation of the set

1 : N , we have
∑

i,j |ηij | =
∑

i,j |η̃ij |, and hence ηji ∈
L1[0;∞] for any i, j. From (16) one immediately obtains that
χ̇i ∈ L1[0;∞] for any i, from where the existence of the finite
limits χ0

i := limt→+∞ χi(t) is immediate. The limits x0
i =

limt→+∞ xi(t) = ±χ0
i exist since xi are continuous. From

|ηij(t)| ≥ |aij(t)||χj(t)− χi(t)| we know that if δ := |χ0
i −

χ0
j | > 0, for large t > 0 one has |ηij(t)| ≥ |aij(t)|δ/2 and thus∫∞
0 |aij(t)|dt < ∞ (aij are locally bounded). Therefore, χ0

i =

χ0
j whenever i and j essentially interact. Suppose that x0

i =

x0
j �= 0. As t → ∞, one has sgn xi(t) = sgn x0

i = sgn xj(t)
and thus if ajk(t) < 0, we have ηij(t) = |aij(t)|(−xi(t)−
xj(t)). Thus |ηij(t)| ≥ |a−ij(t)||x0

i | for t > 0 sufficiently large,
from where one has that

∫
ij |a

−
ij(t)|dt < ∞. So if the agents

essentially compete, the option x0
i = x0

j �= 0 is impossible, and
thus x0

i = −x0
j (with possibility of x0

i = x0
j = 0). Analogously,

one can easily show that |ηij(t)| ≥ |a+ij(t)||x0
i | for t > 0 suf-

ficiently large if x0
i = −x0

j �= 0 which proves the essential
cooperation excludes the possibility of x0

i = −x0
j �= 0 and thus

x0
i = x0

j . At last, simultaneous essential cooperation and essen-
tial competition imply that x0

i = x0
j = −x0

j = 0. �
Corollary 5: If the network topology is ESC, the protocol (4)

establishes modulus consensus (χ0
1 = · · · = χ0

N ), and χ0
j = 0

unless G± is well-defined (E+ ∩ E− = ∅) and SB.
Proof: The first statement immediately follows from

Corollary 4 since for any path i1, i2, . . . , ir in G one has χ0
i1
=

· · · = χ0
ir

. Assume that for some initial vector x(0) one has
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χ0
i �= 0. Corollary 4 implies that no pair of agents may be both

essentially cooperative and essentially competitive, and thus
E+ ∩ E− = ∅ so the signed graph G± is well-defined. We have
to show G± is structurally balanced, in other words [17], [28],
has no negative cycles. Indeed, the weight of any arc (i, j) ∈ E
is sij = 1 if (i, j) ∈ E+ (hence x0

i = x0
j ) and sij = −1 if

(i, j) ∈ E− (and thus x0
i = −x0

j ) so that x0
ix

0
jsij ≥ 0.

Given a cycle i1, . . . , in = i1, Multiplying the inequalities
x0
ik
x0
ik+1

sikik+1
≥ 0, where i1, i2, . . . , in = i1 is a cycle and

k ∈ 1 : (n− 1), one has si1i2si2i3 , . . . , sin−1in(x
0
1, . . . , x

0
n)

2 ≥
0 which means that the cycle is positive. �

Proof of Theorem 3: The necessity in the first statement
part follows from Lemma 5 and Corollary 5: indeed, the ESC
condition is necessary for bipartite consensus independent of
the cut-balance property. Under the ESC condition, bipartite
consensus is possible only when G± exists and is SB. To prove
sufficiency, suppose that G± is well-defined, strongly connected
and structurally balanced. Thanks to Corollary 5, the protocol
(4) establishes modulus consensus, and it remains to show it is
bipartite consensus. Indeed, consider the protocol (18), where
A(t) = (ajk(t)) and ajk(t) = a+jk(t) when (j, k) ∈ E+,
ajk(t) = a−jk(t) when (j, k) ∈ E−, and otherwise ajk ≡ 0. The
protocol (18) is equivalent to the protocol (4) and hence
establishes modulus consensus of the same type as (18) by
Lemma 12 and Remark 4. Let V1, V2 be the hostile camps of the
graph G±, covering all its nodes. Taking xj = +1 for j ∈ V1

and xj = −1 for j ∈ V2, one can show that x = (x1, . . . , xN )T

is an equilibrium point for (18) and hence bipartite consensus
is reached. Accordingly to Corollary 4, x0

i = x0
j if i, j ∈ V 1

r or
i, j ∈ V 2

r , and x0
i = −x0

j whenever i ∈ V 1
r , j ∈ V 2

r ; therefore,
opinions polarize unless E−

r = ∅. The claim about stability
also follows from Corollary 4. �

Remark 5: It may seem that Theorem 3 may be proved by
applying the result for unsigned graphs [10] to the system,
obtained from the protocol (18) just constructed via the gauge
transformation (as Lemma 4 was derived from the relevant
result on cooperative agents). Unfortunately, this is not the case.
The problem is that the graphG[A(·)] is no longer cut-balanced.
This property depends not only on the integrals

∫∞
0 |ajk(s)|ds,

but on the whole function A(t), and is lost after removing
inessential interactions.

Proof of Theorem 4: The first and the last claims follow
from Corollary 4. The second claim is proved by passing to an
auxiliary protocol (18), constructed in the proof of Theorem 3.
Let V 1

r and V 2
r be hostile camps in G±

r , then taking xi = +1
for i ∈ V 1

r , xi = −1 for i ∈ V 2
r and xi = 0; otherwise, we get

an equilibrium point of (18), and therefore, modulus consensus
in the subcommunity Vr is bipartite. Thanks to Corollary 4,
x0
i = x0

j if i, j ∈ V 1
r or i, j ∈ V 2

r , and x0
i = −x0

j whenever
i ∈ V 1

r , j ∈ V 2
r ; therefore, opinions polarize unless E−

r = ∅,
when bipartite consensus is established. �

E. Proof of Theorem 2 and Corollary 1

We start with some useful estimates for the solutions.
Lemma 14:Suppose that A : [t0; t1]→RN is a matrix-valued

function, |A(t)|∞≤R for a.a. ∈ [t0; t1] and θ0
Δ
= e−R(t1−t0). For

any solution of (4) one has

|xk(t)|≤θ0 |xk(t0)|+(1−θ0) |x(t0)|∞ ∀ k∈1 : N ∀ t∈ [t0; t1].
(20)

Proof: Let M � |x(t0)|∞. Thanks to Lemma 3, one
has |xj(t)| ≤ M for any j, t. Let sk(t) �

∑N
j=1 |akj(t)| and

Sk(t)
Δ
=

∫ t

t0
sk(ξ)dξ. By assumption, sk(t) ≤ R and hence

Sk(t) ≤ R(t1 − t0) ∀ t ∈ [t0; t1]. From (16) one derives that

χk(t) ≤

⎡⎣χk(t0) +

t∫
0

eSk(τ)
N∑
i=1

|aki(τ)|χi(τ)dτ

⎤⎦ e−Sk(t).

(21)

Since χi(τ) ≤ M , one has
∑

|aki(τ)|χi(τ) ≤ Msk(τ) and
χk(t)≤M + [χk(t0)−M ]e−Sk(t)≤M + [χk(t0)−M ]θ0. �

Lemma 15: Under assumptions of Lemma 14, suppose the

graphG[
∫ t1
t0

abs A(t)dt] is strongly ε-connected and θ
Δ
= εθ20 <

1. Let V � 1 : N be a non-empty set, |x(t0)|∞ = M and
maxj �∈V |xj(t0)| = M ′. Then there exists k ∈ V such that

|xk(t1)| ≤ θM ′ + (1 − θ)M. (22)

Proof: Since the graph G[
∫ t1
t0

abs A(t)dt] is strongly
ε-connected, there exist i �∈ V and k ∈ V such that∫ t1
t0

|aki(t)|dt ≥ ε. From (20) one has χj(t) ≤ M + (M ′ −
M)θ ∀ j �∈ V and χj(t) ≤ M ∀ j ∈ V , which entails that

eSk(τ)
∑N

i=1 |aki(τ)|χi(τ)≤MeSk(τ)sk(τ)−(M−M ′)θε (we
used that eSk(τ) ≥ 1). Inequality (21) yields now that

χk(t1) ≤ M + (M ′ −M)θ0εe
−Sk(t1) ≤ M + (M ′ −M)θ

since eSk(t1) ≤ eR(t1−t0) = θ0. �
Proof of Theorem 2: By assumption, there exist R, ε,

T > 0 such that |A(t)|∞ ≤ R and the graph Gt =

G[
∫ t+T

t abs A(τ)dτ ] is strongly ε-connected for any t ≥ 0.
Let θ0 = e−RT and θ = εθ20, without loss of generality we may
assume that θ < 1.

We know from Lemma 3 that the maximal modulus MN (t)
always has a limit: MN (t) → M∗ as t → +∞ (here we use
the notation introduced in Section VI-C so that Mj(t) is the
j-th modulus in the ascending order, Mj(t) = |xkj (t)(t)|). Our
goal is to show that Mj(t) → M∗ via induction by j = N,N −
1, . . . , 1. If M∗ = 0 the latter claim is trivial since 0 ≤ Mj(t) ≤
MN (t); hence we may assume that M∗ > 0.

For j = N our claim holds by definition of M∗. Suppose we
have proved that MN(t),MN−1(t), . . . ,Mr+1(t) → M∗ as
t → +∞ and have to show that Mr(t) → M∗. Since Mr(t) ≤
Mr+1(t), it suffices to show that limt→+∞Mr(t) ≥ M∗. As-
sume on the contrary that limt→+∞Mr(t) = m < M∗. For any
δ > 0, we have M∗ + δ > Mj(t) > M∗ − δ for large t > 0 and
j > r. On the other hand, there exist a sequence tn → ∞,
along which Mr(tn) < m+ δ. Assume that δ > 0 is so small
that (m+ δ)θ + (M∗ + δ)(1− θ) < M∗ − δ and (m+ δ)θ0 +
(M∗ + δ)(1−θ0)<M∗−δ, that is, 2δ<(M∗−m)max(θ0, θ).

Accordingly to Lemma 15, applied for t0 = tn and V =
{kr+1(tn), . . . , k

N(tn)}, M = M∗ + δ and M ′ = m∗ + δ,
there exists j ∈ V such that |xj(t0 + T )| < M∗ − δ. Similarly,
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for any j �∈ V we have |xj(tn + T )| < M∗ − δ thanks to
Lemma 14. Therefore, at time tn + T there are at least r + 1
agents, whose opinions have moduli less than M∗ − δ and
hence Mr+1(tn + T ) ≤ M∗ − δ for any n. We arrived at the
contradiction with the induction hypothesis. We thus proved
that Mj(t) → M∗ ∀ j for any solution of (4), that is, modulus
consensus is established. �

Proof of Corollary 1: By virtue of Theorem 2, modulus
consensus is established. According to Lemma 1 it only three
types of such a consensus are possible, which are stability,
polarization and consensus. The common feature of the first
two types is that for a.a. x(0) there exists i ∈ 1 : N such that
limt→+∞ xi(t) ≤ 0. It is well known [6], [9], [46] that the con-
vex hull of the agents’ states Δ(t) = [mini xi(t),maxi xi(t)] is
non-expanding over time. Hence if xi(0) ≥ 1 ∀ i, then xi(t) ≥
1 for any t ≥ 0, so the first two options are not possible. �

F. Proof of Lemma 6 and Theorems 5, 6

We start with proof of Lemma 6, being a basis for Theorem 5.
Proof of Lemma 6: We consider system (9), and the proto-

col (10) may be studied in the same way. Equation (11) is
immediate from the definitions of aij and Hij . As follows from
Lemma 3, the solutions of (11) remain bounded since |x(t)|∞ ≤
|x(0)|∞. Since Hij(y, z) > 0 are continuous functions and the
set {(y, z) : |y|, |z| ≤ |x(0)|∞} is compact, there exist M >
m > 0 such that m ≤ Hij [y, z] ≤ M whenever |y|, |z| ≤
|x(0)|∞. By substituting y := xj(t)sgn aij(t) and z := xi(t),
one shows that m|ajk| ≤ |ajk| ≤ M |ajk|, from where the
claim of Lemma 6 is obvious. �

Now we proceed with the proofs of Theorems 5 and 6.
Proof of Theorem 5: Since the right-hand sides of (9),

(10) are smooth in x, the solutions exist locally and are unique.
According to Lemma 3 and (11), the solutions remain bounded
and thus infinitely prolongable. Under the USC assumption,
modulus consensus follows from Theorem 2 and Lemma 6. If
the graph G[A(·)] is ESC and cut-balanced, modulus consensus
is implied by Theorem 3. �

Proof of Theorem 6: Using Lemma 3, one proves that
the solution is bounded and hence its derivative also remains
bounded due to (13), so any solution is infinitely prolongable.
Since x(t) is bounded, A(t) is also bounded due to (13). The
remaining claims follow now from Theorems 2, 3. �

VII. CONCLUSION

In the present paper, we extend a model of opinion dynamics
in social networks with both attractive and repulsive inter-
actions between the agents, which was proposed in recent
papers by C. Altafini, who considered the conventional first-
order consensus protocols over signed graphs. Altafini showed,
in particular, the possibility of opinion polarization if the inter-
action graph is structurally balanced. In general, the protocol
establishes modulus consensus, where the agents agree in mod-
ulus but may differ in signs (which not excludes convergence
of all opinions to zero). In the present paper, we have exam-
ined dynamics of Altafini’s protocols with switching directed
topologies and offer sufficient conditions for reaching modulus

consensus that boil down to uniform strong connectivity of the
network. Moreover, under the assumption of cut-balance, the
uniform connectivity may be further relaxed. In this case, we
have obtained necessary and sufficient conditions for modulus
consensus, classified into stability (converges of opinions to
zero) and bipartite consensus (consensus or polarization). Get-
ting rid of the restriction of static topologies allows to examine
linear and nonlinear dynamics of social networks, where the
agents may change their relations from friendship to hostility
and vice versa. We are currently working with sociologists to
test the theoretical results presented in this paper using data
from human social groups.
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