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Abstract—Reviewed were the problems and methods for control of chaos, which in the last
decade was the subject of intensive studies. Consideration was given to their application in var-
ious scientific fields such as mechanics (control of pendulums, beams, plates, friction), physics
(control of turbulence, lasers, chaos in plasma, and propagation of the dipole domains), chem-
istry, biology, ecology, economics, and medicine, as well as in various branches of engineering
such as mechanical systems (control of vibroformers, microcantilevers, cranes, and vessels),
spacecraft, electrical and electronic systems, communication systems, information systems, and
chemical and processing industries (stirring of fluid flows and processing of free-flowing mate-
rials)).

1. INTRODUCTION

In the first years after the penetration of the concept of deterministic chaos into the scientific
literature, chaotic behavior was regarded as an exotic phenomenon which might be of interest only
as a mathematical speculation and would never be encountered in practice. Later on, however, the
possibility of chaotic dynamics was discovered in numerous systems in mechanics, communication,
laser and radio physics [10, 12, 16, 18, 19], chemistry and biochemistry [46], biology [55], economics
[47, 124, 144], and medicine.

Yet further development highlighted a number of applications where chaotic modes may appear—
sometimes as harmful, sometimes as useful. Moreover, entire classes of problems that are of practi-
cal importance arose where one has to control a nonlinear system by reducing or, on the contrary,
increasing the degree of its chaoticity. Methods for solving these problems also were actively de-
veloped. The main of them were described in the first part [6] of the present review whose second
part is devoted to their applications.

More than 300 papers devoted to various applications of the methods for control of chaotic
processes were published in the peer-reviewed journals between 1997 and 2002. The questions of
chaos control are actively discussed in scientific and technical fields such as physics of turbulent
processes, laser physics and optics, physics of plasma, molecular and quantum physics, mechanics,
chemistry and electrochemistry, biology and ecology, economics and finances, medicine, mechanical
engineering, electrical engineering and chemical industry, traffic control, or communication and
information systems. It is appropriate to decompose the applied works on chaos into scientific and
technical (engineering) applications.

The works on engineering applications demonstrate the use of chaos and the methods for control
of chaotic systems in particular practical problems or at least show their feasibility. The scientific
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applications (in physics, chemistry, or biology), on the contrary, are vectored to the control theory
and methods for discovering new properties and regularities in behavior of physical (chemical,
biological) systems, rather than to particular applications. They often make use of simplistic
model descriptions of the systems under study. At the same time, the smallness requirement or
other constraints on the class of admissible control actions play an important role. Introduction
of these (explicit or implicit) constraints is aimed at elucidating the internal properties inherent
in the system itself and not forced on it by a strong control action. The scientific and technical
applications are discussed below, respectively, in Sections 2 and 3. The miscellaneous applications
are discussed in Section 4.

2. SCIENTIFIC APPLICATIONS

2.1. Mechanics

Control of pendulums, beams, and plates. The pendulum represents the simplest class of me-
chanical systems featuring complex dynamics. The pendulum systems can manifest essentially
“nonlinear” behavior such as multistability, bifurcations, or chaos. Simplicity and obviousness of
physical experiments make the pendulum attractive both for research and tutorial purposes [33,
98, 118, 169].

Motion of the simple pendulum with friction, as well as of many other models of nonlinear
oscillators with one degree of freedom, is known to be able to become chaotic if excited by a
harmonic force of a sufficient amplitude. Some works examined the problem posed by S.W. Shaw
in 1989: “How much does increase the amplitude of a periodic exciting force for which chaos is not
yet observed, provided that the form of the exciting force can be varied?” An inverse pendulum
provided with stops and excited by horizontal oscillations of the suspension axis was studied in [118].
The optimal profile of the exciting force guaranteeing (by the Mel’nikov criterion) the absence of
chaos for the greatest amplitude was determined analytically, and the greatest amplitude was shown
to exceed the corresponding amplitude of for harmonic excitation by the factor of two. Introduction
of a feedback results in further extension of the zone of nonchaotic modes [120]. Similar results
were obtained for the Duffing and Helmholtz oscillators [119].

H.K. Chen [50] investigated the dynamics of the two-gimbal gyroscope with nonlinear (cubic)
damping under external harmonic action caused by vertical vibration of the base. The following
model of the gyroscope nutation motion was used:

I1θ̈ +
β2(1− cos θ)2

I1 sin θ3
+Md(θ̇)− Fgl sin θ = Fg l̄ sinωt sin θ, (1)

where θ is the nutation angle; Md(θ̇) = D1θ̇+D2θ̇
3 is the torque of dissipative forces; D1 and D2 are

parameters; Fg is gravity; l is the distance from the base to the gyroscope center of mass; l̄ and ω
are, respectively, the amplitude and frequency of external action; the parameter β = I3Ω; I1 and I3

are the gyroscope polar and equatorial moments of inertia; and Ω is the rotor velocity relative to the
main axis. Sufficient equilibrium stability conditions were obtained using the Lyapunov method,
and thorough numerical studies were carried out. The passage to chaotic nutations with increase of
base vibration amplitude was shown by means of the bifurcation diagrams. Further, consideration
was given to the problem of control, transformation of chaotic system motion into periodic. With
that end in view, the potentialities of the open-loop control (action of a constant or periodic
torque), time-delayed feedback control (Pyragas algorithm) [6, Section 4.5]), and adaptive control
were examined. In the last case, it was assumed that the parameter β in (1) is adjusted (modified)
by the integral of the mismatch between the current and desirable values of the nutation angle
and its derivative. Modeling demonstrated feasibility of chaos suppression by the above methods
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of control. Chen [50] also considered the problem of synchronization of the chaotic systems of this
kind.

Conditions for excitation and suppression of chaos by an external action were studied also for
the models of mechanical systems such as bars and beams [43, 86], plates [49], impact systems
[119, 173], chains of oscillators connected in series by elastic links [41]. It was proposed [172, 173]
to accelerate the transients by intentional excitation of the chaotic modes in control systems. As
was shown by the examples of bouncing ball and double pendulum, chaotization of motion of
the nonlinear system enables one to reduce the time of controlled passage to the given periodic
trajectory.

Control of friction. “Sliding” (low velocity) motion of the mechanical system may be of stick-slip
(in particular, chaotic) nature caused by interaction of the static and kinematic frictional forces.
From the practical point of view, it is advisable to control the system so as to give rise to smooth
motion instead of chaotic. This control is important for the micromechanical devices such as the
computer CD drives where stick-slip motions can arise upon start and stop. It is also important for
the powerful drives of the artillery mounts and the telescopes. Friction forces are usually controlled
chemically by means of liquid lubricants. Another approach [65, 155] relies on mechanical control
pursuing a twofold purpose of (1) providing smooth motion at low velocities and (2) reducing
frictional forces. A model of a system which has, in addition to the macroscopic degree of freedom,
that is, position of the sliding body, an internal degree of freedom describing the lubricant state
was used in [155]. On the basis of linearization of the Poincaré map and the modal control method,
a control algorithm was proposed subject to the assumption that the entire four-dimensional system
state vector is measurable and the control action is a normal force. The need for restoring system
dynamics and, in particular, dynamics of the internal degrees of freedom in the area of the frictional
contact, is a disadvantage of the approach of [155].

Two algorithms for stabilization of unstable continuously sliding states of an oscillator with
dry friction were proposed in [65]. They rely on the macroscopic equations of system motion
and the time-delayed feedback (method of Pyragas). Elastic deformation is used as the measured
variable, and either the velocity of sliding or the normal force is used as the control action. Both
methods were shown to be able of driving motion from stick-slip to continuous, and the velocity
control was shown to be more precise than the load control. The reader is referred to [131] for
an experimental corroboration of the possibility of suppressing or creating a chaotic mode when
controlling the normal force by the algorithm of episodic (pulse) proportional feedback (the OPF-
algorithm [6, Section 4.4]).

2.2. Physics

Control of turbulence. Description and control of turbulence already over an entire century re-
mains one of the main physical problems [75]. The infinite-dimensional description of the turbulent
flow as a solution to the Navier–Stokes partial equation is known to be often reducible to the finite-
dimensional description. If the dimensionality of the flow attractor in the phase space is relatively
small, then the turbulent flow may be regarded as chaotic, and the methods of chaos control can be
applied to it. The Taylor–Couette liquid flow between two rotating concentric cylinders exemplifies
such flows.

Experimental control of dynamics of the chaotic structures arising in the Taylor vortex flow with
globoid (hourglass) geometry is described in [174]. This flow is a variant of the Taylor–Couette
system. In the experiment, the internal cylinder was rotated by a computer-controlled stepper.
Use was made of a water-glycerol mix with 1.5 volume percent of the Kalliroscope suspension
added for visualization. An increase in the rotation velocity leads to a greater Reynolds number
R = 2πfad/ν, where f is the rotation frequency, a is the globoid radius at the central part, d is
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the gap at the center, and ν is the kinematic viscosity. For R > Rps, where Rps is the critical
Reynolds number for which phase slip occurs, pairs of vortices arise: first, periodic, then chaotic.
The intervals In between phase slips were measured by a TV camera. Control was exercised by
varying the reduced Reynolds number ε = (R/Rps)− 1 = (f/fps)− 1 by means of the algorithm

δεn+1 = K(In − IF ) +Rδεn, (2)

where δεn = εn−ε and ε corresponds to the periodic unstable motion with the interval IF between
the phase bands. The control signal was applied only if the condition |δεn+1| < 0.01 was satisfied,
which corresponds to the generalized OPF-algorithm (or a special case of the recurrent algorithm
described in [70] and also [6, Section 4.4]). The parameters IF , K, and R of the control law were
selected experimentally. It was established that it suffices to vary ε at most by 2 % in order to
suppress chaos for ε = 0.417 (corresponding to the chaotic process).

Control of lasers. Suppression of the chaotic or so-called multimode behavior of lasers is discussed
in one of the first publications on control of chaotic systems [153]. This work presented experimental
data on feedback leading which enabled an appreciable (by an order of magnitude) improvement in
the radiation power owing to more powerful pumping. Scores of papers on chaos control in lasers
and optical devices appeared in journals in 1997–2002. Recent studies were devoted mostly to
the methods of open-loop control [6, Section 4.1] and the time-delayed feedback (Pyragas method
[6, Section 4.5]). The effect of time-delayed feedback on the dynamics of laser with modulation
of losses was studied in [14]. Experimental suppression of the Lorenz-like instability by a time-
delayed feedback in ammonium lasers was described in [64]. The methods of control by open loop
and time-delayed feedback for the CO2-lasers with modulation of losses and also for the doped Nd
fiber laser were compared in [81] which predicted numerically that the stability domain of the lasers
of class B would be expanded (shift of the period doubling bifurcation) by exercising control on
the basis of models with two degrees of freedom. Analytical facts were corroborated by simulations
and experiments.

Control of chaos in plasma. Successful control of chaos in the so-called Pierce diode was de-
scribed in [23, 74, 148]. The Pierce diode is one of the simplest models for studying plasma stability.
Oscillations can occur both in the virtual kinetic cathode and hydrodynamic plasma. The OGY
method was used in [148] to stabilize cycles of periods 1 and 2. The signal of time-delayed feedback
by measurements of the space charge density at a fixed space point was used in [23] to suppress
chaos by modulating the difference of potentials between the input and output diode grids. The
results of [23, 148] can be used to drive a device to the mode of stable microwave oscillations.

The findings on the multimode feedback control for the magnetohydrodynamic modes and on
using feedback in plasma diagnostics were generalized in [158]. The studies were aimed at de-
veloping methods for experimental determination of models of plasma turbulence dynamics for
both better understanding of the transfer processes and more reliable design of controllers. A new
feedback-based method of experimental structure of nonlinear dynamic models plasma turbulence
was described. The results of this work were corroborated experimentally for the Columbia Linear
Machine and may be extended to the fusion machines.

Interaction of laser radiation and plasma, which plays an important role in controlled thermonu-
clear fusion, was studied in [154]. It is noted that on the whole the interaction is very complicated
and its mathematical model has not yet been established, but two types of phenomena are known
to be observed at it. One lies in occurrence of stable soliton-like structures, and the other, in
occurrence of extremely unstable chaotic processes. It is assumed that these phenomena can be
studied separately. The authors of [154] examine the means for reducing the chaotic process to pe-
riodic oscillations or to a steady state by the two types of control, respectively: open-loop periodic
variation of a system parameter or the so-called “proportional pulse control.” The paper focuses
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on the following model: 
ẋ = −gx− b1(x+ z)y2

ẏ = −g0y + b2(x2 − z2)y
ż = −g0z + b3(x+ z)y2,

where x, y, and z are, respectively, the dimensionless field amplitudes for anti-Stokes, pump, and
Stokes modes and g, g0, b1, b2, and b3 are the parameters. Differentiation is carried out with respect
to the spatial coordinate along the direction of wave propagation. The open-loop control lies in
varying the parameter g0 according to g0(t) = ḡ0 − a cosω0t. For ḡ0 = 1 and a = 0 (no control),
chaotic behavior is observed. The system process can be made periodic by an appropriate choice
of the amplitude a and frequency ω0 of modulation of the parameter g0. Proportional pulse control
lies in discontinuous variation of the state variables at certain time instants.

The results of experimental studies of the chaotic processes in n-conductivity germanium oscil-
listors can be found in [92]. Behavior of Kadomtsev–Nedopasov instability in electron-hole plasma
at temperatures 77◦ and 300◦ K under the action of external electrical and magnetic fields was stud-
ied. Pictures of the space-time profile of chaotic processes were obtained from the measurements
at various points of the specimens. Bifurcation diagrams showing the boundaries of domains with
double period, quasiperiodicity, chaoticity, and intermittence were obtained. Several attractors
having each its own dimension and energy response were shown to be feasible simultaneously in
the specimens for certain conditions. Study of semiconductor plasma subjected to an external har-
monic action was continued in [27] which presented some experimental dependences such as fractal,
df , and Kaplan–Yorke, dK−Y , dimensions vs. electric field intensity. This work also considered
synchronization-induced input amplification in a certain amplitude-frequency domain.

Synchronization of the chaotic space-times structures (patterns) in the spatially distributed
models of semiconductor heterostructures by means of the time-delayed feedback was considered in
[156] which compared control with the diagonal feedback matrix, global control, and their combi-
nation. Consideration was given to two models of semiconductor nanostructures that are of current
interest: superlattice and two-barrier diode with resonance tunneling. Quality of control in these
systems was shown [29] to improve by several orders of magnitude owing to suitable filters and
couplings based on the Floquet eigenmodes of the unstable orbits. For the mechanism resulting in
a better control on the basis of phase synchronization of the desired process and that in the control
loop, an explanation was given.

Control of the dipole domains. As was demonstrated in [157], propagation of the dipole domains
in the GaAs/AlAs-superlattice can be controlled by an external high-frequency field. The doped
GaAs/AlAs-superlattice manifests negative conductivity, which leads to propagation of the dipole
domains. Depending on the frequency of external action, various, including chaotic, modes of
domain propagation occur. Frequency locking was shown to be realizable by maintaining the
external field frequency within a certain range which extends with the amplitudes of high-frequency
voltage. Outside this range, quasiperiodic and chaotic oscillations occur.

2.3. Chemistry

Chaotic oscillations in chemical reactions were discovered in the 1970’s first by modeling and
then by experiments for the brusselator models under external action, coupled brusselators, and the
Belousov–Zhabotinsky reaction. The methods of chaos control in chemical reactions were proposed
in [80, 145, 146]. For example, the authors of [146] described application of the proportional (map-
based, OPF) control algorithm to stabilization of the periodic mode of Belousov–Zhabotinsky
reaction. The objective of control is formulated either as the attainment of the reaction steady
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mode, that is, suppression of chaotic oscillations, or as excitation of an oscillatory or even chaotic
mode. For example, chaotic behavior is desirable for combustion processes because it enhances
agitation of the air-fuel mix and, consequently, acceleration of the process [57]. Since chaos leads to
a better stirring, reaction often is more uniform and, therefore, the product is less polluted. Earlier
results on prediction and control for the steady modes of chemical reactions based on linearization
of the simple three-variable autocatalator model

α̇ = µ(κ+ γ)− αβ2 − α
σβ̇ = αβ2 + α− β
δγ̇ = β − γ,

(3)

where α, β, and γ are dimensionless concentrations and σ, δ, µ, and κ are dimensionless model
parameters (for σ = 0.015, δ = 1, µ = 0.301, and κ = 2.5 the system manifested chaotic behavior),
were generalized in [147]. It deserves noting that the opinion of its authors that the proposed
algorithms—the so-called time series-based methods of control—do not use models of the controlled
process does not represent the facts. The proposed algorithms, as well as the OGY method [134, 6,
Section 4.4], are special cases of the algorithm of parametric adaptive control, and the model of
controlled process actually exists in the system as an adaptive model obtained from the current
observations.

Resonant chaos control by light in a chemiluminescent Belousov–Zhabotinsky reaction with
catalysis by a cerium–ruthenium mix was proposed in [82]. Control was exercised by varying the
light flow. A chemical reactor with continuous stirring (CSTR) was used for the experiments. The
light flow had the form of a sequence of “rectangular” pulses. Control based on the Montanator
model with seven variables succeeded in stabilizing several unstable periodic orbits (processes)
with different periods.2 Feasibility of stabilizing the orbits of periods 2 and 4 of the Belousov–
Zhabotinsky reaction in the above reactor was shown in [163]. Experiments on using the open-
loop control of complex—including chaotic—oscillatory electrochemical processes were described
in [138] which demonstrated that by choosing an appropriate frequency of external voltage one can
not only make a chaotic process periodic, but also affect dynamics of regular oscillations. In the
experiments, the amplitude of input voltage did not exceed the rated value more than by 5 %, which
is indicative of the possibility of practical application of this “resonance” method of control. The
possibility of eliminating chaos in coupled electrochemical oscillators by open-loop control and time-
delayed feedback was shown in [105, 107, 136, 137]. Facts about experimental control of chaos in
electrochemical dissolution of copper in phosphoric acid by means of a neural network can be found
in [106]. Electrodissociation of the nickel-based electrodes in sulphuric acid was discussed in [107].
Behavior of a single chaotic oscillator and an array of sixty-four interrelated chaotic oscillators was
studied experimentally. External harmonic (program) action and also feedback were fed into the
control electrode. The work demonstrated that the stages of nonsynchronized chaos, intermittent
chaotic clusters, stable chaotic clusters, stable periodic clusters, periodic synchronous process, and
the steady mode occur successively with increase in the feedback factor.

Chemical reaction-based control of continuous crystallization of dibasic lead phosphite was con-
sidered in [110, 111]. The initial mathematical model was rearranged in a logistic equation under-
lying a modified OGY algorithm to stabilize the cycle of period 2. Periodic measurement of a liquid
flow was used to transform chaotic oscillations into cyclic oscillations of period 6. The algorithm of
feedback control was compared in [111] with the so-called derandomization algorithm which lies in
periodic external action on the system. The feedback algorithm was shown to be advisable because
it features higher precision.
2 By the period of a discrete-time process is meant the number of steps between repetitions of its values. For example,

the process xk, k = 1, 2, . . . is said to have period 2 if xk+2 = xk, but xk+1 6= xk for all k.
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2.4. Biology and Ecology

It seems that the question of chaos suppression in ecological system was first considered in [1, 2]
as early as in 1985 for a system of fourth order describing the dynamics of an aquatic ecosystem
consisting of two kinds of mictroalgae and two kinds of zooplankters. It was shown that chaotic
oscillations can be transformed into periodic by means of a weak periodic action on the system
parameter; at that, the value of the parameter never leaves the chaoticity domain. Although it
was noted in [167] that the presence of chaos in natural populations is questionable, even a simple
linear feedback (OPF-algorithm) or open-loop control was demonstrated to stabilize the population
dynamics rather quickly and be good for monitoring parasites, insects, or other biological species.
The authors of [162] applied the OGY method and the predictive control to the one-dimensional
discrete Ricker model describing the dynamics of one-species population and to the continuous
Scheffer model of plankton dynamics of the third order.

The possibility of controlling population of the red flour beetle Tribolium castaneum was con-
sidered in [59] which developed a mathematical model in the form of the system

Lk = bAk−1 exp(−cELLk−1 − cEAAk−1)
Pk = Lk−1(1− µL)
At = Pk−1 exp(−cPAAk−1) +Ak−1(1− µA)

of three deterministic difference equations describing the population dynamics (the so-called LPA-
model), where Lk is the number of fed larva; Pk is the number of nonfed larva, chrysalises, and
immature insects; and Ak is the number of individuals that are ready for multiplication. The
remaining values are parameters. The exponential factors in the right-hand sides describe canni-
balism among the insects and have the sense of the densities of probabilities that some individuals
eat up the others. The discrete time instants k = 0, 1, . . . correspond to the instants of real time
with the two-week interval. This model was verified experimentally. In qualitative terms, it de-
scribes well the phenomena characteristic of population such as occurrence of steady states and
periodic, quasiperiodic, and chaotic oscillations depending on the system parameters. Minor vari-
ations in the number of mature individuals were shown in the laboratory environment to be usable
for controlling substantial fluctuations in the number of insects [59].

A simple algorithm to support the transient chaos on the basis of the discrete model

yk+1 = F (yk, uk),

where yk is the kth maximum (or minimum) of the scalar output, was obtained in [60] (the point map
gives a reasonable approximation for systems with strong dissipation). This method was applied
to (1) elimination of voltage collapse in power systems, (2) preservation of species in ecology, and
(3) elimination of undesirable bursting phenomena in chemical reactions.

2.5. Economics

Admittedly, the dynamics of many economic systems obey the nonlinear models; the systems
may manifest chaotic behavior [124]. The problems of controlling such systems are quite realistic
only at the microeconomic level. Here, suppression of chaos is the reasonable aim of control, which
leads to higher predictability of the business cycles. Control of business cycle using a continuous-
time version of the Metsler model was considered in [70]. An adaptive control algorithm leading
to a satisfactory chaos suppression was obtained on the basis of the speed-gradient method. The
authors of [89] considered control of chaos for the model of a microeconomic system describing two
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competing companies using different investment strategies. Both companies are assumed to occupy
dominating positions in the same market sector. the Behrens–Feichtinger modelxk+1 = (1− α)xk + a

(
1 + e−c(xk−yk)

)−1

yk+1 = (1− β)yk + b
(
1 + e−c(xk−yk)

)−1
,

(4)

where α, β, 0 < α, and β < 1 are the rates of decrease in the cost of goods sold in the absence of
investments, the parameters a and b characterize efficiency or scale of investments, and c is the so-
called elasticity measure of the investment policy, is used to describe situations of both companies
trying to exercise management simultaneously in the presence of an external disrurbance. The
“parasitic” oscillations about the periodic orbit that destruct the anticipated stabilization effect
were shown to be plausible in the case of competition in management. The OGY model was used to
control chaos. Chaos was demonstrated to be suppressible by an appropriate choice of parameters,
provided that only one company exercises management. If both companies try to manage the
market simultaneously, then one often fails to eliminate chaos. In [90] such results were obtained
for an algorithm with time-delayed feedback. Interestingly, Eqs. (4) first appeared as a model of
the armament race between two countries with asymmetrical policies in the field of armaments.
The authors of [91] considered a model example of controlling the Behrens–Feichtinger system by
the Pyragas method in an attempt to compare the processes in the chaotic model of [124] with real
economic time series.

2.6. Medicine

Study and treatment of cardiac arrythmia was among the most thrilling and promising among
the early applications of chaos control [76]. Design of the high-speed feedback pacemakers seemed
to be a radically new approach in cardiology. However, behavior of the human heart turned out
to be more complicated than it seemed a decade ago. Several models and methods for controlling
the chaotic processes of cardiac activity have been proposed since. A method based on the one-
step linear time-delayed feedback was proposed in [44] for suppressing the pathological rhythm of
period 2.

A method of controlling the distributed processes of wave instability in cardiac tissues on the
basis of time-delayed feedback was proposed in [150]. The first experimental results on using control
in clinical practice seem to be related with treatment of human atrial fibrillation [61]. Twenty-five
patients were involved in the studies. A four-polar catheter with electrodes was introduced through
the patient’s femoral vein and placed in the lateral right atrium. Fibrillation was excited by rapid
pacing of 50 Hz frequency during one to two seconds. Then, the learning phase ensued during which
the (unstable) periodic orbit to be stabilized was determined. Control was aimed at stabilizing the
interbeat intervals by an algorithm of the OGY type. As was mentioned in [61], nine of the twenty-
five patients manifested perfect chaos control (36 %), partial control was observed for ten patients
(40 %), and no control was observed for the remaining six patients (6 %).

Another medical problem, reduction of the level of chaotic oscillations in seasonal epidemics,
was considered in [79]. The process was described by the classical epidemiological model where
the rate of vaccination is used as control. Chaos was shown to be eliminable if using a constant
and sufficiently high rate. The authors assert that reduction, rather than complete elimination, of
chaoticity is the most suitable aim of control. The paper also demonstrated effectiveness of the
PID laws of control and their robustness to inaccuracies in the model parameters.

As was noted in [88], which is of a review nature, the methods of the chaos theory can be of use
to cope with the difficulties of controlling the blood sugar at diabetes, select correctly individual
treatment procedures, and even automatize this process in future. This work considered plausible
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methods of modeling chaotic oscillations of sugar content and discussed possible ways to reducing
their swing.

The experimental results on chaos control in the animal neuron networks were presented in
[52]. In particular, suppression of epileptiform activity was observed in sections of the hippocamp
under the action of direct small-amplitude current. The author also reported on experiments of
exciting stochastic resonance in the mammal brains under the action of modulated electrical field
and studies of a feedback algorithm for suppression of oscillations in the activity of the neural
networks that are characteristic of epileptic seizures.

Behavior model of a collection of nephrons—functional structural units of kidneys—was dis-
cussed in [164] which presented a system of differential equations describing pressures and liquid
flows in an individual nephron. Oscillatory, including chaotic, modes and conditions for their orig-
ination and synchronization are analyzed using this model. The paper also presented the results of
experimental studies which are in good agreement with the calculated data.

3. TECHNICAL APPLICATIONS

3.1. Mechanical Systems

Irregular oscillations in mechanical systems caused by rotation of unbalanced rotors, vibrations
in spatially extended structures, and so on occur in many technical applications. Suppression of
undesirable oscillations is a characteristic objective of control. Problems of this sort are often
tackled by the methods of the linear control theory. According to the existing information, there
are successful examples of using nonlinear control. Some of them are described below.

Control of vibroformers. Aluminium is produced from aluminum in electrolyzers. Carbonic
blocks consisting of petroleum coke, recycled spent anodes, and binder pitch are used as anodes.
Their production is an important stage of the process. Coke and wastes are crushed to the desired
size, mixed, and heated. Pitch is added to the heated mass and mixed until paste is obtained which
is used to make blocks of mass 1 to 1.2 ton. This operation is done by the vibration compactors
(vibroformers). The blocks are baked at the temperature 1100◦ C. The quality of anodes has a
significant impact on the efficiency of the reduction process. Low density reduces its efficiency,
and high permeability increases emission of carbon in air and carbon dioxide into the reductive
cell. Additionally, defects in anodes increase their electrical resistance. To avoid these drawbacks,
anodes should be made of a uniform high-density material. Vibrational compacting is much more
efficient than simple compression. It makes for better stirring of the material, production of better
blocks, and also eliminates air bubbles that reduce the strength of the anode blocks. As is known
from practical work, regular oscillations of vibroformers lead to low-grade anodes. However, too
irregular oscillations of great amplitude may result in excessive jumps of the pusher and, therefore,
destruction of anode. A method of vibroformer control supporting the given degree of irregularity
by irregular switching between several periodic modes of the installation was proposed in [140].
The vibroformer is a kind of the impact oscillator obeying the bouncing ball model:

−0.5g(t − tk)2 + vk(t− tk)2 + a sin(ωtk) = a sin(ωt), (5)
vk+1 = α

(
vk − g(tk+1 − tk)

)
+ a(1 + α)ω cos(ωtk+1), (6)

where x(t) is the pusher position and y(t) is the vertical displacement of the vibroformer platform
which is regarded as harmonic, y(t) = a sin(ωt). The reduction coefficient α ∈ (0, 1] describes the
impact energy dissipation and depends on the characteristics of the pusher and material of anode
(α = 1 corresponds to absolutely elastic collision). The time instants tk when x = y are those of
impact. The pusher velocity immediately after tk is denoted by vk (it is assumed for simplicity
that the impact contact is instantaneous). Equation (5) is solved in t, and as a result the instant
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tk+1 of the next impact is determined from vk. Then, the velocity vk+1 after the next impact is
established from (6).

System (5), (6) is known to exhibit chaotic behavior within a wide range of variations of param-
eters. Since both regular and uncontrolled behaviors are equally undesirable, it was suggested [140]
to identify and stabilize some periodic motions embedded in the chaotic mode and then pass irreg-
ularly from one to another with the aim of improving anode quality. It was proposed to stabilize
unstable q-periodic motion by a linear law of control based on the measurements of pusher velocity
and the predicted instant of the next impact. It was proposed to use the frequency of vibroformer
rotation as the control variable. To accelerate the mode-to-mode passage, the earlier method of
targeting [139, 140] is used.

Control of microcantilevers in atomic force microscopes. Dynamics of microcantilevers used in
the atomic force microscopes were studied and a method for their control was proposed in [35, 36].
Microcantilever is set in oscillatory motion by a sinusoidal input, its displacement being measured
by an optical system. Dynamics of forced motion are investigated by the Mel’nikov method which
allows one to determine in the space of system physical parameters a domain where chaotic motion
is possible. Then, determined is the Mel’nikov function for closed-loop system which depends on
the parameters of the PD-controller. As the result, the parameter values are determined for which
chaotic motion is impossible.

Stabilization crane oscillations. Pendulation suppression of a shipboard crane was discussed in
[104]. Chaotic process with a dominating frequency lying near the natural system oscillations
was considered as a disturbance. Their effect was examined. A fuzzy controller was proposed to
suppress them. The cable length was used as a control variable. Studies showed that the swing of
oscillations was substantially reduced as compared with the uncontrolled system.

Stabilization of ship oscillations. Roll motion of a flooded ship was considered in [130]. Great
amount of water inside the hull gives rise to complicated coupled oscillations of the ship and liquid
in it that are similar to oscillations of the coupled oscillators. The picture becomes even more
complicated because of the quasiperiodic external disturbances. The model of forth order was used
to describe the dynamics of roll in waves. In their preceding works, the authors of [130] relied on
the numerical and laboratory studies to demonstrate feasibility of complex chaotic oscillations of
great amplitude. In this paper they posed the problem of reducing the system to regular small-
amplitude oscillations. This problem was solved by the Pyragas method of time-delayed feedback.
To this end, terms proportional to the differences between current and delayed values of the angular
velocities of ship roll and inclination of water in it are introduced in the right-hand sides of system
equations. It was shown that the chaotic process can be reduced to a small-amplitude periodic one
by an appropriate choice of the delay time and the feedback coefficients.

Suppression of chaotic oscillations of tachometer. Behavior of a mechanical tachometer sub-
jected to additional vibrations along the rotation axis was studied in [78]. Vibrations of the base
obey the harmonic oscillations A sinωt. Presented was a mathematical model of the system. Its
characteristics were studied by various analytical and numerical methods. Bifurcation diagrams
demonstrating that with growth in the vibration amplitude the oscillations from periodic become
chaotic were constructed. The bifurcation boundaries in the damping coefficient and vibration
frequency were established as well. To improve system quality and eliminate chaotic phenomena in
it, it was proposed in [78] to introduce a control that drives motion from chaotic to periodic. Var-
ious methods of control were considered such as introduction of an additional constant or periodic
torque, time-delayed feedback control, adaptive control, bang-bang control, optimal control, and
introduction of additional pulse action. The paper presented numerous graphs depicting the results
of modeling the original and controlled systems and demonstrating applicability of the proposed
methods.
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3.2. Space Engineering

Chaotic spacecraft angular oscillations and their control are discussed in numerous recent publi-
cations. Besides the traditional problems of control of space structures taking into account the elas-
tic deformations of their elements (see, for example, [9]), other problems arise where the spacecraft
is considered as a rigid body and complex (including chaotic) oscillations result from nonlinearity
of its dynamics.

Spinning satellite with a peripheral damper of nutation oscillations was considered in [21, 127,
128]. The system consists of a rigid body spinning around a main axis and an energy absorber in the
form of a peripheral inertial spring damper. Additionally, small jets can develop a control torque
about the aforementioned axis. The satellite is also subjected to a variable perturbing torque that
is regarded as harmonic. In practice, such a torque may occur, for example, if the spin velocity of
an out-of-balance rotor mounted on the satellite is varied. On the basis of the Lyapunov function
method and heuristic considerations, [127, 128] constructed a control algorithm to stabilize the
desired speed of satellite spin in the absence of nutation and precession. The same problem was
considered in [21], but the control law was designed by the speed-gradient method with the use of
the energy objective function. This method was shown to attain its object with a smaller level of
control.

The plausibility of chaotic motion in gyrostat and methods of its control were studied in [77,
95, 116]. The gyrostat is a body with three rotational degrees of freedom and one or more internal
wheels. Studies of gyrostat dynamics and control are of practical importance because these models
describe satellites performing angular spin motion and dual-spin spacecraft such as satellites with
wheel motors or spinning satellites with stabilized platform.

Analysis, control, and synchronization of the chaotic processes in a gyrostat subjected to external
disturbances were carried out in [77]. Consideration was given to the dynamics of a gyrostat having
three wheels with mutually orthogonal axes of rotation. The wheels are driven by electric motors.
It was assumed that a small sinusoidal ripple is superposed on the rotation torque of one of the
rotors. The current in the motor of one of the wheels can be varied, thus creating a control
action. The state vector of the system at hand consists of the satellite angular spin rates in the
axes of the vehicle state coordinates and current in the control motor. The authors of [77] believe
that studies of chaotic motions in the gyrostat are of practical value, in particular, because it can
be used as a missile model. Anticontrol of the missile angular chaotic motion at attack hinders
intercept because in this case the trajectory of motion is hardly predictable. Like [78], this paper
presents the results of using various methods for analysis of uncontrollable motion of the plant.
Analysis demonstrated that angular motion of the gyrostat can become chaotic with reduction of
the frequency of external disturbances. The work proposed and considered algorithms of adaptive
and time-delayed feedback control to change the nature of system oscillations, that is, make motion
periodic and not chaotic. Additionally, consideration was given to the possibility of anticontrol of
chaos by an arbitrarily small control. With that end in view, it is proposed to use a small constant
or periodic control action. The paper then studies synchronization of chaotic processes in the
two aforementioned systems. Consideration was given to synchronization with linear, sinusoidal,
exponential, and adaptive feedbacks. We note that the paper presents no particular treatment of
the problem of synchronization for the systems under study.

Chaotic oscillations of the gyrostat with time-dependent torques of inertia and fixed position
of the center of mass were considered in [95, 116]. Periodic changes of the moment of inertia
were examined. As was proved by means of the Mel’nikov method, the system manifests chaotic
behavior in the sense of Smale’s horseshoes in the absence of external disturbances and rotation of
the rotor. Stabilization is exercised by rotation of the rotor about one of the main axes of inertia
of the platform.
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The possibility of chaotic angular oscillations of the satellite and their suppression were studied
also in [51]. Consideration was given to the motion of a satellite having constant magnetic eigenfield
under simultaneous action of the terrestrial gravity and magnetic fields. For the satellite libration
angle ϕ(t) in the orbit plane, the following mathematical model was established under certain
assumptions:

Cϕ̈+ cϕ̇+ 3ω2
c (B −A) sinϕ cosϕ+ µmiIr

−3(2 sinϕ sinωct+ cosϕ cos ωct) = Mc(t). (7)

Here, c is the coefficient of proper satellite damping; ωc is the value of satellite angular speed on
the orbit; A and B are its main moments of inertia (B > A); µm is the magnetic constant; I is
the value of the satellite magnetic moment; r and i are the orbit radius and inclination; and Mc(t)
is the value of the control torque. On the basis of the Mel’nikov method and numerical analysis,
the paper proved that within some parameter domain the satellite angular motion is chaotic in the
absence of control (Mc ≡ 0). To obtain the desired process ϕ(t), the method of feedback lineariza-
tion [6, Section 4.2] was used to construct the law of generation of the control torque Mc by the
output and derivative. The feedback system was shown not only to suppress chaotic oscillations,
but also to provide the desired form of ϕ(t) (numerical examples of stabilization of the angle ϕ and
harmonic oscillations with the given frequency were given). We note that solution seems rather
trivial from the point of view of the system theory: the control torque is chosen so as to compensate
the nonlinear—in the control error—term in the right-hand side of (7) and introduce proportional
and differential terms.

3.3. Electrical and Electronic Systems

Chaotic processes have been recently found in many electrical and electronic devices, and meth-
ods of control were developed for them. We note that in electrical engineering conclusions about the
plausibility of occurrence of chaotic processes in these systems, analysis of bifurcations, and deter-
mination of the oscillation parameters can be verified rather simply. Therefore, it is no wonder that
the well-known “classical” generators of chaotic oscillations (systems of Chua, Matsumoto, Lorenz,
Rëssler, and others) were embodied in electrotechnical devices. Works on control of buck converters
[42], d.c. motors [48], ferroelectric systems [83], electrostatic transducers [113], d.c. transducers [66,
115, 149], power systems [165, 166], and so on must be mentioned among applications of control.
Let us consider some examples.

A method of controlling the Chua system with adjustment of the adaptive gain was considered
and its modification proposed in [170]. To carry out experimental studies, the authors developed
an analog-to-digital laboratory model including an electronic Chua circuit with a gyrator as the
inductive element and a control computer. For deviations of capacity and inductance from the
rated value, respectively, by 50 % and 25 %, tracking of the control signal was established to remain
acceptable. The model is used also for experiments on information transmission by modulation of
the chaotic signal.

The automodulation modes arising in the backward-wave tubes (BWT) were discussed in [63].
These tubes find wide application in physical experiments in relativistic electronics and may be
used to generate multifrequency, including chaotic, signals. From the standpoint of dynamics,
they represent the distributed self-oscillating systems. The automodulation modes were previously
studied both theoretically and experimentally in [8] for a powerful BWT with an electrodynamic
system in the form of a weakly corrugated waveguide. As was established in this work, the modes
of stationary generation and periodic sinusoidal and chaotic automodulation are observed in the
BWT depending on the current. As was noted in [63], automodulation is desirable if it is required
to obtain multimode chaotic oscillations, but its action may become unfavorable if it is required
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to concentrate the output power at a certain frequency. In order to suppress automodulation, the
authors of [63] considered the use of a time-delayed feedback. It was suggested for this purpose to
control the intensity of the input electron beam depending on the output. After rectification and
filtering, the output passes through two branches into one of which a delay equal approximately
to half automodulation period is fed. Then both signals are fed into a differential amplifier whose
output defines the voltage bias on the control grid of the electronic gun and in that way controls the
current of the BWT input beam. Computer simulation corroborates effectiveness of the proposed
scheme.

An d.c. motor-based experimental facility was described in [48]. It includes electronic interrupter,
generator–motor pair, and analog controller. The load torque of the motor can be controlled by
the generator load current. It is required to maintain the given rotor velocity. For this purpose, the
controller realizes the proportional feedback law in velocity. Theoretical analysis and experiments
demonstrated that the system manifests chaotic behavior for high gain and high voltage of the
rotor source of the motor. To eliminate this phenomenon, an additional time-delayed feedback was
used in [48]. It was demonstrated that by varying the coefficient of this feedback under constant
delay the system oscillations can be driven from chaotic to regular with period 1 (one-mode mode)
or period 2 (subharmonic oscillations).

Use of the chaotic pulse-width modulation for elimination of dark and light stripes observable on
the fluorescent lamps was studied in [117]. The Chua circuit was used as the generator of chaotic
control signal. The output voltage of this circuit controls the pulse duration whose rated value
is half of the period. The signal consisting of constant and chaotic components is fed into the
pulse-width modulator which controls the switches in the power supply circuit. This method is
superior to its existing counterparts in that it requires modifications only in the modulation circuit
and not in the power one. The same paper [117] presents the results of experimental study of the
proposed method.

Control of the magnetic suspension (levitation) was considered in [100] whose authors suggested
to use the relay-logical control law where the control action (on/off switching of the electromagnet
in the case at hand) depends on the prehistory, that is, on the sequence of intersections of the
threshold level by the body, for which purpose the body position sensors are used. This approach
allows one to do without explicit measurements of the body velocity, and it deserves mentioning that
it is not a novelty for the control system designers. The model of the second order was examined
analytically, and the effect of inertiality of the inductance coil was simulated on computer. As
was established numerically, chaotic oscillations occur in the steady-state mode. The size of the
chaotic attractor (in vertical displacement) turned out to exceed the distance between the levels
of switching approximately by the factor of four. The results obtained were verified by laboratory
experiments. Body displacements were sensed by an optical device, which enabled one to take
the spectral response of steady oscillations. The form of response is characteristic of the chaotic
processes.

Behavior of an electromechanical system consisting of interacting electrical and mechanical os-
cillators was considered in [177]. Both parts are coupled by the electromagnetic force developed
by a permanent magnet. As the result, the Laplace force acts on the mechanical part, and the
electromotive Lorenz force occurs in the electrical circuit. Models of this kind are characteristic
of the electromechanical transformers such as loud-speakers. The aforementioned paper considered
a system with a nonlinear electrical part obeying the Duffing equation. For this purpose, one
makes use of the nonlinear capacitor with plate voltage Vc depending cubically on the charge q:
Vc = q/C0 + αq3, where C0 is the linear part of the capacitive characteristic and the parameter
α defines nonlinearity of the capacitor and depends on its type. The mechanical part is a linear
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oscillatory system. This transformer obeys the following equations:{
Lq̈ +Rq̇ + q/C0 + αq3 + lBż = v0 cos Ωt
mz̈ + ρz + kz − lBq̇ = 0,

where L and R are, respectively, inductance and active resistance in the electrical part; v0 and Ω
are, respectively, the amplitude and frequency of the external harmonic voltage; l is the length of
the section of interaction of the magnetic field of intensity B with two moving rods to which a
body of mass m is attached; k is the coefficient of spring elastic stiffness; ρ is the viscous friction
coefficient; and q̇ is the current in the electrical circuit. For the model obtained, oscillation stability
was analyzed theoretically by means of the method of harmonic balance and the Floquet theory.
The values of the Lyapunov exponents were also obtained, and the bifurcation diagrams reflecting
the passage from regular to chaotic behavior were constructed. The problem of suppressing chaotic
oscillations or reducing them to regular oscillations by a feedback controller was studied in [177]. It
was suggested to make use of the vector control by deviations of the capacitor charge and movements
of the body about the given values. Additional voltage in the electrical part of the system and
additional force applied to the load are the components of control. Linear approximation was used
in choosing the controller parameters. The passage from the chaotic mode of oscillations to the
periodic mode was demonstrated numerically.

Voltage collapse in electrical generators was discussed in [84]. This phenomenon means that
an inadmissibly low voltage in an appreciable part of the power grid can result from a sequence
of effects caused by voltage instability. Voltage collapses recently occurred more than once in the
large power grids of some countries because of load reduction that was caused by switching off
many electrical customers. The authors of [84] considered a three-bus low-power grid having two
generators feeding a load in the form of paralleled inductive, capacitive, and active elements. It
was shown that with the increase in impedance of the first generator, the chaotic mode arises
through period-doubling after the Hopf point of bifurcation. To control(stabilize, suppress) chaotic
oscillations, global linearization by feedback (see [5, Section 4.2]) was used. The control system has
two feedback loops, internal for linearization and external for control. The external loop includes
a PI-controller. Impedance is used as the control variable. Results of comparing this method with
nonlinear feedback control were presented.

Synchronization of electronic circuits with chaotic behavior was considered in [37]. Consideration
was given to the circuits with the so-called jerk equation where the derivative of the acceleration
of some variable x(t) is defined. In the abstract form, this equation is as follows: x(3) = −Ax(2) −
ẋ + G(x), where A is a constant parameter and G(·) is a nonlinear function. The authors of
[37] considered electrical circuits with the piecewise-linear function G(·) where chaotic oscillations
occur. Using the linear system of second order as an example, the paper presents the concept of
state observers that was used to synchronize the nonlinear circuities. Operability of this method
was corroborated by numerical simulation.

3.4. Communication Systems

Extensive literature devoted to the possibility of using chaotic processes for transmission of
communications allows one to state that there exists a mature area of research both in telecom-
munications and studies of dynamic chaos. These problems were covered in special issues of IEEE
Transactions on Circuits and Systems and International Journal of Circuit Theory and Appli-
cations, reviews, and monographs [10, 12, 24, 26, 93, 94, 96, 101, 112, 178]. Three distinctive
characteristics of the chaotic processes that make dynamic chaos promising for transmission of
information were presented in [26].
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(1) Broadbandness. Chaotic signals are nonperiodoc and have continuous spectra occupying,
for many types of the chaotic signals, very wide bands. Moreover, one can define the form of the
spectral characteristic. In the communication systems, the broadband signals are used to suppress
distortions in the signal channels such as fading or narrowband disturbances. Therefore, the chaotic
signals have potentialities for spread-spectrum communications.

(2) Complexity . Chaotic signals have complicated structure and are extremely irregular. The
same chaotic generator can develop different processes in response to very small variations of the
initial conditions. This fact appreciably hinders determination of the generator structure and
prediction of the process for any long period. Signals of complex form and unpredictable behavior
are the classical cryptographic signals, which offers one more possibility of using chaos.

(3) Orthogonality. Owing to irregularity of the chaotic signals, their autocorrelation function
usually decays rapidly. Therefore, the signals of more than one generator can be reasonably regarded
as noncorrelated orthogonal ones. This is indicative of applicability of the chaotic signals to the
multiuser communication systems where the same frequency range is used simultaneously by several
users.

Studies on application of chaos to the communication systems open wide opportunities in do-
mains such as receiver–transmitter synchronization [7, 11, 53, 54, 109, 142], message masking and
reconstruction [38], noise filtering [152], restoration of information signals [125], and also devel-
opment of the coding–decoding algorithms allowing one to represent an arbitrary digital message
through the symbolic dynamics of a chaotic system [38, 39, 125, 126].

Dynamic systems were classified in [40] from the standpoint of using them as sources of chaotic
signals which carry coded information and can be transmitted to the receiver and decoded with
insignificant distortions. The main fact established in this paper lies in that information can be
transmitted with a very small error probability if the rate of information generation by a chaotic
system, that is, the system topological entropy, is not smaller than the rate of information gener-
ation by the message source, that is, the Shannon entropy, with the deduction of the conditional
entropy caused by the channel constraints such as noise distortion. The dynamic systems where
the topological entropy coincides with the Shannon entropy were called by the optimal encoders.

Many papers were devoted to information transmission by means of the modulated chaotic sig-
nal. This method of modulation has some advantages as compared with the traditional modulation
of the harmonic signal. Indeed, if in the case of harmonic signals there are only three controlled
characteristics such as amplitude, phase, and frequency, then even a minor change in a parameter
provides in the case of chaotic oscillations a reliably detectable change in the nature of oscilla-
tions [10], which means that the variable-parameter sources of chaos have a wide set of schemes
for inserting the information signal in the chaotic signal, that is, modulating it by information.
Moreover, chaotic signals are inherently wideband. The wide band of carrying signals is used in
the communication systems both to increase the information transmission rate and improve system
stability to disturbances. Similarity to noise and self-synchronization of the chaos-based systems
give them priority to the traditional systems with extension of spectrum that are based on the
pseudorandom sequences.

The monograph [12] describes various methods of information transmission using synchroniza-
tion of chaotic system such as (1) chaotic masking, (2) switching of chaotic modes; (3) nonlinear
mixing of the information signal with the chaotic one; (4) use of the automatic phase control; and
(5) use of the methods of adaptive reception. Comparative analysis suggested that the scheme
with nonlinear mixing [7] was preferable; therefore, it was chosen as the basis for research. The
monograph presented diverse results of numerical studies and laboratory experiments demonstrat-
ing plausibility of using this method for information transmission. Mentioned were also the main
difficulties arising in applications such as the mismatch of the elements of the transmitter and re-
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ceiver that plays the principal part in wire communication and, in addition, distortions of the signal
in the communication channel for wireless information transmission. The authors concluded that,
though practical application of chaotic signals still faces difficulties, the era of wide application of
the dynamic chaos is already on its marks.

Let us consider in more detail some schemes of using chaos for message transmission. The papers
[53, 54] seem to be the first and probably the most frequently quoted publications on message
transmission by means of chaotic signals. In these publications, the transmitter is constructed as
a Lorenz system whose equations are scaled to the following form:

u̇ = σ(v − u)
v̇ = ru− v − 20uw
ẇ = 5uv − bw.

(8)

An analog electronic circuit with the parameters σ = 16, r = 45.6, and b = 4.0 was constructed
according to (8) (the variables u, v, and w corresponds to the output voltages of the operational
amplifiers). The receiver equations were as follows:

u̇s = σ(vs − us)
v̇s = ru− vs − 20uws
ẇs = 5uvs − bws.

(9)

Equations (9) resemble (8), except for the fact the right-hand side of (9) depends not on “its”
state variable us, but on the variable u which, therefore, can be regarded as the transmitter output
arriving to the receiver. Using the method of Lyapunov functions, it was shown in [53, 54] that
systems (8) and (9) are synchronized, that is, the mismatch between their corresponding state
variables asymptotically goes to zero. Stated differently, (9) is an asymptotic observer of (8). The
coefficient b of the transmitter (8) for transmission of the binary signal was changed to b = 4.4,
which corresponds to the binary “unity,” whereas the original value b = 4.0 meant the binary
“zero.” The level of the mismatch signal e = u− us in system (9) grows dramatically upon change
of b in (8) to b = 4.4 because the parameter b of observer (9) differs from b in system (8)). Averaging
of e2(t) allows one to determine what signal was transmitted.

The possibility of using chaos for information protection was demonstrated in [54]. The approach
proposed in this paper, which is known as “chaotic masking,” lies in adding a chaotic signal to the
information (useful) signal in the transmitter and restoring the useful signal from this mix in the
receiver. Robustness of the process of synchronization of systems (9) and (8) was used in [54] to
extract the useful signal. System (9) can be, therefore, regarded as a filter tuned, loosely speaking,
in resonance to the chaotic generator (8). Since the useful signal m(t) has a distinction in form
from the chaotic signal, it can be restored by inputting the mixed signal s(t) = m(t) + u(t) in the
receiver (9) and then performing restoration by the formula m̂(t) = s(t) − ur(t) to the estimate
ur(t) of the variable u(t).

Synchronization-based message restoration in the receiver is allied to estimation of the plant
state (here, transmitter) by observer (here, receiver) with which the control theory is well familiar.
This approach gave rise to a line of research known as the observer-based approach to chaotic
synchronization [28, 121, 132, 133]. In distinction from the well-known problem of estimation of
linear system state, when designing observers of chaotic processes, one encounters fundamentally
nonlinear signal sources giving rise to substantial difficulties [121, 133].

A more complicated, but potentially more flexible method of message restoration from the modu-
lated chaotic signal is based on adaptation—in particular, on using adaptive observers. The paper
[71] considered synchronization of two nonlinear systems (here, receiver and transmitter) in the
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conditions of incomplete measurements and incomplete information about the source parameters.
The modulated (information) parameters are introduced linearly in the model.

The controlled chaotic modulated-signal generator obeys the Lur’e equations

ẋd = Axd + ϕ0(yd) +B
m∑
i=1

θiϕi(yd), yd = Cxd, (10)

where xd ∈ Rn is the vector of modulator state, yd ∈ Rl is the vector of output (transmitted
signals), and θ =

[
θ1, . . . , θm

]T is the modulator parameter vector carrying information about the
transmitted message. Design of a receiver (demodulator) proceed from the assumption that the
nonlinearities ϕi(·), i = 0, 1, . . . ,m, the matrices A and C, and the vector B are known.

A passification-based demodulator [71] is a variety of the adaptive observer which, for known
A, B, and C, obeys the equations

ẋ = Ax+ ϕ0(yr) +B

(
m∑
i=1

θ̂iϕi(yr) + θ̂0G(yr − y)
)
,

y = Cx,
(11)

˙̂
θi = ψi(yr, y), i = 0, 1, 2, . . . ,m, (12)

where x ∈ Rn, y ∈ Rl, θ̂0 ∈ R,
[
θ̂1(t), . . . , θ̂m(t)

]T is the vector of parameter estimates, and G ∈ Rl
is the vector of weight coefficients. The adaptation algorithm (12) which is obtained by a routine
use of the speed-gradient method [15] is as follows:

˙̂
θi = −γi(y − yr)ϕi(yr), i = 1, . . . ,m, ˙̂

θ0 = −γ0(y − yr)2, (13)

where γi (i = 0, 1, . . . ,m) are the positive gains of the algorithm. In the presence of noise in the
communication channel, algorithm (13) may be regularized (robustified) by introducing a paramet-
ric feedback or deadzone.

The properties of algorithm (13) and the model examples of message transmission by the con-
trolled Chua system can be found in [4, 5, 31, 32, 71, 72]. Development of this approach which is
related with extension of the methods of design of adaptive observers to the nonpassifiable systems
was presented in [73] where two methods of designing adaptive observers were proposed and the
possibility of using them for message transmission was demonstrated. The method of Lyapunov
functions and the Yakubovich–Kalman lemma were used in [67] to design the adaptive observer.
Illustrative numerical examples of information transmission by modulation of the parameters of the
Lorenz and Chua systems were given. Another approach based on identification of the transmitter
parameters from a discrete model can be found in [34].

The issues of robust synchronization of chaotic systems and its possible use for information
transmission were discussed in [68]. It was noted that their study is important for ascertaining,
on the one hand, the security level of message transmission and, on the other hand, the possibility
of restoring the information signal at the mismatch between the real and calculated models of the
communication system devices. State observers are used in [68] as above.

Use of the methods of control of chaotic processes for message coding in communication channel
was considered in [39, 126]. This coding lies in deliberate redundantization of the transmitted
message so as to enable the receiver to restore the message and correct the errors occurring in the
channel. We note that by the control is meant here the possibility of acting upon the system so that
a sequence of characters carrying the message is generated instead of a pseudorandom sequence
generated by the uncontrollable system. At that, the system must behave chaotically on the whole.
An example of realization of a communication system with chaotic carrier can be found in [25].
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Some studies were devoted to the use of the optical (laser) channel for message transmission. For
example, [17] discussed the possibility of constructing an optical information channel based on two
synchronous CO2 lasers with periodic pumping of the active medium. For frequencies of pumping
generation that lie near the frequency of system relaxation, the laser generates chaotic pulses with
information entered by amplitude modulation. The second (receiving) laser is controlled by injec-
tion of radiation from the transmitting laser. The output radiation is used to restore the modulating
signal. The experimental setup has two microchip Nd:YVO4 lasers with periodic pumping by laser
diodes. An acoustooptic modulator with the modulation frequency 4 MHz and depth less than 0.2%
was used for external modulation of the laser output radiation. Modulation of the output radiation
corresponds to transmission of unit, no modulation corresponds to zero. The frequency of variations
of the binary signal in experiments was 100 kHz. As above, synchronization of the chaotic processes
in the transmitting and receiving lasers was used for message decoding. The experimental data
given in [171] are indicative of a satisfactory reproduction of the information signal at the receiver
output. An experimental setup for transmission of information by synchronization of two chaotic
lasers can also be found in [168]. It makes use of two semiconductor lasers of the 1.3µm range
embraced by the optoelectronic time-delayed feedback through high-speed InGaAs photodetectors
with the 6 GHz pass band. Passage from regular through quasiperiodic to chaotic oscillations of
radiation intensity was observed at reduction of the delay time from 7.47 nsec to 6.9 nsec. The
transmitter light flow was sensed by a photodetector whose output was summed with the receiver
feedback. In the experiments on information transmission, the useful signal (message) was added
to the transmitted feedback. The message was restored at the receiver output using the method of
[54] by subtracting the signal of the receiver chaotic generator from its input. Good restoration of
the binary signal represented by the pulses of small on-off ratio with the repetition rate 100 MHz
was confirmed experimentally. Synchronization of the chaotic semiconductor lasers and the pos-
sibility of using it in the communication systems were discussed also in [143] which presented the
experimental data on measuring the relative cavity phase of the receiver and transmitter. The
results obtained show that this parameter bears on the quality of synchronization.

3.5. Information Systems

Various methods of using the chaotic processes for storing and coding information have been
proposed by now. It was noted in [3] that basically new information processing systems, chaotic
processors, appear in the distance. The potentialities of these processors were demonstrated by
“Associative Memory for Pictures” software system intended to recode and access images and
the “FacsData Wizard” for control of facsimile documents [3]. The “Nezabudka” (forget-me-not)
software system [3, 13] protected by Russian (RF2050072) and USA [62] patents is an extension
of this system. It is oriented to accessing documents and finding there certain places in response
to natural-language requests. Information is recorded and stored in the form of trajectories of a
discrete chaotic system. The corresponding chaotic map is constructed in the course of information
coding. Upon starting under arbitrary initial conditions, the trajectory after a transient process is
attracted to one of the available cycles and reproduces the corresponding information.

Design of an associative memory based on parametrically related chaotic elements was discussed
in [97]. Experimental data on storing information in a chaotic system with a time-delayed feedback
were presented in [122], and [114] was devoted to transient chaos-based coding of binary data.

3.6. Chemical Industry and Raw Material Processing

Chaotic stirring, especially of liquids and free-flowing materials, is an important area of studies
on the use of controlled chaos. Good stirring of flows, which must be maintained in the combustion
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chambers, heat exchangers, and other installations [135, 159], is of applied importance in chemical
industry for continuously stirring reactors, production of powders and polymers.

In chemical industry, higher rate and quality of stirring reduce the mass of reagents that are not
involved in reaction and, consequently, improve the product. As was noted, the cost of purification
makes about 80 % of the cost of the finished product. Therefore, careful stirring is of prime
importance here. A method for designing control to stabilize chaotic nonisothermal processors in
the continuous stirred tank reactors under constrained amplitude and rate of the control action
was proposed in [175]. The authors of [99] used an extended variant of the Pyragas algorithm to
control the bubbling gas-solid fluidized bed reactors. This control diminishes the bubbles, which in
turn leads to better mass transfer of the reagent gas through the bubbles to the catalyst particles.

Stirring of liquid flows. A general method of improving the stirring rate of chaotic flows of liquids
on the basis of increased degree of chaoticity was proposed in [159]. This degree is determined using
the local values of the Lyapunov exponents characterizing the mean increase in the phase volume.
They describe motion of liquid particles in terms of the Hamilton equations on the basis of Lagrange
description of the dynamics of two-dimensional flows. Then, consideration is given to the general
equations of the following nonlinear dynamic system:

ẋ = F (x(t), u(t)), (14)

where x(t) ∈ Rn is the state vector and u(t) is the flow control parameter. Equations (14) are
considered together with the variational system

ẇ = M(x, u)w, (15)

where M = ∂F/∂x(x, u) is the Jacobi matrix. It was proposed in [159] to measure the local velocity

of flow expansion through the quadratic norm w as
∂

∂t
|w|2 = 2wTM(x, u)w and to vary the control

parameter according to

∆u = γsgn(wT ∂M

∂u
w), (16)

where γ > 0. Control action is activated where the greatest local Lyapunov exponent is smaller
than its mean value. One can easily see that algorithm (16) is a special case of the speed-gradient
algorithm (see [6, Section 4.2]) using the objective function Q(x) = |x|2. A discrete control algo-
rithm which also is a special case of the gradient algorithm of [6, Section 4] also is presented in
[159] where it is used to improve the degree of chaoticity of the Chirikov (standard) map. The
disadvantage of this method lies in the assumption that it is possible to measure the entire state
vector and that the parameters of the controlled process are known.

Stirring of free-flowing materials. Spontaneous chaotic granular stirring which is observed in
simple cylindrical drums filled in part by small granules was described in [160]. This phenomenon
may be observed for sufficiently small—at most 300 µm in diameter—granules. It is assumed that
the mechanism of appearance of chaotic motions is as follows: the periodic stick-slip motion arises
upon shifting the layer separating the fixed and flowing granular zones, which, upon stirring, leads
to much weaker adhesion of the granules as compared with that described by the same authors in
earlier papers [102, 129].

Stirring of free-flowing materials leads to occurrence of both many nice pictures and examples of
self-organization (generation of structures) [87]. One must bear in mind that more active stirring
by forceful shaking or faster tumbling does not guarantee a better final mixture. The point is that
it is inherent in the free-flowing materials to be divided in density and size of particles by shaking,
so that the forced stirring can lead to an opposite result. Self-organization occurs on the basis of
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two competing phenomena: chaotic advection or chaotic stirring as in liquids, and separation which
has no counterpart in liquids. These systems represent the simplest kind of systems where chaos
and self-organization are observed and which can be subjected to laboratory studies. The readers
are referred to [87] for a good description of stirring of free-flowing materials.

Many authors carried out numerical or experimental study of the quality of stirring as a function
of various parameters. As was shown in [103], the flow in elliptical or square mixers, in contrast to
the circular mixers, is time-periodic, which leads to chaotic advection and accelerated stirring. As
for generation of the external action, the majority of authors accept the open-loop control in the
form of periodic time function. This action was used to improve stirring of free-flowing materials
[45]. Stirring of liquids in the two-dimensional square cavity under pulsing periodic velocity of the
cover was considered in [30] by means of spatial discretization of the spectral element. It seems
that the most strict treatment of the problem of optimal stirring was given in [56] whose authors
consider the prototypical problem of stirring as that of control aimed at determining a mode of
liquid flow variation such that the entropy is maximized. To this end, a corresponding apparatus
of the ergodic theory is used to determine the entropy of the periodic sequences and the mode of
operation maximizing the entropy among all periodic modes generated by the mutually orthogonal
flows.

The idea of chaotization of stirring of free-flowing materials was introduced into industrial prac-
tice in the machines manufactured by Kroosher Technologies Company,3 whose products include
a “Kroosher” mechanical contrivance which is attached to the rod of a vibrating screen and cre-
ates additional oscillations imparted to the machine actuator by means of wear-resistant internal
mechanical parts. As the result, the energy of one-frequency oscillations is rearranged between the
frequencies in a wide range. Multi-frequency excitation is amplified on the screen cells owing to
the resonance characteristics, which improves the installation productivity.

4. OTHER APPLICATIONS

Scheduling of industrial processes (in the wide sense of the word) was discussed in [151] which
considered a system consisting of concurrently operating machines and a distribution switch (server).
Depending on the properties of the system under study, a mode with chaotic switchings of the server
may arise. The paper calculated the probabilities of distribution of the chaotic return times and
analyzed losses of products caused by switchings vs. the maintenance schedule. The paper pro-
posed and substantiated a maintenance schedule minimizing the general losses of switching time,
which improves productivity of the entire system. Consideration was also given to the production
lines that usually have more than one level of interacting machines. Data on modeling a three-level
production system with neighboring switching instants were given. Numerical analysis revealed
occurrence of chaotic “travelling waves.” The results of modeling also demonstrated that individ-
ual machines are not synchronized, but “global” synchronization of the switching frequencies is
observed between the serially organized network levels.

The number of existing and potential applications of chaos and its control is rapidly growing.
The following of the recent applications deserve mentioning:

(1) applications to the numerical methods of analysis (stability analysis of fixed points [123] and
stabilization of the Richardson eigenvector algorithm [85]);

(2) use of chaos for information processing [58, 108, 161];
(3) control of system complexity [69].

3 Company site http://www.kroosh.com/

AUTOMATION AND REMOTE CONTROL Vol. 65 No. 4 2004



CONTROL OF CHAOS 525

5. CONCLUSIONS

Separation of a wide class of control-theoretical applications (cybernetics in a wide sense of this
word) oriented to the development of other scientific theories, rather than to industrial applications
is an important feature of the state-of-the-art in cybernetics. The majority of such works are
published in physical, rather than engineering, journals, which is indicative of the advent of a new
branch of physics, the cybernetical physics [20, 22] which applies cybernetical analysis to physical
systems. Control of chaos is a branch of cybernetical physics. Complexity of the chaotic dynamics
gives rise to new problems of control that stimulate further development of the control theory.

An important class of applications relies on chaos to describe uncertainty in the behavior of
dynamic systems. In contrast to other methods of describing uncertainty such as stochastic, fuzzy,
and so on, the chaotic system provides a natural tool for describing uncertainty of oscillation
characteristics (frequency, phase, amplitude) by a few parameters. Development of the methods of
control under chaotic uncertainty was started only recently.

It deserves noting that complexity of the arising problems compels the researchers to use sim-
plistic models of the control plants even in the works dealing with technical applications. In fact,
many applications are just “potentialities” whose realization is possible only in future and only
under certain conditions. Nevertheless, the present authors believe that familiarization with new
formulations and their discussion can be beneficial for future development both of the control theory
and its applications.

ERRATA

The present authors take an opportunity to point out the errors committed in Part I of the
present review (B.R. Andrievskii and A.L. Fradkov, Control of Chaos: Methods and Applications. I.
Methods, Avtom. Telemekh., 2003, no. 5, pp. 3–45):

1. p. 695, line 7 above: read “matrix Φ(τ)” instead of “matrix Φ(t)”
2. p. 684, line 27 above: read “λ > 0 and for all” instead of “λ and for all”
3. p. 685 after formula (31): read “such that the closed” instead of “if closed”
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