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Abstract

A dynamic model of percussive drilling assuming a dry friction mechanism to explain the experimentally observed drop in pene-

tration rate is presented. The inherent nonlinearity of the discontinuous impact process is modelled as a frictional pair, and this can

generate the pattern of the impact forces close to reality. Despite quite radical simplifying assumptions, the model is able do describe

the fall of material removal rate for a higher static loading with a good agreement to experimental investigations. Ó 2000 Elsevier

Science Ltd. All rights reserved.

1. Introduction

One of the most fascinating phenomenon met by experimentalists in drilling research is a fall of pene-
tration rate for higher static loads. This is known both in manufacturing and downhole drilling. In man-
ufacturing, for example, considering rotary ultrasonic machining (RUM), the material removal rate (MRR)
saturates or even decreases for higher level of static forces. Similarly, an increased weight on bit in
downhole drilling does not improve the penetration rates when hard strata is met. In this paper, we will
concentrate on the rotary ultrasonic drilling, as we have an ongoing experience in this area, e.g., [8,12].

RUM using diamond impregnated or coated tools is considered one of the most e�cient machining
method for advanced ceramics. Experimental results have shown that the machining rate obtained from
RUM is nearly six±ten times higher than that from conventional grinding process under similar conditions
[1]. Since introduction of RUM in the early 1960s by UKAEA, Harwell in England, a lot of experimental
studies were performed investigating in¯uences of various working conditions on the RUM e�ciency [2±8].
Di�erent workpiece materials including glass, porcelain, ferrite, alumina, and zirconia were examined. As
will be seen the increasing quantity of experimental data demands a theoretical model that could satis-
factorily explain the phenomena. Several comprehensive analytical models for the estimation of the MRR
for ultrasonic machining were proposed by di�erent authors [9±11]. But all these models were considering
ultrasonic drilling mainly from the static point of view, ignoring the dynamics of the drilling process. As a
result some well-known dynamic features of the RUM, such as decrease in the MRR for higher values of
static forces [3±5] have not be properly described. Saha et al. [9] reported satisfactory agreement with the
experiment, even showing the fall in the MRR for higher static loads, but this was obtained by additional
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empirical power restriction. The ®rst dynamic model of the RUM process was proposed by Wiercigroch
et al. [12], where three degrees of freedom impact model was used to simulate the main mechanism
occurring in the ultrasonic drilling. The model was able to explain the MRR fall without any additional
assumptions, only as a direct corollary of the system dynamics. However, this model does not account for a
progressive motion of the drillbit, and hence the MRR was calculated indirectly that possibly produced
very jagged form of the theoretical MRR graph. It is thought that a simple dynamics model, considering
only the essential process features connected with the excitation dynamics and tool propagation was re-
quired, and such a model is presented in the current paper. The proposed model will investigate the in-
¯uences of the static force and the amplitude of the dynamic force on the MRR, assuming that the drilling
resistance is modelled by a dry friction element. In spite of its simplicity the model is able do describe the
fall of MRR for higher static loading.

2. Dry friction model

The presented model is shown in Fig. 1, where m is the mass of the tool, F �t� the overall drilling force,
P � _y� the resistive force, x the coordinate of the tool's tip, and y is the coordinate of the dry friction element,
which represents the progression of the drilling surface. The equation of motion of the mass takes the
following form

x < y ) m�x � F �t�;
x � y ) m�x � F �t� ÿ P � _y�; �1�

which depends on the relative position between x and y coordinates. In turn, the equation of motion for the
slider can be expressed as

_x P 0 ) y � x;
_x < 0 ) _y � 0:

�2�

For simplicity of the further analysis it was assumed that the overall drilling force F �t� has the form

F �t� � A sin x�t ÿ t0� � B; �3�
where A and x are the amplitude and frequency of harmonic force, B is the static force, t the time, and t0 is
the time constant. The resistive force P� _y� is modelled by the Coulomb dry friction ful®lling the following
conditions

_y > 0 ) P � _y� � Q;
_y � 0 ) P � _y�6Q;

�4�

where Q stands for the modulus of the dry friction force. From the practical viewpoint one may consider
that the dry slider progression (MRR) is due to generation of the dynamic impacts, while decelerating the
mass. Therefore we can limit our consideration to the case when F �t� < Q. From Eqs. (1)±(4) it can be easily
deduced that the considered system can be in one of three unique states (see Table 1).

In order to gain some extra ¯exibility of the analysis, new dimensionless variables and parameters are
introduced. Let the dimensionless time be denoted as s � xt, and prime stands for derivation with the
dimensionless time. It is worth to note that the resistive coe�cient, Q has a distinct value for any drilled
material. On the contrary, the amplitude of the harmonic force and the static force can vary, and can be
used as control parameters for the drilling process. Hence, let us divide all the drilling forces by the resistive
coe�cient, Q

f �s� �def F �t�
Q

; a �def A
Q
; b �def B

Q
: �5�

To complete dimentionlising process, coordinates n and g are de®ned as follows

n �def x2m
Q

x; g �def x2m
Q

y: �6�
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3. Progressive stationary motion

Let us consider a progressive stationary motion, that satis®es the following equations

n�s� 2p� � n� � n�s�; g�s� 2p� � n� � g�s�; �7�
where n� is the dimensionless penetration of the drillbit during one excitation period, which is equal to 2p.
The time history of the motion of the system is depicted in Fig. 2. The dimensionless MRR calculated per
one period is

r � g�2p� ÿ g�0�
2p

� n�
2p
: �8�

If one breaks up one period of the progressive stationary motion into distinct intervals, three sequential
time intervals (three stages of the stationary motion) can be speci®ed. They are schematically shown in
Fig. 3, and are speci®ed in Table 2. The time intervals a, b and c satisfy the identity a� b� c � 2p. The
dimensionless excitation force can be represented in the following form

f �s� � ÿa cos�sÿ u� � b; �9�
where u �def

xt0 ÿ p=2. The sum u� p is a phase shift between the overall drilling force and the progressive
stationary motion.

The four parameters a, b, c and u, speci®ed above, are used to determine the progressive stationary
motion. They are unknown and to be found by integrating the equations of motion. The initial conditions
to be chosen, are given in Table 3, where n0ÿjs�a and n0�js�a are derivatives calculated in the left and right
vicinity of the time when s � a. There are three di�erent types of the stationary motion, namely motion
without stop, motion with stop, and total stop, which are summarized in Table 4. By solving the equations
of motion two relations between the parameters a, b and u of the stationary motion can be obtained

a cos�aÿ u� ÿ a cos uÿ aa sin u� 1

2
ba2 � 0; �10�

Table 1

Three unique states of the system

State x y Condition

Free motion m�x � F �t� _y � 0 x < y
Drilling m�x � F �t� ÿ Q y � x _x > 0

Stop _x � 0 y � x F �t�P 0

Fig. 1. The dry friction model.

Fig. 2. The progressive stationary motion.
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a sin�a� bÿ u� � a sin uÿ ba� �1ÿ b�b � 0: �11�

However, to determine all unknowns, one more equation is required, which can be taken from Table 4.
For the motion without stop the resulting system of equations can be solved analytically, for the motion
with stop, a numeric solution is required. The solution can be essentially simpli®ed in the case of small
excitation, when the drilling force is small with respect to resistive force (a, b� 1). This case is particularly
very interesting from a practical point of view. If the motion parameters are found then the dimensionless
MRR can be obtained as

r � 1

2p
a cos�c
�

� u� ÿ a cos�aÿ u� ÿ ab sin�c� u� � 1

2
�1ÿ b�b2

�
: �12�

For experimental veri®cation purposes it is useful to operate with dimensional MRR, which can be cal-
culated as

Fig. 3. One period of the motion.

Table 2

Three distinct sequential stages of the stationary

Stage Time limits n g

Free motion 0 < s < a n00 � f �s� g � 0

Drilling a < s < a� b n00 � f �s� ÿ 1 g � n
Stop a� b < s < 2p n � n� g � n�

Table 3

Boundary conditions

Time Coordinate Velocity

s � 0 n � 0 n0 � 0

s � a n � 0 n0ÿ � n0�
s � a� b ± n0 � 0

Table 4

Three types of the stationary motion

Type Motion Conditions

I No stop a� b � 0, cos u > b=a
II With stop cos u � b=a, sin u > 0

III Total stop a� b � 2p, b=a > 1
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R � SQ
xm

r; �13�

where S is the cross-section of the drillbit, Q the dry friction coe�cient, x the frequency of the harmonic
force and m is the mass of the tool.

4. Results and discussion

Let us examine the in¯uences of the main drilling parameters, A and B on the dynamic system behavior,
keeping in mind, that A is the amplitude of the harmonic force and B is the static force.

Relative periods of the free motion, a=�2p� and the stop, c=�2p� as functions of the drilling forces ratio,
B=A are depicted in Fig. 4. Di�erent graphs correspond to di�erent values of the relative excitation am-
plitude, a � A=Q. The highest (thick) graph in both ®gures corresponds to a! 0 that is the small excitation
case. Lower curves are calculated for a � 0:1; 0:2; . . . ; 1:0 (Fig. 4(a)) and for a � 0:1; 0:2; . . . ; 0:5
(Fig. 4(b)). Relative drilling period b=�2p� as a function of B=A is shown in Fig. 5(a). For small excitation b
is a small quantity that can be seen as a thick horizontal line in the bottom of Fig. 5(a). Higher curves
correspond to a � 0:1; 0:2; . . . ; 0:5. Parameter u as a function of the drilling forces ratio, B=A for di�erent
values of the relative excitation is shown in Fig. 5(b). We need to remember that u� p is the phase shift
between the drilling force and the tool motion. The highest (thick) curve in Fig. 5(b) corresponds the small
parameters approximation a! 0, where lower curves are calculated for a � 0:1; 0:2; . . . ; 1:0.

MRR as a function of the relative hydrostatic force, B=A (A � constant) and the relative amplitude of
the harmonic force, A=B (B � constant), calculated from Eq. (12) is shown in Fig. 6. Di�erent graphs
correspond to varying values of the relative excitation amplitude, a � A=Q for Fig. 6(a), and to di�erent
values of the relative hydrostatic force, b � B=Q as depicted in Fig. 6(b). The lowest (thick) curve in both
®gures corresponds to the small excitation case a! 0 or b! 0. In Fig. 6(a) higher curves are calculated for
a � 0:1; 0:2; . . . ; 0:5. In Fig. 6(b) higher curves correspond to b � 0:05; 0:10; . . . ; 0:25.

Now consider Fig. 6(a), the case of small excitation (lower thick curve). The relationship between the
MRR and the static force B has a clearly pronounced maximum as indicated earlier [12]. The shape of the
MRR graphs is in good agreement with MRR relations obtained from experiments [3±5]. It can be seen that
the MRR increases in the region of the motion without stop, and it reaches its maximum value in the region
of the motion with stop at B=A � 0:4. However, one needs to note that the maximum is close to the border
between these two regions, which is indicated in Fig. 6(a) by a dashed vertical line at B=A � 0:3. For the
further increase of B=A the MRR decreases down to zero at B � A. The maximum value of the MRR for the
small excitation is

Rmax � SA2

xmQ
pmax; �14�

Fig. 4. Free motion period a=�2p� and stop period c=�2p� as functions of the drilling forces ratio B=A for di�erent values of the relative

excitation amplitude a � A=Q.
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where pmax � 0:360. The higher curves in the Fig. 6(a) correspond to nonsmall excitation and they are
shown as a ratio to the small excitation value of Rmax (Eq. (14)).

Now we will investigate the in¯uence of the amplitude of the harmonic force A on the MRR while the
static force B is kept constant; in the case of the small excitation ± see Fig. 6(b) (lower thick graph). The
MRR is equal to zero for A6B, then it increases monotonically in the region of the motion with stop, and
has constant value in the region of the motion without stop A=B >

�������������
1� p2
p � 3:3. Hence, in the small

excitation case there is no need to increase the amplitude of harmonic force more than 3:3B (see dashed
vertical line in Fig. 6(a)). The maximum value of the MRR can be calculated from

Rmax � p
SB2

xmQ
: �15�

The higher curves in the Fig. 6(b) correspond to nonsmall excitation and they are shown as a ratio to the
small excitation value of Rmax (Eq. (15)). For nonsmall excitation the MRR is a monotonic function of the
excitation amplitude, b. It is worth to note that for a bigger excitation, the MRR does not have the hor-
izontal region, and inclination of this part of the curve is greater for greater values of b.

5. Concluding remarks

The developed model allows to calculate the material removal rate R in the form

R � SQ
xm

r
A
Q
;
B
Q

� �
; �16�

Fig. 6. MRR as functions of the relative hydrostatic force B=A (A � constant) and the relative amplitude of the harmonic force A=B
(B � constant).

Fig. 5. Drilling period b=�2p� and phase shift u as functions of the drilling forces ratio B=A for di�erent values of the relative excitation

amplitude a � A=Q.
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where S is the cross-section of the drillbit, Q the resistive force of the material, x the frequency of harmonic
force, m the tool mass, and A and B are the controllable parameters of the drilling force; r � r�a; b� is a
known function of two variables.

An investigation of the MRR function given by Eq. (16) provides the following conclusions.
1. Drilling action is only possible if the static force is smaller than the amplitude of the harmonic force,

B < A. If B is greater than A the drillbit is motionless.
2. The MRR function of the static force, B (while A is kept constant) has a well-pronounced maximum,

which is taken at B � 0:39A for a small excitation and shifts to the right for greater excitation.
3. The MRR is monotonically increasing function of the amplitude of the harmonic force, A. In the case of

the small excitation this function becomes constant for A=B >
�������������
1� p2
p

, which means that an increase in
the amplitude more then approximately 3:3B has no e�ect.

Acknowledgements

The authors would like to kindly acknowledge the ®nancial support from the Royal Society of London
under the grant No. NATO/98/nvb funded jointly by NATO and the Royal Society.

References

[1] Pei ZJ, Khanna N, Ferreira PM. Rotary ultrasonic machining of structural ceramics ± a review. Ceram Eng Sci Proc

1995;16(1):259±78.

[2] Markov AI, Ustinov ID. A study of the ultrasonic diamond drilling of non-metallic materials. Ind Diamond Rev March 1972; 97.

[3] Markov AI. Ultrasonic machining of materials. Mashinostroenie, Moscow, 1980 (in Russian).

[4] Petrukha PG. Ultrasonic diamond drilling of deep holes in brittle materials. Russian Eng J L 1980:71.

[5] Kubota M, Tamura J, Shimamura N. Ultrasonic machining with diamond impregnated tools. Precision Eng 1977;11:127.

[6] Komaraiah M, Mannan MP, Reddy-Narasimha PN, Victor S. Investigation of surface roughness and accuracy of ultrasonic

machining. Precision Eng 1988;10:58.

[7] Prabhakar D, Ferreira PM, Haselkorn M. An Experimental investigation of material removal rates in rotary ultrasonic

machining. Trans North American Manufact Res Inst SME 1992;99:211±8.

[8] Wiercigroch M, Neilson RD, Player MA, Barber H. Experimental study of rotary ultrasonic machining: dynamic aspects. Mach

Vibrat 1993;2:187±97.

[9] Saha J, Bhattacharyya A, Mishra PK. Estimation of material removal rate in USM process: a theoretical and experimental study.

In: Proceedings of the 27th MATADOR Conference. UMIST, Manchester, April 1988:275.

[10] Prabhakar D, Pei ZJ, Ferreira PM, Haselkorn M. A theoretical model for predicting material removal rates in rotary ultrasonic

machining of ceramics. Trans North American Manufact Res Inst SME 1993;21:167±72.

[11] Pei ZJ, Prabhakar D, Ferreira PM, Haselkorn M. A mechanistic approach to the prediction of material removal rates in rotary

ultrasonic machining. Trans ASME, J Eng Ind 1995;117:142±51.

[12] Wiercigroch M, Neilson RD, Player MA. Material removal rate prediction for ultrasonic drilling of hard materials using an

impact oscillator approach. Phys Lett A 1999;259(2):91±6.

A.M. Krivtsov, M. Wiercigroch / Chaos, Solitons and Fractals 11 (2000) 2479±2485 2485


