Bending stiffness calculation for nanosize structures
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ABSTRACT Advances in high technologies using nanometer-size structures, such as carbon nano-
tubes, require calculation of mechanical properties for the objects of the nanosize scale
level. Majority of the theoretical mechanical models for nanoobjects is based on the
macroscopic equations of theory of elasticity. This gives the questions about applicability
of the quantities obtained from the macroscopic experiments to the nanoscale objects or
about necessity of corrections taking into account the scale effects. The presented paper
is devoted to theoretical investigation of the influence of the scale effects on the bending
stiffness of a nanocrystal, which is extended in one direction and has a limited number of
atomic layers in another direction. Ambiguity of the bending stiffness due to the
ambiguity of the size definition for the nanosize object is discussed. It is shown that
appropriate definition of the crystal thickness allows using conventional formula for the
bending stiffness, which is known from continuum theory of elasticity.
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aj, = distance between the neighboring atoms in each layer

b;, = distance between the neighboring atoms in different layer
C = stiffness of the interatomic bond

D = bending stiffness
E = Young’s modulus

F(r) = force of interaction between two atoms, separated by the distance 7

H = nanocrystal thickness

hjn, = interlayer distance

7 = number of layers in the x direction
j = number of the vertical layer

M = bending moment

N = number of layers in the y direction
n = number of the horizontal layer
Q,, = force, applied to atoms located at crystal end-walls
— angle between the neighboring layers

f = curvature

INTRODUCTION

Recent advances in nanotechnologies require develop-
ment of adequate analytical models for analysis of mech-
anical deformation for the objects of nanometer scale
level. The majority of existing theoretical models are
based on equations of continuum theory of elasticity.
The values of the elastic moduli are usually taken from
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macroscopic experiments. However, a lot of researchers
have noted inconsistency between the values of the elas-
tic moduli obtained from micro- and macro-experiments
(see, for example, Bykovand Konovalov' and Bajdarovtsev
et al?). In Krivtsov and Morozov,’ influence of the
number of atomic layers on the Young modulus and
Poisson’s ratio of a perfect single-crystal is investigated.
It is shown that reduction in the number of the layers
leads to decreasing the Poisson’s ratio and increasing the
Young modulus of the crystal. For the most thin films,
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containing only two atomic layers, these moduli can
differ by two times from their macroscopic values. The
results of the paper [3] confirm the necessity of taking
into account the scale effects while applying the methods
of continuum mechanics to nanosize objects. The aim of
the presented paper is to investigate theoretically the
scale effect for bending stiffness of thin nanocrystalline
structures. The interest to these problems is connected
with the necessity of investigation of the mechanical
deformation of nanotube devices, which are used in-
tensively in the recent years in nanotechnology
developments.*”” Engineering materials and structures
at the nanoscale are expected to play a key role in the
production of the next generation of electronic devices
such as single electron transistors, terabit memories,
quantum computers, and etc.

DESCRIPTION OF THE MODEL

Let us consider a two-dimensional single crystal shown
in Fig. 1. For the sake of simplicity we use hexagonal
close-packed lattice. In the undistorted state, the lattice
consists of equilateral triangles with an edge 2 =0 =ay. It
is known that the considered crystal lattice is the only
stable two-dimensional lattice for the most types of pair
interactions. The crystal possesses N = 2 atomic layers in
the y direction and 7>> N layers in the x direction. Each
atom interacts only with its nearest neighbors, as it is
shown in the figure. Forces Q, are applied to atoms
located at crystal end-walls, where # is the number of
the horizontal layer, containing the specified atom
(m=1,2,...,N). These forces are changing linearly with
y coordinate, keeping the zero average value of the over-
all force acting on the end-wall, so that we can consider

Fig. 1 Bending of the nanocrystalline strip.

the macroscopic boundary conditions as an action of a
pure moment (without tensile stress):

N N
ZQ# :Ov ZRnQn =M (1)
n=1 n=1

where R, is the distance between the 1st and nth hori-
zontal atomic layers in the undistorted state of the crys-
tal. The geometrical state of the deformed crystal can be
determined uniquely by the distance #;, between the
neighboring atoms in each layer and by the distance &;,
between the neighboring atoms in the different layers.
Indexes j, » denote numbers of atomic layers in the
directions « and y, respectively (Fig. 1). It is easy to see
that the interlayer distance 4;, can be obtained from
the geometrical relation b2, = b2 — a2, / 4 and in the un-
distorted state by = (\/§ /2)ag. It can be shown that
R, = (n—1)ho and the forces Q,, which satisfy conditions
Eq. (1) can be represented in the form

_4/3M(2n—-N-1)
O = N - DNV T 1) @

Let F(r) be the force of interaction between two atoms
separated by the distance 7. Supposing the deformations
to be small (in the figure the displacements are enlarged
for better visibility), let us use the linear approximation
for the forces of the atomic interaction

F(bn) = CAbj, C¥F(a) >0 (3)

F(ﬂjn) = CAﬂjm
where C is the stiffness of the interatomic bond,
Ag;, défﬂjn — o, Abj, def bjn — ap. This linearization is
valid here because in the continuum mechanics the elas-
tic moduli usually are determined from the linear theory
as well. Let us note, that the suggested approach can be
realized without assumption about the linearity of the
elastic bonds; the relevant complications are of the tech-
nical nature only. Equations of equilibrium for the crystal
lattice give the following system of recurrent equations
for quantities Ag;,, Ab;,, and Q,

1 1
Aﬂj,n + 5 (Abj‘n + Abj‘nfl) = Aﬂj*l‘ﬂ +Z (Abjfl‘n + Abj*l,ﬂ*l)]

Abj oy + Abj_y = Abj 1+ Abjy 1

1 n
Aﬂlﬁn +§ (Abl.n - A17171.77 + A17171171 - Abl*l.ﬂ*l) = %7 I= 172
1 Q?l
Aay_p ;1 + 7 (Aby_yp — Abg_riy,n + Mby_p oy — Aby_pyy1 0m1) = ral

(4)
By solving these equations one can obtain

Aﬂjn = & (5)

Abjy = 0, v
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BENDING STIFFNESS DETERMINATION

We now mentally cut the crystal by a vertical straight line
AB (Fig. 1). According to Eqs (2) and (5), the total
normal force acting from one part of the crystal onto
another part is equal to zero; the resultant bending
moment can be calculated by formula (1) and is equal
to M. As it can be seen from formulae (2) and (5) the
increments of the interatomic distances Az, are linear
functions of the layer number # in the direction y and do
not depend on the layer number j in the direction x. This
means that the atomic layers in the direction y remain
straight during the deformation and angles between the
neighboring layers are equal. Then the angle between the
neighboring layers o and the corresponding curvature f§
can be determined as following

. def Ddjn/2 — Aajy /2
- ho(N-1)

def Ot
’ - ﬂ()/z (6)

The bending stiffness of the monocrystal, according to
Egs. (2), (5) and (6) has the form

def M Cﬂ(z)
7F—¥(N—1)N(N+1) (7)
An attempt to express the bending stiffness in the terms
of macroscopic parameters meets with difficulties con-
nected with the ambiguity for determination of the nano-
crystal thickness H. On the one hand, the nanocrystal
thickness can be defined as the distance between the
atomic layers at the opposite end-walls: H=(N—1)h;
on the other hand, it is quite reasonable to determine
the crystal thickness as a product of the number of layers
by the thickness of a single layer, which results in the
formula H = Nh. Since it is difficult to choose between
the definitions suggested above, let us use the following
definition for the nanocrystal thickness®

def

HYNb, N-1<N. <N (8)

where N- is the dimensionless parameter reflecting an
arbitrariness in the determination of H. As it shown in
Ref. [3], Young’s modulus E; corresponding to the ten-
sion along the direction in which the monocrystalline
strip is long can be obtained by the formula

E-Ng. E. :27(;

N, *

where E., is the value of the Young modulus for the
infinite crystal.>® In the current paper the strip has
final size in « direction, but it is postulated that the
number of the atomic layers in this direction is big
enough to use formulae (9). Formulae (8), (9) allow to
express the bending stiffness (7) of the nanocrystalline
strip in the terms of the macroscopic parameters
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EH}(N?-1)

b 12N?

(10)

DISCUSSION AND CONCLUDING REMARKS

It is known from the experimental data that the bending
stiffness for the single-walled nanotubes is 25 times
smaller then it is predicted by the continuum theory of
elasticity.'® Indeed, from the classical atomic consider-
ation it follows that single atomic layer should have no
bending stiffness at all. That is why in the bending
problems the reasonable formula for N, should produce
zero bending stiffness for the case N=1 (the tiny bend-
ing stiffness recorded in the experiments is connected
with effects that are not taken into account by the pre-
sented model). Let us consider two representations of
N, which satisfy the mentioned condition.

Let us consider first that N, = N. Then E; = E_, and the
bending stiffness is given by the formula

1 E. H?
b (i-h). poBll

Here D, is the value for the bending stiffness from the
macroscopic theory of elasticity. According to formula
(11) the bending stiffness of the nanocrystal is varying in
the limits of 0 =D = D, Variation of the bending stiff-
ness with the number of the layers is illustrated by Fig. 2,
where dependence of parameter k=D/D,, on N is
shown. For the small values of N the stiffness depends
essentially on the number of the layers. For the greater
values of N the stiffness becomes greater tending for
N—o0o to the value known from the macroscopic theory
of elasticity. On the other hand, let us assume that
N, =N</1— (1/N?). Note that this definition satisfies
the inequality (8): N—1 =N, =N. The formula for the
bending stiffness in this case takes the form

H=Nb (11
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Fig. 2 Variation of the bending stiffness with the number of layers.
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Thus formula (12) for the bending stiffness exactly coin-
cides with the one known from the theory of elasticity.
Formula (12) for the strip thickness for the greater values
of N coincides with the value Nk, corresponding to the
previous case. For the small N formula (12) gives the
thickness values smaller then Nby, and finally it vanishes
for N=1, which is consistent with the thesis that a
single-layer crystal has no bending stiffness at all.

An alternative way of the bending stiffness determin-
ation is the solution of the problem of the nanocrystalline
strip deformation when it is bent into circle (representing
cross-section of the nanotube). The strip should be long
enough to consider the deformations as small. This
problem has little bit more complicated geometry, but
advantage of such statement is that it does not need any
assumptions about the external load distribution. The
formulae for the bending stiffness, which can be obtained
from the solution of this problem, are equal to formulae
(10-12).

In paper [4] the problem of bending stiffness determin-
ation for nanotubes was considered in a quasi-continuum
statement. In the paper the bending stiffness was deter-
mined for several selected values of N. The same values
for stiffness can be obtained from the general formula
(11). The strip thickness in [4] was taken as H=AhoN,
which results in a discrepancy with the stiffness formula
known from the theory of elasticity. However, as it was
shown before, alternative definition for the strip thick-
ness allows the use of the macroscopic formula for the
bending stiffness without any modifications.

The results listed in this paper are obtained on the basis
of a rather simplified model. However, they can be easily
generalized for other, more exact laws of interaction. In
the present study we took into account only the inter-
action of neighboring atoms in the crystal lattice. It can
be shown that allowance for further neighbors’ leads to
the enhanced effect of the scale factor, especially in the

three-dimensional case. Thus, the concepts of classical
continuum mechanics, including those of the elasticity
theory, must be used with great care in the case of their
application to nanoobjects. It is necessary to take into
account the variation of mechanical characteristics when
scales of objects under consideration approach nano-
meters.
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