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Abstract. In this paper, the damping of generalized thermo elastic waves in a homogeneous 
isotropic plate is studied based on generalized two dimensional theory of thermo elasticity. 
Two displacement potential functions are introduced to uncouple the equations of motion. 
The frequency equations are obtained by the traction free boundary conditions using the 
Bessel function solutions. The numerical calculations are carried out for the material Zinc and 
the computed non-dimensional thermo elastic damping factor is plotted as the dispersion 
curves for the plate with thermally insulated and isothermal boundaries. 
 
 
1. Introduction  
Cylindrical thin plate plays a vital role in many engineering fields such as aerospace, civil, 
chemical, mechanical, naval and nuclear engineering. The analysis of thermally induced wave 
propagation of a cylindrical plate is a problem that may be encountered in the design of 
structures such as atomic reactors, steam turbines, submarine structures subjected to wave 
loadings, jets and other devices operating at elevated temperatures. Moreover, it is recognized 
that the thermal effects on the elastic wave propagation supported may have implications 
related to many seismological applications. This study can be potentially used in applications 
involving nondestructive testing (NDT), and qualitative nondestructive evaluation (QNDE).  

The generalized theory of thermo elasticity was developed by Lord and Schulman [1], 
which involves one relaxation time for isotropic homogeneous media, and is called the first 
generalization to the coupled theory of elasticity. Their equations determine the finite speed of 
wave propagation of heat and the displacement distributions. The corresponding equations for 
an isotropic case were obtained by Dhaliwal and Sherief [2]. The second generalization to the 
coupled theory of elasticity is known as the theory of thermo elasticity with two relaxation 
times, or as the theory of temperature-dependent thermoelectricity. A generalization of this 
inequality was proposed by Green and Laws [3]. Green and Lindsay [4] obtained an explicit 
version of the constitutive equations. These equations were also obtained independently by 
Suhubi [5]. This theory contains two constants that act as the relaxation times and modifies 
not only the heat equations, but also all the equations of the coupled theory. The classical 
Fourier’s law of heat conduction is not violated if the medium under consideration has a 
center of symmetry. Erbay and Suhubi [6] studied the longitudinal wave propagation in a 
generalized thermoplastic infinite cylinder and obtained the dispersion relation for the 
cylinder with a constant surface temperature. Ponnusamy [7] has studied wave propagations 
in a generalized thermo elastic solid cylinder of arbitrary cross sections using the Fourier 
expansion collocation method. Later, Ponnusamy and Selvamani [8] obtained mathematical 
modeling and analysis for a thermo elastic cylindrical panel using the wave propagation 
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approach. Sharma and Pathania [9] investigated the generalized wave propagation in 
circumferential curved plates. Modeling of circumferential waves in a cylindrical thermo 
elastic plate with voids was discussed by Sharma and Kaur [10]. Ashida and Tauchert [11] 
presented the temperature and stress analysis of an elastic circular cylinder in contact with 
heated rigid stamps. Later, Ashida [12] analyzed the thermally induced wave propagation in a 
piezoelectric plate. 

In this paper, the damping of generalized thermo elastic thin plate composed of 
homogeneous isotropic material is studied. The solutions to the equations of motion for an 
isotropic medium is obtained by using the two dimensional theory of thermo elasticity and 
Bessel function solutions. The numerical calculations are carried out for the material Zinc. 
The computed non-dimensional damping factor is plotted as dispersion curves for the plate 
with thermally insulated and isothermal boundaries.  
 
2. Formulation of the problem 
We consider a thin homogeneous, isotropic, thermally conducting elastic plate of radius R 
with uniform thickness d  and temperature 0T  in the undisturbed state initially. The system 

displacements and stresses are defined in the polar coordinates r  and   for an arbitrary point 
inside the plate, with u denoting the displacement in the radial direction of r  and   the 
displacement in the tangential direction of  . The in-plane vibration and displacements of the 
plate embedded on an elastic medium is obtained by assuming that there is no vibration and a 
displacement along the z axis in the cylindrical coordinate system ( , ,r   ). 

The two dimensional stress equations of motion and heat conduction equation in the 
absence of body force for a linearly elastic medium are 
 

1 1
, , ,( )rr r r r rr r ttr r u          , 

 
1 1

, , ,2r r r ttr r u           , 

 

     
2

1 2
, , , 0 , 0 0 2rr r tt rrk T r T r T c T T T e e

t t         
         

,       (1) 

 
where   is the mass density, vc  is the specific heat capacity, /k c   is the diffusivity, 

k is the thermal conductivity, 0  is a thermal relaxation time, and 0T  is the reference 

temperature. The strain-displacement relations for the plate are 
 

   2 1 ,2rr rr rr k te e e T T          , 

 

   2 1 ,2rr k te e e T T            , 

 
2r re   ,               (2) 

 
where ije  are the strain components, (3 2 ) T      is the thermal stress coefficients, T  

is the coefficient of linear thermal expansion, T is the temperature, t is time,   and   are 

Lame’ constants, 1  is a thermal relaxation time, and the comma in the subscripts denotes the 

partial differentiation with respect to the variable following. Here ij  is the Kronecker delta 
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function. In addition, we can replace 1k   for the L-S theory and 2k   for the G-L theory. 

The thermal relaxation times 0  and 1  satisfies the inequalities 0 1 0    for the G-L 

theory only.  
The strain ije  are related to the displacements as given by  

 

,rr re u , 1
,( )e r u v 

  , 1
, ,( )r re v r u v 

   ,         (3) 

 
in which u  and v  are the displacement components along the radial and circumferential 
directions, respectively. rr ,   are the normal stress components and , ,r z zr     the shear 

stress components, rre , e , zze  the normal strain components, and , ,r z zre e e   the shear strain 

components. 
By substituting Eqs. (3) and (2) into Eqs. (1), the following displacement equations of 

motions are obtained 
 

     
   

1 2 2 1
, , , ,

2
, , 2 1 , ,

2

3 ,

rr r r

r k rt tt

u r u r u r u r v

r v T T T u

 



    

     

   



     

    
 

 

     
   

1 2 2 2
, , , ,

1
, , ,

2 3

,

rr r

r t tt

v r v r v r v r u

r u T T v

 

  

    

    

   



     

    
 

 

   
2

1 2 1
, , , 0 , 0 0 1 , ,2

( )rr r tt k rk T r T r T c T T T u r u v
t t                        

.      (4) 

 
The above coupled partial differential equations are also subjected to the following non-
dimensional boundary conditions at the surfaces  ,r a b   

(i) Stress free boundary (Free edge) 
 

0rr r   ,            (5a) 

 
(ii) Rigidly fixed boundary (Clamped edge) 
 

0u v  ,             (5b) 
 
(iii) Thermal boundary  
 

, 0rT hT  ,             (5c) 

 
where h is the surface heat transfer coefficient. Here 0h  corresponds to a thermally 
insulated surface and h  refers to an isothermal one. 
 
2.1. Lord-Schulman (L-S) theory 
Based on the Lord-Schulman theory of thermo elasticity, the three dimensional rate dependent 
temperature with one relaxation time is obtained by replacing k=1 in the heat conduction 
equation of Eq. (1), namely,  
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 
2

, , , 0 , 0 02 2

1 1
rr r v tt rrk T T T C T T T e e

r r t t    
                    

.     (6a) 

 
The stress-strain relation is replaced by 
 

   2rr rre e e T        , 

 
   2rre e e T         ,          (6b) 

 
2r re   . 

 
By substituting the preceding stress-strain relations into Eq. (1), we can get the following 
displacement equation 
 

        1 2 2 1 2
, , , , , ,2 3rr r r ttu r u r u r u r v r v T u                        , 

 

        
   

1 2 1 2 2
, , , , ,

2
, ,

3 3

2

rr r r

tt

v r v r v r u r u r v

r v T v

  



      

   

    



       

   
     (6c) 

 
The symbols and notations involved have the same meanings as defined in earlier sections. 
Since the heat conduction equation of this theory is of the hyperbolic wave type, it can 
automatically ensure the finite speeds of propagation for heat and elastic waves.  
 
2.2. Green-Lindsay (G-L) theory 
The second generalization to the coupled thermo elasticity with two relaxation times called 
the Green-Lindsay theory of thermo elasticity is obtained by setting k=2 in the heat 
conduction equation of Eq. (1), namely,  
 

 , , , 0 , 02

1 1
rr r v tt rrk T T T C T T T e e

r r t                 
.      (7a) 

 
The stress-strain relation is replaced by 

  

   1 ,2rr rr te e e T T          , 

 

   1 ,2rr te e e T T           .         (7b) 

 
By substituting the preceding relations into Eq. (1), the displacement equation can be reduced 
as 
 

        1 2 2 1 2
, , , , , , 1 , ,2 3rr r r r rt ttu r u r u r u r v r v T T u                         
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        
   

1 2 1 2 2
, , , , ,

2
, , 1 , ,

3 3

2 ,

rr r r

t tt

v r v r v r u r u r v

r v T T v

  

  

      

    

    



       

    
     (7c) 

 
where the symbols and notations have been defined in the previous sections. In view of 
available experimental evidence in favor of the finiteness of heat propagation speeds, the 
generalized thermo elasticity theories are considered to be more realistic than the 
conventional theory in dealing with practical problems involving very large heat fluxes and/or 
short time intervals, such as those occurring in laser units and energy channels. 

To uncouple Eqs. (7), the mechanical displacement ,u v  along the radial and 
circumferential directions given by Sharma [9] are adopted as follows: 
 

1
, ,ru r    , 1 , ,rv r               (8) 

 
Substituting Eqs. (8) into Eqs. (7) yields the following second order partial differential 
equation with constant coefficients: 
 

    2 2
2 1 ,2 0k tT T            ,         (9a) 

 

   2 2
0 0 1 0k C i T T i         ,         (9b) 

 

2 2 0
  


 
   
 

,            (9c) 

 
2 2 2 1 2 2 2where x x x x            . 

 
3. Solutions to the Problem 
The Eqs. (9) are coupled partial differential equations with two displacements and heat 
conduction components. To uncouple these equations, we assume the vibration and 
displacements along the axial direction z to be zero. Hence, the solutions of Eqs. (9) can be 
presented in the following form: 
 

 ( , , ) ( ) exp ( )u r t r i p t     ,        (10a) 

 

 ( , , ) ( ) exp ( )v r t r i p t     ,        (10b) 

 

   2( , , ) 2 ( ) exp ( )T r t a T r i p t        ,      (10c) 

 
where 1i   ,  is the angular frequency, p is the angular wave number,  ,r  ,  ,r  , 

 ,T r   are the displacement potentials. Substituting Eqs. (10) into Eqs. (9) and introducing 

the dimensionless quantities such as arx  ,  2
1 2c     ,  2

2c   2 2 2a   , 

       0d c T   ,we can get the following partial differential equation with constant 

coefficients: 
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    2 2
1 22 2 0 ,T                (11a) 

 

   2 2
1 1 0 0 1 1 0 ,k i d T T i                (11b) 

 

 2 2
1 0    ,         (11c) 

 

where 2
2 2

2 2

2

1 p

r r r r
   
   

and 0 01 i      0 01 i   , 1 1 01 ki    , 2 2 11 ki    . 

Eq. (11c) in terms of    gives a purely transverse wave. This wave is polarized in planes 
perpendicular to the z-axis. We assume that the disturbance is time harmonic through the 
factor ei t

. Rewriting Eqs. (11) yields the following fourth order differential equation: 

 

 4 2
2 2 0A B C         ,           (12) 

 

where
 

  12A k  ,       2
1 0 0 1 22 2B k i d i T            ,  2

0c i d    . 

By solving the partial differential equation (10), the solutions is obtained as  
 

   
2

1

,i n i i n i
i

A J ax BY ax  


           (13a) 

 

   
2

1

,
i ii i n i n

i

T d A J ax BY ax 


           (13b) 

 
where  
 

        4 2

1 0 1 22 2i i id k ax T i ax i d           .      (14) 

 
Equation (11c) is a Bessel equation with possible solutions given as 
 

3 3 3

3 3

3 3 3

3 3

3

3 3

( ) ( ) 0

0

( ) ( ) 0 ,

n n
n n

n n

ax ax ax

a a ax

ax ax ax

A J B Y

A B

A I B K

  
 

  









 
  

 
       (15) 

 
where nJ  and nY  are Bessel functions of the first and second kinds, respectively, while nI  
and nk are modified Bessel functions of first and second kinds, respectively. 

 , 1, 2,3i iA B i   are arbitrary constants. Since 3 0ax  , thus the condition 3 0ax   will 

not be discussed in the following. For convenience, we will pay attention only to the case of 

3 0ax   in what follows. The derivation for the case of 3 0ax   is similar. 
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   3 3 3 3nA J ax B ax      ,          (16) 

 

where  2 2
3a   . 

 
4. Frequency equations 
In this section we shall derive the frequency equation for the two dimensional thermo elastic 
damping of the cylindrical plate subjected to stress free boundary conditions at the upper and 
lower surfaces at ,r a b . Substituting the expressions in Eqs. (1)-(3) into Eqs. (5), we can 
get the frequency equation for free vibration as follows: 
 

1 0ijE  ,  , 1, 2.....6i j            (17) 

 

 
       

11

1
1 1 1 1 1

2

1 1 1 2 1 1

2 2 2
1

1 ,

(2 ) ( ( ) ( ) ( )) (( ) ) ( )

( 1) ( ) ( )

n nnE ax ax ax ax ax

n ax ax ax i d ax

nJ J R n J

n n J J T  

     

     





    

   
   

 

 
       

1
13 2 2 2 2 2

2

2 2 2 2 2 2

2 2 2
1

1 ,

(2 ) ( ( ) ( ) ( )) (( ) ) ( )

( 1) ( ) ( )

n nnE ax ax ax ax ax

n ax ax ax i d ax

nJ J R n J

n n J J T  

     

     





    

   
 

 

   
15

1
3 3 3 3 3 31 1 ,(2 ) ( ( 1) ( ) ( ) ( ) ( 1) ( ) ( ) ( )n nn nE ax ax ax ax ax axn n J J n n J J              

 

21

1
1 1 1 12 ( 1) ( ) 2 ( ) ( ),n nE ax ax axn n J n J      

 

23

1
2 2 1 22 ( 1) ( ) 2 ( ) ( ) ,n nE ax ax axn n J n J      

 

  
25

1 2 2
3 3 1 3 3 3 ,2 ( 1) ( ) 2 ) ( ) ( ) ( )n nE ax ax ax ax n axn n J J J          

 
 1

31 1 1 1 1 1 1( ) ( ) ( ) ( ) ,n n nE d nJ ax ax J ax hJ ax       

 
 1

33 2 2 2 1 2 2( ) ( ) ( ) ( ) ,n n nE d nJ ax ax J ax hJ ax       1
35 0E  . 

 
Obviously  

 2, 4,6ijE j   can be obtained by just replacing the Bessel functions of the first kind in 

 1,3,5ijE i   with those of the second kind, respectively, while  4,5,6ijE i 
 
can be obtained 

by just replacing a  in  1,2,3ijE i   with .b  

 
5. Numerical results and discussion 
The damping of generalized thermo elastic waves  in a simply supported homogenous 
isotropic cylindrical plate is numerically solved for the Zinc and the material properties of 
Zinc are given as follows:  
 

3 -37.14 10 kgm   , 0 296KT  , 2 -1 -11.24 10 Wm degK   , 11 -20.508 10 Nm   , 
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6 -2 -15.75 10 Nm deg   , 1 0.0221  , 11 -20.385 10 Nm   , and 2 -1 -13.9 10 Jkg degVC   . 

 
The roots of the algebraic equation in Eq. (12) were calculated using a combination of 

the Birge-Vita method and Newton-Raphson method. For the present case, the simple Birge-
Vita method does not work for finding the root of the algebraic equation. After obtaining the 
roots of the algebraic equation using the Birge-Vita method, the roots are corrected for the 
desired accuracy using the Newton-Raphson method. Such a combination can overcome the 
difficulties encountered in finding the roots of the algebraic equations of the governing 
equations. Here the values of the thermal relaxation times are calculated from 
Chandrasekharaiah [13] as 13

0 0.75 10 sec    and 13
1 0.5 10 sec   . 

Due to the presence of dissipation term in the heat conduction equation, the frequency 
equation (12) in general complex transcendental equation provides us complex value of 

frequency. The thermo elastic damping factor is defined by 1 Im( )

Re( )
2Q





  . A comparison is 

made for the non-dimensional frequencies among the Generalized Theory (GL), Lord-
Schulman Theory (L-S) and Classical Theory (CT) of thermo-elasticity for the free and 
clamped boundaries of the thermally insulated and isothermal circular plate in Tables 1 and 2, 
respectively. From these tables, it is clear that as the sequential number of the vibration modes 
increases, the non dimensional frequencies also increase for both the clamped and unclamped 
cases. Also, it is clear that the non dimensional frequency exhibits higher amplitudes for the 
LS theory compared with the GL and CT due to the effect of thermal relaxation times  
 
 
Table 1. Comparison of non-dimensional frequencies among the Generalized Theory (GL), 
Lord-Schulman Theory (L-S) and Classical Theory (CT) of thermo-elasticities for free and 
clamped boundaries of thermally insulated circular plate. 

 
Mode 

 Free Edge  Clamped Edge  

 LS  GL  CT  LS  GL  CT  

1  1.3937  1.3927  1.3295  1.2289  1.2278  1.5565  

2  1.6542  1.6533  1.5886  1.4614  1.4604  1.8391  

3  1.9176  1.9156  1.8529  1.7009  1.7019  2.1227  

4  2.1832  2.1802  2.1204  1.9486  1.9475  2.4048  

5  2.5840  2.5810  2.5245  2.3381  2.3375  2.8318  

 
 
Table 2. Comparison of non-dimensional frequencies among the Generalized Theory (GL), 
Lord-Schulman Theory (L-S) and Classical Theory (CT) of thermo-elasticities for free and 
clamped boundaries of isothermal circular plate. 

 
Mode 

 Free Edge  Clamped Edge  

 LS  GL  CT  LS  GL  CT  

1  1.4558  1.4543  1.4153  14049  14037  1.3588  

2  1.7260  1.7251  1.6827  1.6611  1.6602  1.6123  

3  1.9967  1.9957  1.9511  1.9182  1.9176  1.8682  

4  2.2678  2.2648  2.2213  2.1768  2.1753  2.1264  

5  2.6754  2.6732  2.6303  2.5680  2.5670  2.5183  
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Fig. 1. Variation of thermo elastic damping factor of thermally insulated cylindrical plate  

with wave number. 
 

In Figs. 1 and 2, the dispersion of thermo elastic damping factor with the wave number 
is studied for both the thermally insulated and isothermal boundaries of the cylindrical plate in 
different modes of vibration. From Fig. 2, it is observed that the damping factor  increases 
exponentially with increasing wave number for thermally insulated modes of vibration. But 
smaller dispersion exist in the damping factor in the current range of wave numbers in Fig. 2 
for the isothermal mode due to the combined effect of damping and insulation. . From Figs. 3 
and 4, it is clear that the effects of stress free thermally insulated and isothermal boundaries of 
the plate are quite pertinent due to the combined effect of thermal relaxation times and 
mechanical field. 

 

 
Fig. 2. Variation of thermo elastic damping factor of isothermal cylindrical plate  

with wave number. 
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Conclusion 
The two dimensional damping of generalized thermo elastic waves in a homogeneous 
isotropic plate was investigated in this paper. For this problem, the governing equations of 
two dimensional linear theory of generalized thermo elasticity have been employed and 
solved by the Bessel function solutions with complex arguments. The effects of the thermo 
elastic damping factor with respect to the wave number of a Zinc cylindrical plate was 
investigated, with the results presented as the dispersion curves. In addition, a comparative 
study is made among the LS, GL and CT theories and the frequency change is observed to be 
highest for the LS theory, followed by the GL and CT theories due to the thermal relaxation 
effects and damping. 
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