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ABSTRACT
It is postulated that the main mechanism of the enhance-

ment of material removal rate (MRR) in percussive drilling is
associated with generating impact forces, which act on the work-
piece and help to develop micro-cracking in the cutting zone.
The inherent non-linearity of the discontinuous impact process
is modelled as a frictional pair, to generate the pattern of the
impact forces. A novel formula for calculating the MRR is pro-
posed, which explains the experimentally observed fall in MRR
at higher static forces.

INTRODUCTION
Recently, nonlinear dynamics approaches have increasingly

been used to explain complexities occurring in manufacturing
systems. Theoretical studies have been carried out in the area of
ductile metal cutting (e.g. (Grabec, 1986; Wiercigroch, 1997)),
where periodic (chatter) and aperiodic (chaos) behaviour of sim-
ple models has been demonstrated. Despite the fact that strong
nonlinear dependencies have been observed in cutting brittle ma-
terials, this area has been given little attention so far. For exam-
ple, one of the best known anomalies in ultrasonic percussive
drilling is the decrease in material removal rate for higher values
of static forces, contradicting a classical perception of the effi-
ciency of the process mechanism. A study of this phenomenon
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was the stimulus for the work described in this paper.

Percussive drilling offers a solution to the expanding need
for an efficiency drilling of rocks or other brittle materials, which
is very similar to ultrasonic machining of brittle materials. The
actual cutting is performed either by abrasive particles suspended
in a fluid, or by a rotating diamond-plated tool. These variants
are known respectively as traditional ultrasonic machining, and
rotary ultrasonic machining (RUM). The RUM technology was
developed in the early 1960s by U.K.A.E.A.-Harwell in England.
Some years later quite similar methods were studied by (Markov
et al, 1972; Markov, 1977; Markov, 1980) and (Petrukha, 1980),
but details of the methods were not revealed. Other workers car-
ried out experimental studies on the basic characteristics of the
process, for example (Kubota et al, 1977). Their tests estab-
lished the influences of working conditions such as grain size,
amplitude of vibration, rotational speed and feed pressure on the
material removal rate (MRR), which is defined as volume of ma-
terial removed in a unit of time. A particular feature of these
experiments is that plots of MRR versus static load presented in
(Markov, 1980) and (Kubota et al, 1977) show a maximum for
a certain value of static load. (Komaraiah et al, 1988) also con-
ducted experimental studies on the ultrasonic machining of dif-
ferent workpiece materials. Their work confirmed the superior-
ity of the rotary technique over traditional slurry-type machining.
The first theoretical approach to modelling USM was put forward
by (Saha et al, 1988). They attempted to develop a comprehen-
sive analytical model for the estimation of the MRR in order to
make an in-depth study of the material removal process and its
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dependence on major influencing parameters. Satisfactory agree-
ment was reported between theory and experiment, apparently
explaining the fall in MRR for higher static loads. However,
their model uses only Hertzian theory to explain the mechanism
of material removal; it seems that this approach should be more
suitable for workpieces comprising ductile rather than brittle ma-
terials. Moreover, using Hertzian theory alone to explain the re-
lationship between MRR and static force, it appears impossible
to obtain a function of the form obtained from experimental test
(Kubota et al, 1977). Accordingly, this paper adopts the nonlin-
ear dynamics approach to modelling MRR for brittle materials,
which is phenomenologically different to any others previously
undertaken, and hopefully would be of interest to both nonlinear
dynamics and applied physics communities. It is based on ap-
plying impacting oscillator theory (Thompson et al, 1982; Shaw,
1985; Wiercigroch et al, 1998) to explain the main mechanism
occurring in ultrasonic drilling. In particular, we shall address the
formulation of a simple model of the non-linear dynamic interac-
tions encountered in the machine tool – ultrasonic cutting process
system, which could explain the fall in the MRR for higher static
loads.

The proposed model will investigate the dependences of the
static force and the amplitude of the dynamic force on the mate-
rial removal rate, assuming that the drilling resistance is modeled
by a dry friction element.

DRY FRICTION MODEL
The presented model is shown in Figure 1, where m is mass

of the tool, F(t) is overall drilling force, P(ẏ) is the resistive (dry
friction) force, x is coordinate of the tool’s tip, and y is coordinate

Figure 1. The dry friction model.

of the dry friction element, which represents the progression of
the drilling surface. The equation of motion of the mass takes the
following form

x < y ) mẍ = F(t) ;

x = y ) mẍ = F(t)�P(ẏ) ;
(1)

which depends on the relative position between x and y coor-
dinates. In turn, the equation of motion for the slider can be
expressed as

ẋ� 0 ) y = x ;

ẋ < 0 ) ẏ = 0 :
(2)

For the simplicity of the further analysis it was assumed the over-
all drilling force F(t) has the form

F(t) = Asinω(t� t0)+B ; (3)

where A and ω are the amplitude and frequency of harmonic
force, B is the static force, t is time, and t0 is a time constant.
The resistive force P(ẏ) is modelled by the Coulomb dry friction
fulfilling the following conditions

ẏ > 0 ) P(ẏ) = Q ;

ẏ = 0 ) P(ẏ)� Q ;
(4)

where Q stands for the modulus of the dry friction force. From
the practical viewpoint one may consider that the dry slider pro-
gression (material removal rate) is due to generation of the dy-
namic impacts, while decelerating the mass. That is why we can
limit our consideration to the case when F(t) < Q. From the
equations (1)–(4) it can be easily deduced that the considered
system is in one of three unique states (see Tab. 1).

State x y Condition

Free motion mẍ = F(t) ẏ = 0 x < y

Drilling mẍ = F(t)�Q y = x ẋ > 0

Stop ẋ = 0 y = x F(t)� 0

Table 1. Three unique states of the system.

In order to gain some extra flexibility of the analysis new
dimensionless variables and parameters are introduced. Let the
dimensionless time to be denoted as τ = ωt, and prime stands
for derivation with the dimensionless time. It is worth to note
that the resistive coefficient, Q has a distinct value for a drilled
material. Contrary the amplitude of the harmonic force and the
static force can vary, and can be used as control parameters for
the drilling process. Hence, let us divide all the drilling forces by
the resistive coefficient, Q

f (τ) de f
=

F(t)
Q

; a
de f
=

A
Q
; b

de f
=

B
Q
; (5)
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which leads to the dimensionless drilling force

f (τ) = asin(τ�ωt0)+b < 1 : (6)

To complete dimentionlising process, coordinates ξ and η are
defined as follows

ξ de f
=

ω2m
Q

x ; η de f
=

ω2m
Q

y : (7)

PROGRESSIVE STATIONARY MOTION

Figure 2. The progressive stationary motion.

Figure 3. One period of the motion.

Let us consider a progressive stationary motion of the sys-
tem depicted in Figure 2, that satisfies the following equations

ξ(τ+2π) = ξ �+ξ(τ) ; η(τ+2π) = ξ �+η(τ) ; (8)

where ξ � is the dimensionless penetration of the drillbit during
one excitation period, which is equal to 2π. The dimensionless
material removal rate, r calculated per one period is

r =
η(2π)�η(0)

2π
=

ξ �

2π
: (9)

Stage Time limits ξ η

Free motion 0 < τ < α ξ00 = f (τ) η = 0

Drilling α < τ < α+β ξ00 = f (τ)�1 η = ξ

Stop α+β < τ < 2π ξ = ξ � η = ξ �

Table 2. Three distinct sequential stages of the stationary motion.

If one breaks up one period of the progressive stationary mo-
tion into distinct intervals, three sequential time intervals can be
specified. They are schematically shown in Figure 3 and are
specified in Table 2. The time intervals α; β and γ satisfy the
identity α+β+ γ= 2π.

The dimensionless excitation force expressed by (6) can be
represented in the following form

f (τ) =�acos(τ�ϕ)+b ; (10)

where ϕ de f
= ωt0�π=2. The sum ϕ+π is a phase shift between

the overall drilling force and the progressive stationary motion.
The four parameters α; β; γ and ϕ, specified above, are used

to determine the progressive stationary motion. They are un-
known and to be found by integrating the equations of motion.
The initial conditions to be chosen, are given in Table 3, where
ξ0
�
jτ=α and ξ0+jτ=α are derivatives calculated in the left and right

vicinity of the time when τ = α. The above mentioned initial
conditions are also in this case the boundary conditions where
the solution switches between the different stages of stationary
motion.

Time Coordinate Velocity

τ = 0 ξ = 0 ξ0 = 0

τ = α ξ = 0 ξ0
�
= ξ0+

τ = α+β — ξ0 = 0

Table 3. Boundary conditions.
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During the stop period which is between 2π� γ and 2π (or
�γ < τ < 0), the overall drilling force should be positive ( f (τ)>
0). If this can not be satisfied then there is no stop in the system,
and the free motion of the tool (stage 1) starts immediately after
the drilling (stage 2). Mathematically, the stop absence condition
can be reduced to the inequality f (2π)< 0, f (0)< 0. The nec-
essary condition for the stop existence is f (0) = 0. In addition, to
have the stop it is required to fulfill f 0(0)< 0, which in practical
terms means that the overall drilling force changes its sign from
positive to negative at τ = 0. Generally, a third type of motion
exists, when f (τ) > 0 for all values of τ, this is, the variant with
the total stop. The condition for the total stop can be reduced to
f (0) > 0. Thus, there are three different types of the stationary
motion, which are summarized in Table 4. Only two first types
are interesting from the practical point of view. Conditions (2)
specified in Table 4 were obtained from the Conditions (1) using
the introduced earlier representation of the drilling force, (10).
From Table 4, it can be easily deduced that drilling is possible
for b < a, and for b > a total stop occurs.

Type Motion γ Conditions (1) Conditions (2)

I no stop γ = 0 f (0)< 0 cosϕ> b=a

II with stop γ> 0 f (0) = 0, cosϕ = b=a,

f 0(0)< 0 sinϕ> 0

III total stop γ = 2π f (0)> 0 b=a> 1

Table 4. Three types of the stationary motion.

By solving the equations of motion two relations between
the parameters α; β and ϕ of the stationary motion can be ob-
tained

acos(α�ϕ)�acosϕ�aαsinϕ+ 1
2 bα2 = 0 ; (11)

asin(α+β�ϕ)+asinϕ�bα+(1�b)β= 0 : (12)

However, to determine all unknowns, one more equation is re-
quired, and this is substantiated from the stop conditions (see
Table 4)

I. γ = 0; II. cosϕ = b=a : (13)

Identity I is used for the motion without stop (type I of the sta-
tionary motion), where identity II is appropriate for the motion
with stop (variant II). Moreover, the stop conditions (see Table 4)
provide two inequalities

I. cosϕ > b=a ; II. sinϕ > 0 ; (14)

that are needed to choose a correct solution for the phase shift,
ϕ. Thus there are three equations, (11)–(13), with three unknown
parameters α; β and ϕ. If the quantities α and β are known ex-
plicitly, γ can be calculated from the identity γ = 2π� (α+β).

If the motion parameters α; β; γ and ϕ are found from (11)–
(13) then the dimensionless MRR can be obtained as

r = ξ �=(2π); ξ � = acos(γ+ϕ)�acos(α�ϕ)�
�aβsin(γ+ϕ)+ 1

2 (1�b)β2 :
(15)

SMALL PARAMETERS ANALYSIS
To simplify the process of finding solution of the equations

for parameters some additional assumptions are needed. From
the practical point of view the most interesting case is when the
drilling force is small with respect to resistive force (a; b� 1).

For the motion without stop, the small parameters approach
provides an elegant solution for equations (11)–(13)

ϕ = Arcsin(πb=a) ; (16)

α = 2π ; β = 2πb ; γ = 0 : (17)

From (14), using condition I, one can estimate a ratio range be-
tween the static force and the amplitude of the harmonic force

b
a
<

1p
1+π2

de f
= s� � 0:30 : (18)

Thus, if there is no stop in the motion the parameters a and b
satisfy the inequality (18).

For the motion with stop the small parameters approach re-
duces equations (11)–(13) to the following form

ϕ = Arccos(b=a) ; (19)

(cosα�1+ 1
2 α2)=(a� sinα) = tgϕ ; (20)

β = bα�asin(α�ϕ)�asinϕ ; (21)

γ = 2π�α : (22)

Equation (20) can not be solved analytically in the terms of α,
but it can be easily evaluated numerically. If α is calculated from
(20) then β and γ can be determined from (21) and (22).

Expanding (15) in power series in terms of the small param-
eters a; b and β, one can obtain the first non zero approximation

r =
1

4π
β2 ; ξ � =

1
2 β2 ; (23)
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where r is the dimensionless material removal rate, ξ � is dimen-
sionless penetration of the drill during one period of the excita-
tion force. For experimental verification purposes it is useful to
operate with dimensional MRR, which can be calculated as

R =
SQ
ωm

r : (24)

RESULTS AND DISCUSSION
Now we examine the influences of the main drilling parame-

ters, A and B on the dynamic system behaviour, keeping in mind,
that A is amplitude of the harmonic force, B is the static force. All
the results presented here are calculated for the small parameters
approximation.

Figure 4. Dependence of the stop period γ=(2π) on the drilling

forces ratio B=A.

Consider dependence of the tool stop period on the parame-
ters of the drilling force. The dimensionless period of the overall
drilling force is equal to 2π, hence γ=(2π) is the part of the period
when the tool is in the stop mode. Parameter γ is function of the
drilling forces ratio b=a = B=A. The functional dependence of
the drilling forces ratio B=A on the relative stop period is depicted
in Figure 4. From the graph it can be seen that for B=A< s �� 0:3
there is no stop, which practically means that the mass is in mo-
tion regardless to the interactions with the slider. Then the stop
period monotonically increases until B=A � 1, where total stop
occurs and there is no drilling.

The phase shift ϕ is also a function of the drilling forces
ratio B=A (see Figure 5) and monotonically increases from zero
(at B=A= 0) up to ϕmax � 0:4π (at B=A= s�) and then decreases
down to zero (at B=A= 1).

The MRR is a nontrivial function of two force parameters
A and B. The most interesting from the practical point of view
is the dependence of the static force, B, on the MRR, while the
amplitude of the harmonic force, A is kept constant (Wiercigroch
et al, 1993). The relationship between the MRR and the static
force B is demonstrated in Figure 6 and has clearly pronounced

Figure 5. Dependence of the phase shift parameter ϕ on the

drilling forces ratio B=A.

maximum as indicated earlier (Neilson et al, 1993). It can be
seen that the MRR increases in the area of the motion without
stop, and it reaches its maximum value in the area of the motion
with stop at B� 0:4A. But note that the maximum is close to the
border between these two areas. For the further increase of B=A
the MRR decreases down to zero at B = A. The maximum value
of the MRR is

Rmax =
SA2

ωmQ
pmax : (25)

where pmax � 0:360. The maximum value of MRR is obtained
at B=A � 0:387. The shape of the curve corresponds well to
the experimental results reported previously in (Markov, 1977;
Wiercigroch et al, 1993).

Figure 6. Dependence of the MRR on the relative static force

B=A (A = const).

Consider now dependence of the amplitude of the harmonic
force A on the MRR while the static force B is constant, see
Figure 7. The MRR is equal to zero for A � B, then it in-
creases monotonically in the area of the motion with stop (1 <
A=B <

p
1+π2 � 3:3), and finally reaches a constant value for

A=B >
p

1+π2. Hence, practically there is no need to increase
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Figure 7. Dependence of the MRR on the relative amplitude of

the harmonic force A=B (B = const).

the amplitude of harmonic force more than 3:3B. Thus the max-
imum value of the MRR is

Rmax = π
SB2

ωmQ
: (26)

CONCLUDING REMARKS
The developed model allows to calculate the material re-

moval rate R in the form

R =
SQ
ωm

r

�
A
Q
;

B
Q

�
=

S
ωmQ

r(A;B) ; (27)

where S is the cross section of the drillbit, Q is the resistive force
of the material, ω is the frequency of harmonic force, m is the
tool mass, and A and B are the controllable parameters of the
drilling force; r = r(A;B) is a known function of two variables.
Mathematically the MRR is a nontrivial function of two vari-
ables, amplitude of the harmonic force, A and the static force, B.
Note that this formulation is valid only if the drilling force is
substantially smaller than the resistive force, i. e., A and B� Q.

An investigation of the MRR function given by equa-
tion (27) provides the following conclusions.

1. Drilling action is only possible if the static force is smaller
than the amplitude of the harmonic force, B < A. If B is
greater than A the drill is stopped motionless by the static
force.

2. The MRR function on the static force, B (while A is kept
constant) has a well pronounced maximum, which is taken
at B� 0:39A.

3. The MRR function on the amplitude of the harmonic
force, A (while B is kept constant) is monotonically increas-
ing up to some maximum, which is taken at the optimum
value of the amplitude, A � 3:3B. For the amplitude A
greater than this optimum value the MRR becomes constant,
so any further increase of the amplitude has no effect.

4. The theoretically predicted MRR as a function of B=A cor-
responds well to the experimental results (Markov, 1977;
Wiercigroch et al, 1993).
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