Topologically nontrivial loop monopoles
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The loop monopoles—new type of topological excitations in gauge theories—are
studied by the algebraic-topology methods. Each loop monopole with a continuous
kernel is shown to be a combination of an ordinary (spherical) monopole and a
string-shaped configuration of the gauge field.

The analysis of topologically nontrivial gauge-field configurations—topological
excitations—attracts considerable interest in the Yang-Mills-Higgs gauge theories.
Only the excitations with a relatively simple geometry—monopoles (spherical config-
urations),' string-like configurations,' strings that terminate at the monopoles,’
strings that have monopoles in their kernels’—have so far been studied. The fact that
there is no a priori restriction on the existence in nature of other types of topological
excitations provides an incentive to analyze them. In the present letter we study the
stability and classification of loop-shaped excitations which we call loop monopoles.

We consider the stationary Yang-Mills-Higgs theory, in which the gauge group G
is disrupted by the Higgs mechanism to the group H (G and H are Lie groups, HC G).
In such a theory the kernel of a loop monopole is a bagel-shaped region L (Fig. 1),
which contains a local (gauge) G symmetry, whereas outside the bagel there is only a
local H symmetry. Let us consider the classification of the loop monopoles and their
(topological) stability.

In terms of the stratified-space formalism—the geometrical analog of the gauge
theories'—the loop monopoles are in a one-to-one correspondence with such principal
G stratifications, £, above the baseline R* (R? is the three-dimensional Euclidean
space) which reduce to the H stratifications above the region R 3\ L. To find the loop-
monopole classification, it is therefore sufficient to calculate the set of stratification-
equivalence classes &. This problem reduces the problem of a homotopic classification
of the mappings L—B; and R>\L B, (here B is the baseline of a universal G
stratification, and By, is the baseline of a universal H stratification) which are continu-
ously extended on each other.” Solving the above problem by means of the obstacle
theory,>® we find that the loop monopoles can be classified by the (a, ) sets—the
elements of the group

FO(G,H):Wx(G,H)X 7T2(G,H) (1)

there 7, (G,H) is the relative homotopic group], where aer,(G,H) and Berw,(G,H).
For example, G =S0(3) and H = U(1),

°So3), U(1) =2, x Z . (2)
Here aeZ, and feZ.
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FIG. 1. A loop monopole. A local G symmetry prevails in
the monopole kernel and a local H symmetry prevails outside
of its kernel.

According to (1), each loop monopole is a combination of a spherical monopole
and a string-like configuration. The properties of a string like those of a loop monopole
are characterized by the subcharge «, while the properties of a spherical monopole are
characterized by the subcharge 5. A similar result holds for loop defects in condensed
media.® The stability of a loop monopole depends in different ways on the topological
subcharges a and : (a) If a is a trivial subcharge (@ =0) and /8 is a nontrivial
subcharge, the loop monopole can be “torn” by means of a continuous transformation
of the gauge field strength, after which it becomes a spherical monopole (character-
ized by only 3). (b) « is nontrivial and £ = 0. The loop monopole is simply a string
coiled into a ring. This configuration cannot be “broken,” but the monopole can be
eliminated completely by reducing the radius of its loop (by tightening it). (¢) a and
[ are nontrivial. A loop monopole cannot be “torn,” but it can be transformed into a
spherical monopole by reducing the radius of its loop.

Let us now consider the Yang-Mills-Higgs theory with a double symmetry break-
ing: P~G—H (P, G, and H are the Lie groups, HCGCP). Some of the possible
topologically nontrivial configurations in such a theory are strings, which contain
spherical monopoles in their kernels® (Fig. 2), and loop monopoles, which also con-
tain spherical monopoles in their kernels (Fig. 2). A topological analysis of such loop
monopoles (which is similar to the analysis of loop defects in condensed media®)
shows that these stable monopoles are classified by the sets (7,6,€,,...,€,,, )—the ele-
ments of the group

™ (P, G, Hy=n,(H) x Im (1, (G, H)> mo(H)) x [A(P, G, H)]". (3)

Here m is the number of spherical monopoles (m>2), yer, (H), 8 is an element of the
group Img—a form of homomorphism ¢, €; is an element of the group

AP, 6, H); = (M @/Ker (1,6) > (G, B OKer M@ > @),  (4)

(i =1,...,m), and the homomorphisms @, ¥, and @ belong to exact sequences of the

FIG. 2. A loop monopole which contains m spherical
monopoles (m = 3) in its kernel. A local (gauge) P
symmetry prevails in the kernel of each spherical
monopole. A local G symmetry prevails in the re-
maining part of the kernel (bagel) of the loop mono-
pole and a local H symmetry prevails outside of its
kernel.
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homotopic groups and of their homomorphisms (Kery and Kerf are the homomor-
phism kernels). The subcharge ¥ describes the spherical monopole and the subcharge
&8 describes the string characteristic of a loop monopole. Each subcharge €; character-
izes a gauge-field configuration at the kernel (bagel) of the i-th to (i + 1) “inner”
spherical monopole. The subcharges €, _, and ¢;, together describe the i-th spherical
monopole. If €;,_ |, = ¢,, the spherical monopole is unstable.

Accordingly, the loop monopoles with continuous kernels (which are combina-
tions of spherical monopoles and strings) and the loop monopoles with kernels that
contain spherical monopoles are (topologically) stable gauge-field configurations.
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