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Summary — From the plate impact experiments there were found out that the maximum
spall strength corresponds just to the tests where the mesoparticle velocity dispersion is also
maximum. In the paper computer investigation of this phenomenon is presented. Molecular
dynamics method is used. It is shown that increase of the initial dispersion from zero to
15–25 m/s leads to the essentially increase of the material strength. The further increase of the
initial dispersion leads to the slow decrease of the material strength, so the strength-dispersion
characteristic has maximum.

INTRODUCTION

Impact loading of a plate target by a plate impactor from the same material is considered.
The review articles [1, 2] provide access to most of the literature on this subject. The basic
characteristics that can be measured in real time in spall fracture experiments are average
velocity and dispersion of mesoparticle velocities on the free surface of the target [3, 4]. From
real experiments it is known [4] that mesoparticle velocity dispersion appears to characterise
an ability of the material to relax microstresses during the shock wave passage; and, thereby,
it defines the macroscopic dynamic strength of material. The greater the mesoparticle ve-
locity dispersion — the greater is the spall strength of the material. In the present paper,
computer investigation of this phenomenon is presented. The simple molecular dynamics
method is used [5, 6, 7]. The main distinction of the considered method from classic molecu-
lar dynamics is that the particles are interpreted not as atoms or molecules but as elements
of the mesoscopic scale level. This approach shows a strong influence of mesoparticle velocity
dispersion on the spall strength of material even for the simplest computation scheme.

METHODS

Since the purpose of this study is to understand the strength–dispersion relation generi-
cally, for molecular dynamics simulation a monoatomic two-dimensional lattice with standard
Lennard-Jones 6–12 potential was chosen [6] as shown in (1)
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where U(rij) is the interaction energy between atoms i and j separated by distance rij, ε is
the strength of the interaction, and r0 is a characteristic length scale. In order to decrease
calculation time, the potential is usually truncated at a finite distance, beyond which the
interaction is taken to be zero. In the considered numeric experiments the cut-off distance
was chosen to be 2.1 r0. In this case, the interaction potential has contributions from the first,
second, and third nearest particles in the perfect crystal. However, the contribution of the
second and the third neighbours to the total energy are minimal. Hence, r0 is approximately
the equilibrium, nearest-neighbour atomic separation. In order to describe nonelastic losses
of energy small dissipative forces proportional to the particles velocities were added [8]. The
simulation technique employed in this work is standard molecular dynamics method [5, 6, 9]:
the trajectories of each atom are followed through time by integrating Newton’s classical
equations of motion. The integration is performed using the method of central differences [6]

The computational model is presented in Fig. 1. The particles are arranged in two rect-
angles lying in the xz plane. The rectangles represent the cross-sections of the impactor
(black) and the target (grey). Initially the particles are arranged on a triangular lattice.

Fig. 1: The initial state of the pattern.

The lattice is orientated in such way that one of the sides of the triangles is extended along
the x direction. The impactor is placed at an initial distance from the target greater than
the cut-off distance of the interparticle potential. Both impactor and target are made from
the same particles arranged on the same crystal lattice. The total number of particles in
Fig. 1 is about 5000. Free boundary conditions on all boundaries were used.

Initially the target has zero velocity, the impactor has velocity directed along the z axis
towards the target (see “direction of impact” in Fig. 1). In addition to the initial velocity of
each particle a random velocity was added which was chosen from a two-dimensional random
uniform distribution. Let us consider a set of particles indexed by k = 1, 2, ..., n. Denoting
Vk as projections of the particle velocities to the direction of impact, the mean velocity V of
the set in the impact direction is given by

V =
1

n

n∑
k=1

Vk . (2)

The dispersion of the velocities is

σ =
1

n

n∑
k=1

(Vk − V )2 . (3)

Further the square root of the dispersion will be used

∆V =
√

σ =

√√√√ 1

n

n∑
k=1

(Vk − V )2 . (4)



A. M. Krivtsov / International Journal of Impact Engineering 23 (1999) 477-487 479

The quantity ∆V is the mean square deviation of the velocities (further — the deviation) and
it has the dimensions of velocity. Given that at the initial moment of time, the impactor and
target have the same initial dispersion, σ0, corresponding to the initial velocity distribution,
then the initial deviation is ∆V0 =

√
σ0. The aim of the presented computer experiments is

to find out the dependence between the initial deviation and the strength characteristics of
the material.

Let us note that if the particles are considered as elements of microscopic scale level —
atoms or molecules, then the dispersion σ can be interpreted as the absolute temperature
of the material. In our consideration, the particles correspond to elements of the meso-
scopic scale level, The dispersion σ then corresponds to dispersion that is measured in real
experiments [4] which differs from the classic temperature.

One of the main characteristics of the material strength is the spall strength [10] that is
proportional to the spall (pull-back) velocity W . The spall velocity can be calculated from
the time relation of the average velocity on the free surface [4, 10]. To find out the average
velocity and other characteristics on the free surface we shall use the central part of the last
particle row of the target (see Fig. 1, “measuring area”). The length of the area is one-half
of the total row length to avoid boundary effects.

Another characteristic that will be used to describe the strength of the material is the
width h of the spall crack in the impact direction — see Fig. 2. The technique of the crack

Fig. 2: Measuring of the width of the spall crack.

width measuring in the presented computer experiments as follows. Two rows — above and
below the place were the crack appears — are selected in the initial state of the pattern. The
averaged distance d0 between the rows at t = 0 is measured. Then, during the experiment
(t > 0) the time relation of the averaged distance d(t) is measured (Fig. 2). Then time
dependence on the crack width can be obtained as

h(t) = d(t)− d0 .

To avoid the boundary effects, only the central part of the rows (one-half of the total length)
is used for measurement. In Fig. 2 the pattern with crack is shown — rows used for the
measurement are coloured black. Note that the presented method can be used in the situation
where there are a lot of small microcracks — in this case it gives the integral width of the
microcracks.

RESULTS

To clarify our results, the same scales of time, distance and velocity in the computer
calculations are used as in the real experiments with ductile steels [4]. We chose the following
sizes: impactor thickness (z size) is 2mm, target thickness is 7mm, impactor width (x size)
is 52mm, target width is same with the impactor width. In Fig. 3–4 results of the computer
experiments are presented. The pattern consists of about 5000 particles. All experiments
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were performed with the same impactor velocity — 260m/s. The initial velocity deviation
∆V0 was varied from 0, 1, 2 to 100m/s. Every row in Fig. 3–4 corresponds to some value
of deviation. The first column shows the pattern state at t = 4.1 µs (t = 0 corresponds
to the first contact between impactor and target). Note that the greatest crack size is
realised at ∆V0 = 0. While the deviation increases, the crack width becomes smaller and at
∆V0 = 25m/s crack completely disappears. The dispersion increase has absolutely prevented
the spall fracture! When deviation ∆V0 is in range of 25 – 40m/s there is no spall fracture.
For ∆V0 > 40m/s the crack appears again and increases while the deviation grows. At
deviation value of 100m/s we can see fracture of the pattern produced with the high level
of dispersion (this effect is analogous to temperature fracture).

The second column in Fig. 3–4 shows time dependence of the free surface velocity. The
third column in Fig. 3–4 shows time dependence of the crack width h. Note that the deviation
increase leads to a lowering of the crack width, especially for the times t > 3 µs. For small
deviations (0–2m/s), the h(t) dependence is monotonic. This means that the crack grows
during all the time of measurement. For greater values of deviation the h(t) dependence has
one or two maximums after which the crack width decreases. Therefore we have the effect
of recovering of the material — high level of dispersion stimulates relaxation processes.

Thus from the computer experiments it follows that a material with greater dispersion is
stronger. Why is this so? To make it clear let us consider Fig. 5, where patterns are shown
for two moments of time. The left column corresponds to t = 1.4 µs, it is shortly after the
time when the fracture starts. The right column shows the pattern state after the crack
formation (t = 4.1 µs). The rows, as it was before, correspond to the different values of the
initial deviation ∆V0.

From the first row of Fig. 5, note that when the deviation is absent (∆V0 = 0) the crack
borders are absolutely straight. When the deviation increases then the crack borders become
more and more irregular (the right column). Now look to the left column to see how the
fracture appears. For ∆V0 = 0 there is only one long crack, but for ∆V0 = 4m/s we have
a lot of short microcracks. Thus, the dispersion leads to smearing of the shock wave, and
it is the reason why the strength increases. Note that at ∆V0 = 20–25 m/s the microcracks
that are present at t = 1.4 µs disappear at t = 4.1 µs. The small cracks can disappear
spontaneously — this is one more reason for the strength increase.

The same experiments for the more complicated model containing about 20000 particles
are shown in Fig. 6. The impactor velocity is 297m/s. The results are similar, but effect of
the strength increase is sharper: already at ∆V0 = 9m/s no crack appears. The great values
of dispersion, as it was for 5000 particles, decrease the material strength — the spall crack
appears at ∆V0 = 30m/s and became larger while ∆V0 increases up to 100m/s.

Experiments with 20000 particles produce better time relations for the free surface ve-
locity — see the second column in Fig. 6. The form of the curves is in good agreement
with results of real experiments and theoretical calculations [4, 11]. In the first four graphs
(0 ≤ ∆V0 ≤ 4m/s) after the first maximum of the velocity-time relation note the oscillations
in the spall plate. Note that dispersion minimises the amplitude of the oscillations. After
∆V0 = 9m/s there is no spall — and no oscillations in the spall plate. At these deviations a
new maximum appears — the wave of compression that has reflected from the free surface
of the impactor, crossed the whole width of the pattern, and appears at the free surface of
the target. For the high values of dispersion (∆V0 ≥ 40m/s) we have the spall again, and
again it is possible to see the oscillations in the spall plate, but with very low amplitude. At
∆V0 > 60m/s dispersion almost suppresses the oscillations.
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Fig. 3: Computer results for 0 ≤ ∆V0 ≤ 15m/s, 5000 particles.
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Fig. 4: Computer results for 20m/s ≤ ∆V0 ≤ 100m/s, 5000 particles.



A. M. Krivtsov / International Journal of Impact Engineering 23 (1999) 477-487 483

Fig. 5: Comparison of the crack state at t = 1.4 µs (left) and t = 4.1 µs (right column)
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Fig. 6: Computer results for 0 ≤ ∆V0 ≤ 100m/s, 20000 particles.
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STRENGTH DEPENDENCE ON THE INITIAL DEVIATION

Results of all the calculations are presented in Fig. 7 where the dependence of crack
width, h, and spall velocity, W , on the initial deviation is shown. Fig. 7a corresponds to
experiments with 5000 particles; Fig. 7b corresponds to experiments with 20000 particles.
The curve marked h(4.1 µs) shows the width of the spall crack at 4.1 µs after the first contact
between impactor and target. Dots on the curves correspond to results obtained from the
computer experiments. Note in Fig. 7a that the width of the spall crack sharply decreases
from 2.6mm (no initial dispersion) to zero at ∆V0 = 20m/s. From ∆V0 = 20m/s to
∆V0 = 40m/s there is no spall. After ∆V0 = 40m/s the crack width increases up to 0.8mm.
For the larger system (Fig. 7b) results are the same, but the crack width decreases faster
and the area without spall is shifted to the left.

The curve marked h(1.4 µs) (white dots) corresponds to the time of the microcracks
appearance (the fracture’s beginning). This curve actually gives the integral width of the
microcracks. This dependence has the same form of the previous results, but it has far less
variation: the crack width h(1.4 µs) vary from the maximum value of 0.5mm when there is no
initial dispersion to the minimum value of 0.2mm. So, the integral width of the microcracks
is more than zero for all values of dispersion, but for big dispersions microcracks disappear
after some microseconds — for deviations from 12m/s to 54m/s the white curve lies above
the black one.

The curve marked W in Fig. 7 shows the spall velocity dependence on the initial deviation.
Rememder that the spall (pull-back) velocity, W , is the difference between the first maximum
and the first minimum on the time dependence of the free surface velocity [10]. The spall
velocity is proportional to the spall strength of the material; it is one of the main strength
characteristics that we can get from spall fracture experiments. From Fig. 7 note that W
has a maximum at the same place where the width of the spall crack has a minimum. So
the both criteria: the spall strength and the width of the spall crack give the same result.
Note that to find the proper value of W , the time dependence of the free surface velocity
was filtered to remove high-frequency oscillations.

Fig. 7: The spall velocity W and the crack width h dependence on the initial deviation:
experiments with a) 5000 particles, b) 20000 particles.
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DISCUSSION

The presented computer simulations show that value of the initial velocity dispersion
in the impact direction has a strong influence on the spall strength of material. From the
analysis of the time relations of the spall crack shape it follows that there are two main
reasons why the dispersion increases the material strength. The first is that dispersion
reduces localisation of the shock fracture — the thickness of the fracture area is far greater
when the dispersion is high. However, since the energy of the shock wave is the same, stresses
in the fracture zone became far less. The second reason is that the dispersion stimulates
relaxation processes in the material. The microcracks that are present at the beginning
of the fracture can disappear after a few microseconds if the dispersion is high enough.
These results of the computer calculations coincide with the results obtained from the real
experiments with ductile steels and aluminum alloys [4, 12]. In particular in reference [4] it
was shown that the mesoparticle velocity dispersion characterises the intensity of relaxation
processes at the mesolevel and hence the material strength: if at the onset of spallation,
the microstresses at the mesolevel have time to decrease due to relaxation processes, the
material reveals the maximum possible dynamic strength.

From the computer calculations it follows that if the initial dispersion is very high, it
leads to the opposite result — material strength decreases. In this case we have a situation
analogous to the decrease of the material strength at high temperatures. For example, the
recent spall fracture experiments with aluminum and magnesium showed precipitous drop in
the spall strength of preheated samples as temperatures approached the melting point [13].
From the mesoscale point of view, high dispersion decreases the material density; the material
became more porous and less stable.

The computer model used to obtain the considered results was very simple: ideal monoatomic
lattice with Lennard-Jones potential. If we consider the particles as elements of microscopic
scale level (for example, atoms), then the results can be interpreted in the other way: rela-
tion of dynamic strength of the monocrystal on the absolute temperature was obtained. If
we consider the particles as elements of mesoscopic scale level, then instead of temperature
we should use term “mesoparticle dispersion”. Of course the considered model is very crude
in its description of dynamic strength properties of real solids, but the obtained results are
in good agreement with the real experiment results. Hence the presented model allows de-
scribing generically the strength–dispersion relation of the real solids. For exact results more
complex models are desirable, but the main tendencies should be similar.

CONCLUSIONS

1. The computer experiments show that the increase of the initial dispersion from zero
to 15–25m/s leads essentially to an increase of the material strength. The further
increase of dispersion leads to the slow decreasing of the material strength, so the
strength-dispersion characteristic has maximum.

2. If the initial dispersion is close to zero, the fracture is localised in a very thin layer, and
borders of the spall crack are absolutely straight. The dispersion increase produced
increasing of the thickness of the fracture area, and the spall crack borders became
irregular. Thus the dispersion leads to smearing of the shock wave.

3. If the dispersion is great enough, the small cracks can disappear spontaneously, so
dispersion stimulates the relaxation processes in the material.
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4. The criterion of the spall strength, obtained from the spall (pull-back) velocity gives
the same result with the criterion of the spall crack width — maximum of the spall
strength corresponds to the minimum (or absence) of the spall crack width. However
the criterion of the spall crack width is far more sensitive.

These conclusions are obtained from the molecular dynamics simulation, and they are
in a good agreement with the results obtained from the real experiments [4, 12, 13]. In
particular, the plate impact experiments [4] with ductile steels show that the maximum
spall strength corresponds to the tests with the maximum mesoparticle velocity dispersion;
spall fracture experiments with aluminum and magnesium show drop in the spall strength
as the temperature (dispersion) approached the melting point [13]; the impact experiments
and the microstructure investigation [4, 12] show that the mesoparticle velocity dispersion
is strongly connected with the intensity of relaxation processes.
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