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Abstract. The extensional vibration in a homogeneous transversely isotropic solid bar 
immersed in an inviscid fluid is studied using the linearized, three-dimensional theory of 
elasticity. The equations of motion of solid bar and fluid are respectively formulated using the 
constitutive equations of a transversely isotropic cylinder and the constitutive equations of an 
inviscid fluid. The solution of the frequency equations are obtained by Chebyshev polynomial 
series using the geometric boundary conditions. The computed non-dimensional frequencies 
are presented in the form of dispersion curves for the material Zinc. To compare the model 
with exiting literature, the longitudinal vibration of cylindrical bar without fluid are obtained 
and they show good agreement. 
 
 
1. Introduction 
In many structural applications the extensional loadings has taking interest because of high 
tensile strength and high corrosion resistance properties. The extensional modes often used to 
evaluate the material properties of thin metal wires, reinforcement filament in ultrasonic 
transducers and resonators. Applying Chebyshev polynomial series as the admissible function 
for each displacement component has distinct advantages like rapid convergence and better 
numerical stability in computation than other algebraic polynomial series. 

The most general form of harmonic waves in a hollow cylinder of circular cross section 
of infinite length has been analyzed by Gazis [1]. Mirsky [2] investigated the wave 
propagation in transversely isotropic circular cylinders of infinite length and presented the 
frequency equation in Part I and numerical results in Part II. A method, for solving wave 
propagation in arbitrary cross-sectional cylinders and plates and to find out the phase 
velocities in different modes of vibrations namely longitudinal, torsional and flexural, by 
constructing frequency equations was devised by Nagaya [3-5]. He formulated the Fourier 
expansion collocation method for this purpose. Following Nagaya, Paul and Venkatesan [6] 
studied the wave propagation in an infinite piezoelectric solid cylinder of arbitrary cross 
section using Fourier expansion collocation method. The longitudinal waves inhomogeneous 
anisotropic cylindrical bars immersed in a fluid is studied by Dayal [7]. Guided waves in a 
transversely isotropic cylinder immersed in a fluid are analyzed by Ahmad [8]. Following 
Ahmad, Nagay [9] have studied the longitudinal guided wave propagation in a transversely 
isotropic rod immersed in fluid, later, Nagy with Nayfeh [10] discussed the viscosity-induced 
attenuation of longitudinal guided waves in fluid-loaded rods. Easwaran and Munjal [11] 
reported a note on the effect of wall compliance on lowest-order mode propagation in fluid-
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filled/submerged impedance tubes. Sinha et al. [12] have discussed the axisymmetric wave 
propagation in circular cylindrical shell immersed in fluid, in two parts. In Part I, the 
theoretical analysis of the propagating modes are discussed and in Part II, the axisymmetric 
modes excluding torsional modes are obtained theoretically and experimentally and are 
compared. Berlinear and Solecki [13] have studied the wave propagation in fluid loaded 
transversely isotropic cylinder. In that paper, Part I consists of the analytical formulation of 
the frequency equation of the coupled system consisting of the cylinder with inner and outer 
fluid and Part II gives the numerical results. Ponnusamy and Selvamani [14] have studied the 
dispersion analysis of generalized magneto-thermo elastic waves in a transversely isotropic 
cylindrical panel using the wave propagation approach. Later, Selvamani [15] obtained 
mathematical modeling and analysis for damping of generalized thermoelastic waves in a 
homogeneous isotropic plate. Venkatesan and Ponnusamy [16] have obtained the frequency 
equation of the free vibration of a solid cylinder of arbitrary cross section immersed in a fluid 
using Fourier expansion collocation method. Gladwell and Tahbildar [17] and Buchanan and 
Yii [18] used the finite element method to study the 3D vibration of cylinders while Wang 
and Williams [19] compared their finite element result with the experimental data. Singal and 
Williams [20] used simple algebraic polynomials as admissible functions to study the 3D 
vibration of completely free hollow cylinders and the theoretical results agreed well with the 
experimental results. The same problem was also studied by So and Leissa [21] using simple 
algebraic polynomials as admissible functions, and high accurate result were given. Later, 
Zhou [22] studied the three dimensional vibration analyses of solid and hollow circular 
cylinders using Chebyshev-Ritz method. 

In this paper, the extensional vibration in a finite, homogeneous transversely isotropic 
solid bar immersed in an inviscid fluid is studied using the linearized three-dimensional 
theory of elasticity. Two displacement potential functions are introduced to uncouple the 
equations of motion and the solutions are obtained by Chebyshev method. The computed non-
dimensional frequencies are presented in the form of dispersion curves for the material Zinc.  

 
2. Formulation of the problem 
We consider a transversely isotropic cylindrical bar of length L and radius a immersed in 
inviscid fluid. The system is assumed to be linear so that the linearized three-dimensional 
stress equations of motion are used for both the bar and the fluid. The system displacements 
and stresses are defined by the cylindrical coordinates ,r   and z . In cylindrical coordinates, 
the three-dimensional stress equations of motion and strain-displacement relations in the 
absence of body are given as 
 

 1 1
, , , ,rr r r rz z rr ttr r u             ,                  (1a) 

 
1 1

, , , ,2r r z z r ttr r v             ,                  (1b) 
 

1 1
, , , ,rz r z zz z rz ttr r w          ,                   (1c) 

 
where  
 

11 12 13rr rr zzc e c e c e    ,                    (2a) 
 

12 11 13rr zzc e c e c e     ,                    (2b) 
 

13 13 33zz rr zzc e c e c e    ,                    (2c) 
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662r rc e   , 442z zc e   , 442rz rzc e  ,                  (2d) 

 
where , ,rr zz rz    are the stress components, , , , , ,rr zz r z rze e e e e e    are the strain components, 

11 12 13 33, , ,c c c c , 44c  and  66 11 12 2c c c   are the five independent elastic constants,   is the 

mass density of the material.  
The strain ije  are related to the displacements are given by 

 

,rr re u ,  1
,e r u v 

  , ,zz ze w ,                  (3a) 

 

 1
, ,2 r re v r v u 

   ,  , ,2 zr z re u w  ,  1
, ,2 z ze v r w 

  ,              (3b) 

 
in which u , and w  are the displacement components along radial, axial directions 
respectively. The comma in the subscripts denotes the partial differentiation with respect to 
the variables.  

Substituting the Eqs. (3) and (2) in the Eq. (1), results in the following three-
dimensional displacement equations of motion: 
 

   1 2 2 2
11 , , 11 66 , 66 ,rr rc u r u r u r c c v r c u 

          

 

   1
44 , 44 13 , 66 12 , ,zz rz r ttc u c c w r c c v u       ,                (4a) 

 

     1 2 1 2
12 66 , 66 11 , 66 , ,r rr rr c c u r c c u c v r v r v 

           

 

 2 1
11 , 44 , 44 13 , ,zz z ttr c v c v r c c w v        ,                 (4b) 

 

    1 2 1
44 , , , 44 13 , ,rr r z zc w r w r w r c c u v 

         

 

 44 13 , 33 , ,rz zz ttc c u c w w    .                   (4c) 

 
For extensional  wave ,it is assumed that the displacement along the hoop direction, v  is zero 
and Eqs. (4) reduce to 
 

   1 2
11 , , 44 , 44 13 , ,rr r zz rz ttc u r u r u c u c c w u       ,     (5a) 

 

      1 1
44 , , 44 13 , 44 13 , 33 , ,rr r z rz zz ttc w r w r c c u c c u c w w        .   (5b) 

 
In the inviscid fluid-solid interface, the perfect-slip boundary condition allows discontinuity 
in planar displacement components. That is, the radial component of displacement of the fluid 
and solid must be equal and the extensional components are discontinuous at the interface. 
The above coupled partial differential equations are also subjected to the following non-
dimensional boundary conditions at the surfaces r a   
 

      0f f
rr rzp u u      .        (6) 
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3. Solution to solid medium 
The Eq. (5) is coupled partial differential equations of the three displacement components. 
This system of equations can be uncoupled by eliminating two of the three displacement 
components through two of the three equations, but this results in partial differential equations 
of fourth order as defined in Eq.(10). To uncouple the Eq. (5), we follow Mirsky [2] and 
assume the solution of Eq. (5) as follows:  
 

   ( )

,
( , , ) , i t

r
u r z t r z e     

,         (7a) 

 

    ( )( , , ) , i tw r z t i a W r z e     ,        (7b) 

 

where 1i   ,   is the angular frequency,  ,r z ,  ,W r z , are the displacement potentials 

and a  is the geometrical parameter of the cylindrical bar. 

By introducing the dimensionless quantities such as, 2 2 2
44a c  , 11 11 44c c c , 

2 , 2 / 1r r a z z H   , 13 13 44c c c , 2 44v c  , 33 33 44c c c , 44 /T t c a  and 

/x r a ; and substituting Eqs. (7) in Eqs. (5), we obtain 
 

   2 2
11 131 0c c W     ,        (8a) 

 

   2 2
131 0c W     ,         (8b) 

 
where 2 2 2 1x x x       .  

A non-trivial solution of the algebraic systems (7) exists only when the determinant of 
Eqs. (7) is equal to zero. 
 

    
    

 
2 2

11 13

2 2
13

1
, 0

1

c c
W

c


    


   
.       (9) 

 
Eq. (9), on simplification reduces to the following differential equation: 
 

 4 2 0A B C      ,         (10) 

 
where  
 

11A c ,    2 2
11 11 331 1B c c c       ,   2 2 2 2

33C c      .  (11) 

 

Solving the Eq. (10), the displacement amplitude functions  ,r z  and  ,w r z  are obtained 

by the orthogonal series of Chebyshev polynomials multiplied by a geometry boundary 
function for the extensional mode as follows: 
 

       
2 2

1 1

, u ij i i
i j

r z F z A P r P z
 

  ,                 (12a) 
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       
2 2

1 1

, w ij ij i j
i j

W r z F z d A P r P z
 

  .                (12b) 

 
The constants ijd  defined in the Eq. (12b) can be calculated from the equation 
 

     22 2 2 2
13 331 , 1, 2ij i id c a a c i       ,      (13) 

 
where the boundary functions for the stress free boundary condition is taken 

     1 1
u u uF z F z F z =1 unity, and i, j are the order of Chebyshev polynomial series, 

ijA  and klB  are the coefficients of the polynomial.    1,2,3,4,5; ,sP s r z    is the 

Chebyshev polynomial which can be written in terms of cosine function as follows: 
 

     cos 1 cos , 1,2,3..., ,sP s arc s r z        .     (14) 

 
The advantage of using Chebyshev polynomials over using other polynomial functions as

 
trial

 function has been shown due to its simple and unified expression with cosine function and 
excellent mathematical properties in numerical approximation containing a set of orthogonal 

and complete series. 

 
4. Solution of fluid medium 
In cylindrical polar coordinates r ,   and z , the acoustic pressure and radial displacement 
equations of motion for an in viscid fluid are of the form Berliner [16]  
 

 1
, ,( )f f f f f
r zp B u r u w    ,        (15) 

 
and 
 

2
, ,f

f tt rc u   ,           (16) 
 

respectively, where fB , is the adiabatic bulk modulus, f  is the density, f f fc B   is 

the acoustic phase velocity in the fluid, and  ,f fu w  is the displacement vector.  

 

 1
, ,( )f f f
r zu r u w    .         (17) 

 
Substituting 
 

,
f f

ru   and ,
f f

zw  ,         (18) 

 
and seeking the solution of (15) in the form 
 

 ( , , , )f f i tr z t r e       .         (19) 

 
The fluid represents the oscillatory waves propagating away is given by 
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33 ( )f
nA H ax  ,          (20) 

 

where  2 2 2f f
a B     , in which 

f f   , 44

f fB B c , nH  is the Hankel 

function of the first kind. If 2
2( ) 0a  , then the Hankel function of first kind is to be replaced 

by nK , where nK  is the modified Bessel function of the second kind. The velocity and density 

ration between the cylinder and fluid is defined by 0 2
fc v c  and 0

f   , respectively. 

By substituting Eq. (18) in (15) along with (19) and (20), the acoustic pressure for the fluid 
can be expressed as 
 

 2
33 ( ) ai Tf

np A H ax e    .         (21) 

 
5. Frequency equations 
In this section we shall derive the frequency equation for the three dimensional vibration of 
the solid cylindrical bar  immersed in fluid subjected to perfect slip boundary conditions at 
r a . Substituting the expressions in Eqs. (1)- (4) into Eqs. (6), we can get the frequency 
equation for free vibration as follows: 
 

0ijA  , , 1, 2,3i j  ,         (22) 

 

                   11 66 1 1 1 1 11 1 12 u u w

d d
A c z p r p z z p r p z d z p r p z

dr dz
F F F    
 

, 

 

                   12 66 1 2 1 2 12 1 22 u u w

d d
A c z p r p z z p r p z d z p r p z

dr dz
F F F    
 

, 

 

 2 2
13 1( ) ( ) ( ) ( )n nA ax ax ax axnH H     , 

 

             21 21 2 1 2 12 w u

d d
E z d p r p z z p r p z

dr dr
F F   

 
 , 

 

             22 22 2 2 2 22 w u

d d
E z d p r p z z p r p z

dr dr
F F   

 
 , 

 

23 0E  , 
 

31 1 1 1 1( ) ( ) ( )n nE ax ax axnJ J    , 
 

32 2 2 1 2( ) ( ) ( )n nE ax ax axnJ J    , 
 

33 1( ) ( ) ( )n nE ax ax axnH H    . 

 
6. Numerical results and discussion 
The coupled free wave propagation in a homogenous transversely isotropic solid cylindrical 
bar immersed in water is numerically solved for the Zinc material. The material properties of 
Zinc are given as follows and for the purpose of numerical computation the liquid is taken as 
water.  
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For the solid the elastic constants are 11 2
11 1.628 10c Nm  , 11 2

12 0.362 10c Nm  , 
11 2

13 0.508 10c Nm  , 11 2
33 0.627 10c Nm  , 11 2

44 0.385 10c Nm   and density 
3 37.14 10 kg m    and for the fluid the density 31000f kg m  and phase velocity 

11500fc ms .  
A comparison is made for the non-dimensional frequencies in case of free and clamped 

edges with respect to the velocity ratio for the symmetric and anti symmetric modes of the 
solid bar immersed in fluid in Tables 1 and 2. From these tables, it is clear that as the 
sequential number of the velocity ratio increases, the non dimensional frequencies also 
increases for both the free and clamped solid bar. The present solutions for frequency are 
compared with those of Leissa and So [21] and Zhou [22] for the solid bar without fluid 
interaction in Table 3 with L/a = 2.The first five frequency parameters for the extensional 
vibration are considered. A good agreement has been achieved. When a solid medium such as 
the solid bar is surrounded by fluid medium, guided waves are transmitted across the 
interface. Thus bulk waves are excited in the embedding medium, radiating away from the 
solid medium. 
 
Table 1. The non-dimensional frequencies for first three symmetric extensional modes of the 
free and clamped edges of solid bar with velocity ratio. 

 
Table 2. The non-dimensional frequencies for first three anti symmetric extensional modes of 
the free and clamped edges of solid bar with velocity ratio. 

 
Dispersion curves. The results of extensional (symmetric and anti symmetric) modes of 

vibrations are plotted in the following figures with respect to the parameters aspect ratio a b  

and L a . The notations ES1, ES2 and EAS1, EAS2 denote the extensional symmetric and 
anti-symmetric mode respectively, “1” and “2” refer to the first and the second modes. 

Velocity 
ratio 
(c0) 

Free edge  Clamped edge 

S1  S2  S3  S1  S2  S3 

0.1 0.0635  0.1236  0.1681  0.0259  0.1039  0.1284

0.2 0.1801  0.2636  0.2747  0.1702  0.1213  0.2530

0.4 0.2063  0.3928  0.4492  0.1950  0.3563  0.4220

0.6 0.3967  0.4727  0.5391  0.2837  0.4702  0.5295

0.8 0.5010  0.6036  0.7853  0.5029  0.5031  0.6752

Velocity 
ratio 
(c0) 

Free edge  Clamped edge 

S1  S2  S3  S1  S2  S3 

0.1 0.0249  0.0865  0.1572  0.0215  0.0342  0.1408

0.2 0.0651  0.2219  0.2345  0.0554  0.1969  0.2205

0.4 0.1774  0.4977  0.5337  0.1444  0.3888  0.4473

0.6 0.1994  0.5385  0.7292  0.2487  0.5023  0.5941

0.8 0.3964  0.6952  0.9408  0.5504  0.6050  0.7303
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Table 3. Comparison of the non-dimensional frequencies for extensional modes of a solid bar 
with those of Leissa and So [21] and Zhou [22] with 2L a  . 

 
The variation of frequencies with the thickness to length ratio ( h L ) is discussed in 

Fig. 1 and Fig. 2 for both symmetric and anti symmetric modes of the solid bar  immersed in 
fluid for first two modes of vibration. In Fig.1 the frequency is increases monotonically in all 
the ranges of thickness to length ratio for symmetric modes of vibration. For the case of anti 
symmetric modes there is a small deviation on the frequency pattern in Fig. 2 due to the 
damping effect of fluid medium and the mechanical properties of the material. The energy 
transmission occurs only on the surface of the solid bar because the bar acts as the semi-
infinite medium. In general, from the Figs. 1 and 2 it is observed that the non-dimensional 
frequency of the fundamental mode is non dispersive and increases rapidly in the presence of 
liquid with increasing thickness to length ratio. 

      
Fig. 1. Variation of frequency with h/L for symmetric mode of Zinc solid bar. 

 
In Fig. 3, the variation of frequency with respect to the length to radius ratio L a  of the 

solid bar immersed in fluid is presented for symmetric modes of vibration. The magnitude of 
the frequency decreases monotonically in the range 0 3L a   for first two modes of the 

solid cylinder immersed in fluid, become asymptotically linear in the remaining range of L a
ratios. The variation of frequency with respect to the aspect ratio for first two anti symmetric 
modes of the solid bar is presented in Fig. 4, where the non dimensional frequency slashes 

0

0,5

1

1,5

2
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0 0,2 0,4 0,6 0,8 1

Fr
e
q
u
e
n
cy

h/L

ES1

ES2

EAS1

EAS2

___Bar  immersed in fluid
.......Bar  in space

Mode Ref. [21]  Ref. [22]  Present 

1 1.2860  1.2851  1.2790 

2 2.9601  2.9600  2.9734 

3 3.1686  3.1675  3.1671 

4 4.1815  4.1817  4.1814 

5 4.2970  4.2947  4.2958 
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down in 0 3L a   with a small oscillation in the starting L a ratios, and become linear due 
to the fluid medium in the rest. From Figs. 3 and 4, it is clear that the effects of length to 
radius ratio of the solid bar are quite pertinent due to the combined effect of mechanical 
property and damping effect of the fluid medium. When the ratio of the densities of the fluid 
and elastic material is small (0.14), then the mode spectrum of fluid loaded bar is slightly 
different from that of free bar.  

 

 
Fig. 2. Variation of frequency with h/L for anti symmetric mode of Zinc solid bar. 

 

        
Fig. 3. Variation of frequency with L/a for symmetric mode of Zinc solid bar. 

 
7. Conclusions 
In this paper, the extensional vibration in a finite, homogeneous transversely isotropic solid 
bar immersed in a in viscid fluid is studied using the linearized, three-dimensional theory of 
elasticity. Two displacement potential functions are introduced to uncouple the equations of 
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motion. In the present analysis, a set of Chebyshev polynomials multiplied by a boundary 
function which satisfies the geometric boundary conditions of the cylinder are taken as the 
trial functions. The computed non-dimensional frequencies are presented in the form of 
dispersion curves for the material Zinc. In addition, a comparative study is made to prove the 
feasibility of the model with exiting literature and they show good agreement. 

 

      
Fig. 4. Variation of frequency with L/a for anti symmetric mode of Zinc solid bar. 
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