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Abstract. Two theoretical models are proposed, which describe solid-state amorphizing
transformations at, respectively, grain boundaries and dislocations in crystalline solids. In the
framework of the former model, the driving force for the formation of an amorphous
intergranular layer is revealed and estimated, which is related to changes in the elastic energy
density of a conventional grain boundary that transforms into the amorphous layer. The
second model describes nucleation of the amorphous phase at the cores of lattice and
interfacial dislocations as a process associated with the special splitting of such dislocations.
In the framework of the model, the special role of elastic distortions in solid-state
amorphization at dislocation cores is revealed and examined.

1. Introduction

Solid-state amorphizing transformations or, in other terms,
crystal-to-glass transitions are the subject of intensive studies
(for a review see [1–6]). In particular, the solid-state
amorphizing transformations occur in multilayer coatings
consisting of alternate metallic layers, in mechanically
alloyed metallic powders, in irradiated crystals, in metallic
alloys under high-strain deformation, and in ceramics at
sintering processes.

Up to now, physical micromechanisms of the solid-state
amorphization have not been unambigiously recognized. At
the same time, such micromechanisms are of great interest
for the development of technologies related to the solid-
state amorphizing transformations. In experimental studies
the role of defects has been revealed to be very important
in amorphization phenomena in crystals. In particular,
it has been experimentally observed that the amorphous
phase commonly nucleates at interphase and (inter)grain
boundaries [7–9] and, sometimes, at interfacial and lattice
dislocations [10, 11]. In order to take into account the
important role of defects in the solid-state amorphization,
several theoretical models have been proposed describing
such amorphization micromechanisms as the splitting of
disclinations at triple junctions of grain boundaries [12, 13],
special diffusion-induced grain boundary migration [14],
amorphization in regions with high-density ensembles of
point defects [15, 16], and deformation-induced splitting
of grain boundaries intersected with pile-ups of lattice
dislocations [17]. Also, the thermodynamic analysis of

the effect of interfaces on the solid-state amorphization
in metallic multilayer coatings has been performed by
Benedictuset al [18]. The main aim of this paper is
to suggest and theoretically describe the amorphization
micromechanisms which are the elastic-energy-decrease-
induced splitting of grain boundaries and the special splitting
of lattice and interfacial dislocations.

2. Elastic energy of amorphous intergranular
boundaries

Elastic distortions induced by a grain boundary are effectively
described as those induced by grain-boundary dislocations
(GBDs) arranged in a wall-like ensemble [19–21]. Such
GBDs exist in any grain boundary for geometric reasons;
more precisely, GBDs play the role as elemental carriers
of grain-boundary misorientation. If a grain boundary
is formed at quasi-equilibrium conditions, interspacings
between GBDs and their Burgers vectors are strictly
caused by geometric parameters (misorientation, etc) of the
boundary. If a grain boundary is formed at non-equilibrium
conditions (say, by hot-pressing methods), additional GBDs
exist in the boundary that are disorderedly distributed and
induce high elastic distortions, see for example [20].

In the light of the GBD picture, we think the formation of
amorphous intergranular boundaries as a process associated
with a re-distribution of GBDs, leading to a decrease of their
elastic energy. Actually, the disordered amorphous structure,
in contrast to equilibrium structures of non-amorphized grain
boundaries, does not impose strict geometric restrictions on
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(a) (b)

Figure 1. Configurations of GBDs in (a) non-amorphized
boundary and (b) amorphous boundary, in which case the
amorphous film (dotted region) is formed between two dislocation
walls.

the spatial distribution of GBDs. This allows GBDs to be
arranged in amorphous boundaries in a way to decrease their
elastic energy in comparison with the elastic energy of GBDs
in ‘equilibrium’ non-amorphized boundaries.

In order to estimate the difference in the elastic
energy density between amorphous and non-amorphized
boundaries, hereinafter we will model in the first
approximation a non-amorphized grain boundary as a
periodic wall of GBDs with periodh1 (figure 1(a)), and
amorphous boundary as two periodic walls of GBDs, each
having periodh2, in which case the amorphous film is located
between these two walls (figure 1(b)). GBDs belonging to
dislocation configurations in non-amorphized (figure 1(a))
and amorphous (figure 1(b)) boundaries are supposed to be
characterized by Burgers vectorsb1 andb2, respectively, that
satisfy the following equality:b1/h1 = 2b2/h2. In other
words, the dislocation charge per unit of boundary length is
the same for the model configurations of GBDs in question
(figure 1).

In the framework of our model, the difference1Wel

between the elastic energy densities of non-amorphized and
amorphous boundaries is as follows:

1W = W1−W2. (1)

Here W1 and W2 are the elastic energy densities of the
configurations of GBDs, shown in figures 1(a) and 1(b),
respectively. The elastic energy densityW1 of the GBD wall
(figure 1(a)) is as follows [22]:

W1 = Gb2
1

4π(1− ν)h1

[
πr0

h1
coth

πr0

h1
− ln

(
2 sinh

πr0

h1

)]
.

(2)

whereG denotes the shear modulus,ν the Poisson ratio, and
r0 the dislocation core radius†.

Let us consider the elastic energy densityW2. Following
Mura’s method [23], the elastic energy densityW2 can be
calculated as follows:

W2 = −1

2

∫
S

σijβ
∗
ij dS ′ (3)

whereσij denotes the stress field,β∗ij the plastic distortion
andS the surface at which the displacement jump occurs (for
more details, see appendix A). The plastic distortion of an
edge dislocation is defined as

β∗ij = δi(S){−bj } (4)

whereδi(S) =
∫
S
δ(r − r′) dS ′ with δ(r − r′) being the

three-dimensionalδ-function, r denotes the coordinates of
the surfaceS, r′ is the integration coordinate andbj is the
j th component of Burgers vector of the dislocation.

Since the configuration of GBDs in question (figure 1(b))
is periodic, it is sufficient to calculate the elastic energy
density of a GBDs configuration fragment with a length equal
to periodh2. In these circumstances, the plastic distortion
β∗ij is defined as the sum of the plastic distortions of two
dislocations that exist in the choosen GBDs configuration
fragment, namely the dislocation located at the point (x = 0,
y = 0) and the dislocation located at the point (x = λ, y = 0)
(see figure 1(b)), whereλ denotes the distance between the
dislocation walls or, in other words, the thickness of the
amorphous intergranular boundary.

The stress field is the sum of stress fields induced by the
two dislocation walls (figure 1(b)), that is

σij = σ (1)ij (x, y) + σ (1)ij (x − λ, y) (5)

with σ (1)ij being the stress field of one of the dislocation walls.

Following [11], the fieldσ (1)ij is as follows:

σ (1)xx = −
Gb

2π(1− ν)h2
π sin 2πy∗

×cosh 2πx∗ − cos 2πy∗ + 2πx∗ sinh 2πx∗

(cosh 2πx∗ − cos 2πy∗)2

σ (1)yy = −
Gb

2π(1− ν)h2
π sin 2πy∗

×cosh 2πx∗ − cos 2πy∗ − 2πx∗ sinh 2πx∗

(cosh 2πx∗ − cos 2πy∗)2

σ (1)xy =
Gb

2π(1− ν)h2
2π2x∗

cosh 2πx∗ cos 2πy∗ − 1

(cosh 2πx∗ − cos 2πy∗)2

σ (1)zz = ν(σxx + σyy)

σ (1)xz = σ (1)yz = 0 (6)

† In general, the energy of GBD cores contributes to the elastic energy of the
configuration of GBDs. However, the atomic structures of both conventional
and amorphous intergranular boundary phases are characterized by rather
low values of density, in which case the contribution of GBDs cores to
the elastic energy is low. In addition, the configurations of GBDs, shown
in figures 1(a) and 1(b), have the same sum dislocation charge (Burgers
vector). This causes only a small difference between the contributions
of GBD cores to the elastic energy densities of these configurations. At
the same time, namely the difference between the elastic energy densities
of the configurations of GBDs is of interest in context of this paper. In
these circumstances, hereinafter in our calculations we will neglect the
contributions of GBD cores to the elastic energy densities.

2834



Amorphization at defects

wherex∗ = x/h2 andy∗ = y/h2 are relative coordinates.
With (4)–(6) substituted to (3), we obtain the following

formula forW2:

W2 = Gb2
2

4π(1− ν)h2

[
2f

(
πr0

h2

)
+ f

(
π
r0 + λ

h2

)
+f

(
π
r0 − λ
h2

)]
. (7)

Heref (α) = α cothα − ln |2 sinhα|.
From formulae (2) and (7) we find a dependence of

1Wel = W2 − W1 on the boundary thicknessλ, which is
shown in figure 2 (in units ofGr0/[4π(1− ν)]) for h2 = 2r0
and some characteristic values of parametersb1 andb2. Its
specific feature is that1Wel is tentatively constant forλ > h2

(see figure 2). This is related to the fact that the two walls
of dislocations (figure 1) do not elastically interact with each
other, if the interspacingλ between them is higher thanh2,
the interspacing between neighbouring dislocations in each
wall, which (following to the theory of dislocations [22])
also plays the role as the screening length of stress fields of
dislocations belonging to a dislocation wall.

3. Role of elastic distortions in solid-state
amorphization at grain boundaries

Thus, in our model, the decrease (−1Wel) in the elastic
energy causes the basic driving force for the transformation
of a conventional grain boundary into an amorphous
intergranular layer (figure 3). There are also other
contributions to the change of the total free energy (or another
relevant thermodynamic potential) of the system, that are
related to the amorphizing transformation (figure 3). So,
such a transformation is accompanied by the formation of
two crystal/glass interfaces, each of them characterized by
energy densityWint (per unit area of interface). Following
[24],

Wint ≈ εa−cκ (8)

whereεa−c denotes the difference between the free-energy
densities of the amorphous and crystalline phases, andκ is
the characteristic spatial scale of structural inhomogeneities
in the amorphous phase. The value of 2Wint serves as an
energetic characteristic of the amorphizing transformation
(figure 3).

To deal with another characteristic, hereinafter we
assume that the transformation of a conventional grain
boundary into an amorphous intergranular layer occurs at
its initial stage in a jump-like way, with the thickness
λ0 of the conventional boundary abruptly changing into
the thicknessλ0 + 1λ of the amorphous layer (figure 3).
This transformation results, in particular, in both the
crystal-to-glass transition occuring within the region with
the thickness1λ and the grain-boundary-phase-to-glass
transition occuring within the region with the thicknessλ
(figure 3). Since the free-energy densities of the grain
boundary phase and the glassy phase are close, the transitions
in question are approximately characterized by the following
contribution

1Wa−c ≈ 1λεa−c (9)

Table 1. 1W for various values ofb1 andb2.

1W
Values ofb1 andb2 (Ga)

b2 = a/10,b1 = 6b2 −0.164
b1 = 10b2 −0.154
b1 = 20b2 −0.120

b2 = a/20,b1 = 6b2 −0.170
b1 = 10b2 −0.167
b1 = 20b2 −0.158

to the total free-energy density per unit area of the amorphized
boundary.

Thus the free-energy decrease related to the amorphizing
transformation at its initial (jump-like) stage (figure 3) is as
follows:

1W ≈ W1−W2|λ=λ0+1λ − (2κ +1λ)εa−c (10)

whereW1 andW2(λ) are given by formulae (2) and (7),
respectively. The amorphizing transformation (figure 3)
occurs as an energetically profitable transformation, if
1W > 0. When1W < 0, the amorphizing transformation
is energetically forbidden.

In order to estimate1W , let us discuss entityεa−c which
figures on the right-hand side of (10). In doing so, we
distinguish the two following situations:

(1) The initial crystalline phase contains ‘ordinary’
(small or intermediate) density of defects near the grain
boundary. The chemical composition of the boundary and its
vicinity is constant and close to that of the adjacent crystalline
grains. In this situation (which is rather ordinary in crystals)
the differenceεa−c between the free-energy densities of the
amorphous and crystalline phases ranges fromG/83 toG/63
(see [25] and references therein, in whichεa−c was measured
for glass-to-crystal transitions resulting in crystals with small
densities of defects), whereG is the shear modulus. With this
taken into account, for characteristic values of parameters
κ ≈ 1.5×10−9 m (see [26] and references therein),λ0 ≈ 3a
(wherea ≈ 3 × 10−10 m is the crystal lattice parameter),
1λ ≈ 2a, r0 ≈ a, ν = 1

3, εa−c = G/70, b2 ≈ a/10 and
a/20, andb1 = 6b2, 10b2, and 20b2 from (2), (7), and (10) we
find1W < 0 (see table 1). As a corollary, the amorphizing
transformation (figure 3) is energetically forbidden in the
discussed situation.

(2) The initial crystalline phase contains a high density
of defects and/or the chemical composition of a grain
boundary and its vicinity is different from that of the adjacent
crystalline grains. Such a situation occurs, in particular, in
crystalline solids under irradiation treatment and high-strain
deformation that produce high-density ensembles of defects.
The presence of high-density ensembles of irradiation- or
deformation-produced defects essentially increases the free-
energy density of the crystalline phase, in which case
this density becomes close to the free-energy density of
the amorphous phase. As a result,εa−c in solids with
high densities of defects is essentially smaller thanεa−c in
solids with ‘ordinary’ (small or intermediate) densities of
defects. Also, the discussed situation (2) comes into play
in cintered ceramics, where the chemical composition of
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(a)

(b)

Figure 2. Dependence of1W onλ, (a) for b2 = r0/10 and (b) for b2 = r0/20. Curves 1, 2 and 3 correspond to values ofb1 = 6b2, 10b2

and 20b2, respectively.

the grain boundary phase is different from that of the bulk
phase, as well as in multilayer metallic coatings, in which
intensive grain boundary diffusion causes highly varied
spatial inhomogeneities of the chemical composition [1–4].
In these circumstances, the value ofεa−c characterizing grain
boundaries and their vicinities can be essentially lower than
the values ofεa−c in situation (1). More than that, due
to diffusional mixing, the value ofεa−c can even be less
than zero, which specifies the material in and near grain
boundaries in multilayer metallic coatings [1–4]. With
this taken into account, for characteristic values of the
parametersλ0 ≈ 3a, 1λ ≈ 2a, κ ≈ 5a (≈1.5× 10−9 m),
r0 ≈ a, ν ≈ 1/3, and b2 ≈ a/10 and a/20, from
(2), (7), and (10) we find dependences of1W on εa−c,
which are shown in figure 4.1W(εa−c) > 0, in some
ranges of the parameters (see figure 4), in which case the
transformation of a conventional grain boundary into an
amorphous intergranular layer (figure 3) is energetically
profitable.

Now let us turn to the analysis of a continuous spreading
of an amorphous intergranular layer, after the layer has
been initially formed in the jump-like way. The spreading
occurs continuously and is featured by a continuous change
(increase) of the thicknessλ of the amorphous layer. In these
circumstances, the driving force for the spreading, related to

Figure 3. The starting stage of the transformation of a
conventional grain boundary (with thicknessλ0) into an
amorphous intergranular layer (with thicknessλ0 +1λ).

decrease1Wel = W2−W1 in the elastic energy, is naturally
defined as

Fel = −
(

d1Wel

dλ

)
= Gb2

2π
2

4π(1− ν)h2
2

[
r0 + λ

h2

× csch

(
π
r0 + λ

h2

)2

− r0 − λ
h2

csch

(
π
r0 − λ
h2

)2]
. (11)

The driving forceF el related to decrease in the elastic energy
is high atλ 6 h2 and rather low atλ > h2, because the value
of 1Wel is highly sensitive toλ in the range ofλ > h2 and
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(a)

(b)

Figure 4. Dependences of1W onεa−c for (a) b2 = a/10 and (b) b2 = a/20. Curves 1, 2 and 3 correspond to values ofb1 = 6b2, 10b2 and
20b2, respectively.

is weakly dependent onλ in the rangeλ > h2 (see figure 2).
As a corollary, the forceFel plays the important role as a
driving force for the spreading of an amorphous layer, but
only at the formation stage characterized by values ofλ 6 h2.
For λ > h2, Fel stops being essential as a driving force, in
which case another thermodynamic forceF ′ mainly affects
the spreading of an amorphous layer.

Let us briefly discuss the forceF ′. This force originates
from spreading-induced changes in both the crystal/glass
interfacial-energy density 2κεa−c and the amorphous-layer
energy densityλεa−c, but not taking into account changes in
the elastic energy density. Sinceεa−c, generally speaking,
is dependent onλ (due to spatial inhomogeneities of the
chemical composition), the forcẽF in its general form is
defined as

F ′(λ) ≈ −εa−c(λ)− (2κ + λ)
dεa−c(λ)

dλ
(12)

The thermodynamic forceF ′ can be either a driving or
hampering force (either>0 or<0) for the spreading of an
amorphous layer in different solid systems, depending on the
structural characteristics and chemical composition of such
systems. A detailed (cumbersome and labour-consuming)
analysis ofF ′ is beyond the scope of this paper which is
devoted to the examination of the role of elastic distortions
in solid-state amorphizing transformations.

4. Role of elastic distortions in solid-state
amorphization at lattice and interfacial dislocations

The amorphous phase was observed experimentally to
be nucleated at lattice dislocation cores in quartz under
irradiation treatment [10]. Also, it has been revealed
experimentally that amorphous SiO2 precipitates are formed
at grain boundary steps (being sources of stress fields) in
Si bicrystals under thermal treatment [11]. In order to
explain these experimental data, in this section we suggest
a model that describes the splitting of dislocations as
an amorphization micromechanism. In doing so, special
attention is paid to the role of elastic distortions in such a
splitting process.

Within the framework of the proposed model, a pre-
existent, either lattice or interfacial, dislocation with Burgers
vector EB splits into a cylinder-like array of dislocations
with small Burgers vectors, in which case the core of the
pre-existent dislocation, in fact, spreads into the cylinder-
like region (figure 5). Since the resultant dislocations with
small Burgers vectors are partial, the cylinder-like region
is disordered and naturally treated as a nucleus of the
amorphous phase.

The basic driving force for the amorphizing splitting of
a dislocation is related to a splitting-induced decrease1W̃el

in the elastic energy of the dislocation. The hampering
forces for the splitting are commonly associated with the
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Figure 5. The splitting of a dislocation into a cylinder-like
ensemble of dislocations with small Burgers vectors, which is
accompanied by the formation of the amorphous (dotted) region,
the core of the split dislocation.

excess energy densitỹWc of the amorphous core of the
split dislocation and with the energy densitỹWint of the
crystal/glass interface whose formation results from the
splitting (figure 5).

Let us consider the splitting-induced decrease in the
elastic energy density, which can be divided into the three
terms

1W̃el = W̃r − W̃p + W̃d−d . (13)

HereW̃p andW̃r are the proper energy densities of the pre-
existent dislocation and that of the ensemble of the resultant
dislocations with small Burgers vectors.W̃d−d denotes
the energy density of the interaction between the resultant
dislocations.

The proper energy density of the pre-existent dislocation
with Burgers vectorEB is given by the following standard
formula (e.g. [22])

W̃p ≈ GB2

4π(1− ν)
(

ln
R

r0
+Z

)
(14)

whereGdenotes the shear modulus,ν the Poisson ratio,Z the
factor taking into account the contribution of the pre-existent
dislocation core to its energy (Z ≈ 1), r0 the dislocation
core radius (assumed to be close toa, the lattice parameter),
andR denotes the screening length of the dislocation stress
field. (The value ofR depends on the spatial distribution
of sources of stresses near the pre-existent dislocation [22].
For example, in a situation where the pre-existent dislocation
is one of chaotically distributed dislocations in a crystal,
R is commonly close to the mean interspacing between
dislocations of the ensemble [22].)

The splitting of the pre-existent dislocation into an
ensemble of partial dislocations with small Burgers vectors
(figure 5) is, in fact, a local transformation which does not
affect the long-range stress field of the transformed defect
configuration. In these circumstances, the screening length of
stress fields of the partial dislocations is the same as with the
pre-existent dislocation and the energy densityW̃r , the sum of
proper elastic energy densities of the resultant dislocations,
can be approximately defined as the energy density of the
elastic distortions created by the pre-existent dislocation in
the region outside of its amorphous core. That is

W̃r ≈ GB2

4π(1− ν) ln
R

r
(15)

wherer denotes radius of the amorphous dislocation core.
Now let us examineW̃d−d in the first approximation,

in which the dislocation ensemble resulted from the

amorphizing splitting is characterized by a dislocation
density continuously and homogeniously distributed along
the cylinder-like interface between the amorphous region and
the surrounding crystalline phase. In doing so, after some
algebra (see appendix B), we find with the help of formulae
[22] the energy densitỹWd−d as follows:

W̃d−d = GB2

4π(1− ν)
(

0.5− 2π−1 + ln
2R

r
+ ln 2

)
. (16)

From formulae (13) and (14) we find the following
formula for decrease1W̃el in the elastic energy related to
the amorphizing splitting (figure 5):

1W̃el = GB2

4π(1− ν)
(

ln
Ra

4r2
− 1.5 + 2π−1

)
. (17)

1W̃el < 0 for a wide range of parameters of the system and
this, therefore, causes the driving force for the amorphizing
splitting.

Now let us turn to analysis of the energy densitiesW̃c

andW̃int . The free-energy densitỹWc of the amorphous core
of the split dislocation is approximately as follows:

W̃c ≈ πr2εa−c (18)

whereεa−c is the difference between the free-energy densities
(per unit volume) of the amorphous and crystalline phases.
As to W̃int , following [24], the energy density of a
crystal/glass interface per unit area of such interface is
≈ κεa−c, whereκ denotes the characteristic spatial scale
of structural inhomogeneities in the amorphous phase. As
a corollary, the energy densitỹWint of the crystal/glass
interface which surrounds the split dislocation core per unit
of the dislocation length is as follows:

W̃int ≈ 2πrκεa−c. (19)

Hereinafter we assume that the splitting of a pre-existent
dislocation into a cylinder-like ensemble of dislocations
(figure 5) at its initial stage occurs in a jump-like stage
with the pre-existent dislocation core radius (≈a) abruptly
changing into the radiusr ′ of the initial cylinder-like nucleus
of the amorphous phase. In these circumstances, from
formulae (17)–(19), we find that the total change1W̃ in
the free-energy density, related to the amorphizing splitting
(figure 5) at its initial stage as

1W̃ ≈ GB2

4π(1− ν)
(

ln
Ra

4r ′2
− 1.5 + 2π−1

)
+πr ′2εa−c + 2πr ′κεa−c. (20)

The amorphizing splitting (figure 5) at its initial stage occurs
as an energetically profitable transformation, if1W < 0.
When1W > 0, the amorphizing splitting at is energetically
forbidden.

In estimations of1W , we can get to two situations,
as discussed in section 3: situation (1), with an
‘ordinary’ density of defects and chemical homogeneity, and
situation (2), with a high density of defects and/or chemical
inhomogeneities. In the ‘ordinary’ situation (situation (1))
εa−c ≈ from (G/83) to (G/63). Then, for the characteristic

2838



Amorphization at defects

Figure 6. The dependence of1W̃ on εa−c.

values of the parametersr ′ ≈ 3a, κ ≈ 5a, εa−c ≈ G/70,
R = 103a, B = a/10 andν = 1/3, from formula (20) we
find1W̃ ≈ 1.75G × a2 > 0. As a result, the amorphizing
splitting (figure 5) is energetically forbidden.

In situation (2) dealing, in particular, with irradiation-
induced defects in the pre-existent crystalline phase
(corresponding to experiments in [10]) as well as with
the chemical composition changing in the vicinity of an
interfacial dislocation due to intensive diffusion processes
(corresponding to experiments in [11]), we have values of
εa−c that are essentially lower than those in the ‘ordinary’
situation (situation (1)). With this taken into account, for
the characteristic values of the parametersr ′ ≈ 3a, κ ≈ 5a,
R = 103a, B = a/10 andν = 1/3, from (20) we find
dependence of1W̃ on εa−c, which is shown in figure 6.
1W(εa−c) < 0 in some ranges of the parameters (see
figure 6). Therefore, the amorphizing splitting (figure 5) at
its initial stage is energetically profitable in the cases with the
parameters valued in such ranges.

Now let us turn to the analysis of further continuous
amorphizing splitting, which comes into play after the
amorphous core of the split dislocation has been initially
formed in the jump-like way. The splitting occurs
continuously and is characterized by a continuous change
(increase) of the amorphous core radiusr. In these
circumstances, the driving force for the amorphizing
splitting, related to the corresponding decrease1W̃el in the
elastic energy, is defined as follows:

F̃ el = −d1W̃el

dr
= Gb2

2π(1− ν)
1

r
(21)

F̃el decreases, asr increases. This, in the framework
of our model, indicates that the effect of the dislocation-
induced elastic distortions on nucleation of the amorphous
phase decreases, when the amorphous nucleus grows at
a dislocation (when the radius of the nucleus increases).
This theoretical statement is in agreement with experimental
data [10, 11] on the observation of amorphous nuclei at
dislocations, that are characterized by finite dimensions.

5. Concluding remarks

Elastic distortions induced by intergranular boundaries
and dislocations are theoretically revealed, here, to have
a crucial influence on the nucleation of the amorphous

phase at such boundaries and dislocations. In the
framework of the suggested models, elastic-energy-decrease-
induced transformations—splitting of grain boundaries
(figures 1 and 3) and special splitting of lattice and
interfacial dislocations (figure 5)—represent effective
micromechanisms for the solid-state amorphization. In this
context, grain boundaries and dislocations are theoretically
recognized here as preferable places for nucleation of the
amorphous phase; this corresponds to experimental data
[7–11].

In general, the role of dislocations and grain boundaries
in the amorphization process is not restricted to their
capability to create stress fields, whose relaxation contributes
to the driving of the solid-state amorphization. Diffusion
in both dislocation cores and grain boundaries is essentially
higher than that in the bulk crystalline phase [19]. This
causes the effect of defects, dislocations, and grain
boundaries on the solid-state amorphization to be different
under at various conditions. So, diffusional mixing of
atoms of different chemical species plays the important
role in driving the solid-state amorphization in multilayer
coatings and mechanically alloyed powders [1–6], in which
case high diffusional properties of both dislocations and
grain boundaries facilitate nucleation of the amorphous
phase at such defects. At the same time, irradiation-
induced point defects (whose generation in the pre-existent
crystalline phase leads to the solid-state amorphization)
intensively annihilate moving along dislocations and grain
boundaries, in which case high diffusional properties of
dislocations and grain boundaries facilitate annihilation of
irradiation-induced point defects and, therefore, hamper
the amorphization processes. (A similar effect occurs
in irradiated nanocrystalline solids in which an extremely
high density of grain boundaries, in many cases, provides
the extremely fast annihilation of irradiation-induced point
defects [27].)

New dislocations and grain boundaries are generated
during plastic deformation [22, 28]. Therefore, the role
of such defects increases in the amorphization processes
occuring in plastically deformed materials. In this context,
the effect of dislocations and grain boundaries, as preferable
places for nucleation of the amorphous phase, can be
naturally treated as the effect that significantly contributes to
the experimentally observed [2] fact that the intensity of the
amorphization processes in mechanically alloyed powders
(where both deformation and diffusional mixing come into
play) is more than that in multilayer coatings (where only
diffusional mixing occurs). It should also be noted that
irradiation is capable of causing changes in ensembles of
dislocations and grain boundaries and, therefore, influencing
the amorphization processes in irradiated crystals.

To summarize, as it has been theoretically shown,
here, elastic distortions created by dislocations and grain
boundaries play the significant role in the initiation of the
solid-state amorphization at such defects. These results can
be effectively used in a future (more complete) theoretical
description of the amorphization at dislocations and grain
boundaries, which should also take into account diffusion
processes in dislocation cores and grain boundaries, as well
as the (deformation- and/or irradiation-induced) evolution of
ensembles of dislocations and grain boundaries.
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Appendix A

SurfaceS at which a displacement jump (associated with
a dislocation) occurs is defined in the framework of the
Volterra’s scheme of introducing of dislocations in a solid
as follows (for details, see [22, 23]): (1) a solid is cut along
a surfaceS bounded by dislocation line; (2) one of the sides
of the cut is displaced by vectorb, in which case either an
excess or a deficit of material is formed in the region near the
surfaceS; and (3) the sides of the cut are ‘glued’, in which
case either the excess of material is removed or the deficit of
material is compensated for by the addition of new material.
Stages (1)–(3) result in the formation of a dislocation with
Burgers vectorb, characterized by the surfaceS.

Appendix B

The discussed dislocation system in its final state represents
a cylinder-like ensemble of dislocations with small Burgers
vectors (figure 5). To analytically calculate the energy density
W̃d−d of their interaction, we will model such dislocations to
be uniformly and continuously distributed along the cylinder.
The energy density of the interaction of two elemental
(infinitesimal) fragments, say fragments 1 and 2, of the
‘dislocation cylinder’ (figure 5) can be written with the help
of standard formula [22] as:

W12 = −G db1 db2

2π(1− ν)
(

ln
2r| sin(φ/2)|

R
+ sin2 φ

2

)
(B1)

where φ is the angle between normals to the frag-
ments 1 and 2. Since

∫ 2π
0 db = B, we find db = (B/2π) dφ.

Integral ofW12 (see formula (B1)) over the cylindrical region
gives formula (16) forW̃d−d .
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